
ibm.com/redbooks

Front cover

ABCs of z/OS System
Programming
Volume 9

Paul Rogers
Richard Conway

z/OS UNIX, TCP/IP installation

zSeries File System, z/OS UNIX
security

Shell and programming tools

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

ABCs of z/OS System Programming Volume 9

January 2008

SG24-6989-03

© Copyright International Business Machines Corporation 2006, 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Fourth Edition (January 2008)

This edition applies to Version 1 Release 8 of z/OS (5694-A01), Version 1 Release 8 of z/OS.e (5655-G52), and to all
subsequent releases and modifications until otherwise indicated in new editions.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xvii.

Contents

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this book .xx
Become a published author .xx
Comments welcome. .xx

Chapter 1. Products and components . 1
1.1 UNIX System Services . 2
1.2 z/OS and z/OS UNIX. 4
1.3 Product and component support for z/OS UNIX . 6
1.4 Security Server RACF. 7
1.5 Data Facility System-Managed Storage (DFSMS) . 8
1.6 Transmission Control Protocol/Internet Protocol (TCP/IP) . 9
1.7 System Modification Program Extended (SMP/E). 11
1.8 System Management Facility (SMF) . 12
1.9 Resource Measurement Facility (RMF). 13
1.10 Virtual Lookaside Facility (VLF) . 14
1.11 Time Sharing Option/Extended (TSO/E) . 16
1.12 Workload Manager (WLM) . 17
1.13 Tivoli Storage Manager (TSM) . 18

Chapter 2. UNIX System Services overview . 21
2.1 z/OS UNIX and UNIX applications . 22
2.2 Terminology overview . 24
2.3 HFS and zFS file system PFSes. 26
2.4 Using z/OS UNIX . 27
2.5 UNIX System Services . 29
2.6 Physical file systems . 31
2.7 z/OS UNIX file systems. 33
2.8 File system data sets . 34
2.9 File and directory permission bits . 35
2.10 MVS data sets versus file system files . 36
2.11 zFS or HFS data sets . 37
2.12 z/OS UNIX components . 38
2.13 z/OS UNIX programs (processes). 40
2.14 Create a process. 42
2.15 z/OS UNIX processes . 44
2.16 z/OS UNIX interactive interfaces. 46
2.17 ISPF Option 6 . 48
2.18 ISHELL command (ish) . 49
2.19 User’s files and directories . 50
2.20 OMVS command shell session . 51
2.21 ls -al command - list files in the root . 53
2.22 Direct login to shell . 54
2.23 Telnet access to z/OS UNIX . 55

Chapter 3. UNIX System Services pre-installation requirements 57
© Copyright IBM Corp. 2006, 2008. All rights reserved. iii

3.1 Customization of the root . 58
3.2 Installing z/OS using ServerPac . 60
3.3 Installing z/OS using CBPDO . 62
3.4 ServerPac and CBPDO. 63
3.5 UNIX System Services installation . 65
3.6 z/OS UNIX security . 66
3.7 RACF definitions . 67
3.8 RACF OMVS segments . 69
3.9 OMVS segment fields . 71
3.10 UNIX security . 73
3.11 z/OS UNIX superuser . 75
3.12 RACF commands and user IDs . 77
3.13 RACF commands to define groups . 78
3.14 RACF commands to define users . 79
3.15 LU and LG command examples . 80
3.16 Define a terminal group name. 81
3.17 TSO/E support . 82
3.18 User access to TSO/E commands . 83

Chapter 4. UNIX System Services installation . 85
4.1 z/OS UNIX PARMLIB - PROCLIB members . 86
4.2 IEASYSxx PARMLIB member. 87
4.3 z/OS UNIX minimum mode . 88
4.4 Minimum mode: TFS. 89
4.5 z/OS UNIX full-function mode . 91
4.6 z/OS HFS root . 93
4.7 zFS with z/OS V1R7 . 95
4.8 HFS or zFS data sets . 96
4.9 Set data set type . 97
4.10 Choosing zFS . 98
4.11 ServerPac changes if using zFS . 99
4.12 UNIX utilities: TSO/E commands . 100
4.13 UNIX commands to move and copy data . 102
4.14 The pax and tar utilities . 103
4.15 New pax functions in z/OS V1R7 . 105
4.16 pax migration support and function . 106
4.17 ServerPac z/OS UNIX installation. 107
4.18 Non-volatile root file system . 109
4.19 Installation of other products . 110
4.20 UNIX System Services installation . 111

Chapter 5. z/OS UNIX shell and utilities . 113
5.1 The z/OS UNIX shell . 114
5.2 Input, output, errors with UNIX shell . 115
5.3 Accessing the z/OS UNIX shell . 117
5.4 Controlling session resources . 118
5.5 Dynamic /dev . 119
5.6 Invoking the shell via TSO/E . 120
5.7 Invoking the shell via rlogin or telnet . 122
5.8 rlogin and telnet access . 124
5.9 Customizing z/OS UNIX initialization . 126
5.10 Initializing z/OS UNIX . 128
5.11 Environment variables. 129
iv ABCs of z/OS System Programming Volume 9

5.12 Environment variables. 130
5.13 The /etc/init.options file . 131
5.14 The etc/rc file. 132
5.15 The /etc/inittab file with z/OS V1R8. 135
5.16 The _BPXK_INITTAB_RESPAWN variable . 136
5.17 Rules for coding /etc/inittab. 137
5.18 Customizing the OMVS command . 139
5.19 Shell environment variables . 141
5.20 Customizing your shell environment . 143
5.21 Global variables in /etc/profile . 144
5.22 User-defined settings . 146
5.23 Setting the time zone . 148
5.24 Customizing the C89/CC compilers . 150
5.25 Code page tables . 152
5.26 Specifying a code page. 153
5.27 Internationalization variables (locales) . 154
5.28 Setting the region size. 156
5.29 Setting up printers for shell users . 157
5.30 Installing books for OHELP . 158
5.31 Using the man command . 159
5.32 Enabling various tools . 161
5.33 SVP for z/OS UNIX and tools . 163
5.34 Setup Verification Program (SVP). 165

Chapter 6. Security customization . 167
6.1 RACF OMVS segments . 168
6.2 z/OS UNIX UIDs and GIDs . 170
6.3 z/OS UNIX users and groups . 171
6.4 BPXROOT user ID . 173
6.5 Superuser with appropriate authority . 174
6.6 Commands for superusers . 175
6.7 z/OS UNIX security and RACF profiles. 176
6.8 z/OS UNIX security: BPX.SUPERUSER. 179
6.9 z/OS UNIX superuser granularity . 180
6.10 Resource names: UNIXPRIV . 181
6.11 z/OS UNIX UNIXPRIV class profiles . 183
6.12 Assigning UIDs . 184
6.13 Shared UID prevention . 186
6.14 Automatic UID and GID assignment . 187
6.15 Automatic assignment requirements . 188
6.16 Automatic assignment examples . 190
6.17 Automatic assignment with RRSF. 192
6.18 z/OS UNIX security: File security packet . 193
6.19 Octal values for permission bits . 195
6.20 Data set security versus file security . 197
6.21 z/OS UNIX user’s security environment . 198
6.22 Access checking flows . 200
6.23 File authorization checking flow . 201
6.24 POSIX standard and UNIX ACLs . 202
6.25 Limitations of current permission bits . 203
6.26 FSPs and ACLs. 204
6.27 Access control list table. 205
6.28 File authorization check summary. 206
 Contents v

6.29 Profiles in UNIXPRIV class . 207
6.30 Profiles in UNIXPRIV class (2) . 208
6.31 RACF RESTRICTED attribute . 210
6.32 z/OS UNIX file access checking . 211
6.33 RESTRICTED user profile . 213
6.34 Restricted user access checking. 214
6.35 Access checking with ACLs (1) . 215
6.36 Access checking with ACLs (2) . 216
6.37 Create ACLs . 217
6.38 ACL types . 219
6.39 OMVS shell commands for ACLs . 220
6.40 Create ACLs for a specific directory . 221
6.41 Create an access ACL . 222
6.42 Display the access ACL . 223
6.43 Create a directory default ACL . 224
6.44 Create a file default ACL . 225
6.45 Creating all ACL types . 226
6.46 Using the ISHELL panel . 227
6.47 Create an access ACL using ISHELL . 229
6.48 File attributes panel for /u/harry . 230
6.49 File attributes panel showing ACLs. 231
6.50 Select option to create an access ACL . 232
6.51 Create an access ACL . 233
6.52 Add an access ACL. 234
6.53 Access ACL after creation. 235
6.54 ACL inheritance: New directory/new file . 236
6.55 Multilevel security with z/OS V1R5 . 237
6.56 Multilevel security (MLS) . 238
6.57 MLS support for z/OS UNIX . 239
6.58 Mandatory access control (MAC) . 241
6.59 Discretionary access control (DAC) . 243
6.60 SECLABELs and MAC . 244
6.61 Special SECLABELs and definitions. 246
6.62 SYSMULTI SECLABEL. 247
6.63 z/OS UNIX and SECLABELs . 248
6.64 Understanding UMASK . 249
6.65 Displaying the UMASK . 250
6.66 Default permissions and UMASK . 251
6.67 Example of creating a new file . 253
6.68 Can user JOE access the file . 255
6.69 Can user ANN copy the file . 256
6.70 Setting file permissions . 257
6.71 Setting file permissions . 259
6.72 List file and directory information . 260
6.73 Introducing daemons. 261
6.74 z/OS UNIX daemons. 263
6.75 UNIX-level security for daemons. 265
6.76 z/OS UNIX security: BPX.DAEMON . 266
6.77 RACF program control . 267
6.78 z/OS UNIX-level security for daemons . 269
6.79 Start options for daemons . 270
6.80 Define daemon security . 271
6.81 Auditing options for z/OS UNIX. 273
vi ABCs of z/OS System Programming Volume 9

6.82 File-based auditing . 274
6.83 Audit z/OS UNIX events . 276
6.84 Chaudit command . 278
6.85 List audit information for files . 280
6.86 Auditing reports . 281
6.87 Maintain z/OS UNIX-level security . 282
6.88 Setting up z/OS UNIX (1) . 283
6.89 Setting up z/OS UNIX (2) . 284
6.90 Setting up z/OS UNIX (3) . 285
6.91 Setting up z/OS UNIX (4) . 286
6.92 Setting up z/OS UNIX (5) . 287
6.93 RACF definitions for zFS. 288
6.94 UNIXPRIV class with z/OS V1R3 and zFS . 289
6.95 List current user IDs with the ISHELL . 290
6.96 The BPXBATCH utility . 291
6.97 The BPXBATCH job . 292
6.98 BPXBATCH and shell commands. 294

Chapter 7. zFS file systems . 297
7.1 zSeries File System (zFS). 298
7.2 zFS aggregates. 299
7.3 zFS compatibility mode aggregate . 300
7.4 Multi-file system aggregate . 301
7.5 BPXPRMxx definitions for zFS . 302
7.6 zFS colony address space . 303
7.7 HFS data sets and zFS data sets . 304
7.8 zFS utilities and commands . 305
7.9 zfsadm command . 307
7.10 Allocate Linear VSAM data set . 308
7.11 Create the aggregate from ISHELL. 309
7.12 Format VSAM space - create aggregate. 310
7.13 Format the aggregate . 312
7.14 Ioeagfmt messages. 313
7.15 Mounting the file system . 314
7.16 ISHELL support for zFS (z/OS V1R5). 315
7.17 Panel of attached zFS aggregates . 316
7.18 Display aggregate attributes . 317
7.19 Display attached aggregates. 318
7.20 List file systems. 319
7.21 Defining IOEFSPRM options. 320
7.22 Logical PARMLIB support - z/OS V1R6 . 321
7.23 Specifying PARMLIB members. 322
7.24 Searching for IOEZPRM . 323
7.25 Dynamic configuration: z/OS V1R4. 324
7.26 zfsadm config command options. 325
7.27 zfsadm configquery command options . 326
7.28 zfsadm aggregate space commands . 327
7.29 Grow an aggregate . 328
7.30 The -grow option - z/OS V1R4 . 329
7.31 The -grow option - z/OS V1R4 (2). 330
7.32 New -grow option - z/OS V1R4 . 332
7.33 Dynamic aggregate extension. 333
7.34 Dynamic aggregate extension aggrgrow. 334
 Contents vii

7.35 Dynamic aggregate extension processing . 336
7.36 zFS aggregates on disk . 337
7.37 zFS aggregate space commands . 338
7.38 Command for aggregate display . 339
7.39 zFS threshold monitoring space usage. 340
7.40 Add a volume to a zFS aggregate. 341
7.41 zFS migration considerations . 342
7.42 HFS/zFS as generic file system type . 343
7.43 Migration considerations . 344
7.44 Migration tool. 345
7.45 Migration checks file system type . 346
7.46 REXX exec - BPXWH2Z . 347
7.47 BPXWH2Z panels . 348
7.48 Space allocations - HFS versus zFS. 349
7.49 BPXWH2Z panels . 350
7.50 Migration steps . 351
7.51 Migration steps . 352
7.52 Migration steps continued . 353
7.53 Using the migration tool . 354
7.54 Using SMS if required . 355
7.55 Migrate in the foreground . 356
7.56 Alter allocation parameters . 357
7.57 Migrating a list of data sets . 358
7.58 Data set list displayed . 359
7.59 Migration tool enhancements with APAR OA18196 . 360
7.60 New pax functions in z/OS V1R7 . 362
7.61 pax enhancements . 364
7.62 Special characters in zFS aggregates . 366
7.63 BPXMTEXT shell command . 367

Chapter 8. Managing file systems . 369
8.1 Hierarchical file system (HFS). 370
8.2 File linking . 371
8.3 Hard links . 372
8.4 Symbolic links . 373
8.5 External links. 374
8.6 File system structure . 376
8.7 Temporary directory space . 377
8.8 Temporary file system (TFS). 379
8.9 Colony address space. 381
8.10 Mounting file systems . 383
8.11 Mount and unmount . 385
8.12 Managing user file systems. 386
8.13 User file systems: Direct mount . 387
8.14 Mounting file systems . 389
8.15 Option 3: Mount. 391
8.16 Automount facility . 392
8.17 Automount facility overview. 393
8.18 Automount setup . 394
8.19 Generic match on lower case names . 396
8.20 Activating automount. 397
8.21 SETOMVS RESET=xx implementation. 398
8.22 Issue the SETOMVS command . 399
viii ABCs of z/OS System Programming Volume 9

8.23 Updating an existing automount policy . 401
8.24 Example of new options . 402
8.25 One auto.master for a sysplex . 403
8.26 HFS to zFS automount . 404
8.27 HFS to zFS automount . 405
8.28 Automount migration considerations. 407
8.29 How to mount zFS file systems. 408
8.30 Using direct mount commands . 409
8.31 Direct mount . 411
8.32 Mounting zFS file systems . 412
8.33 MOUNT command from TSO/E . 413
8.34 Automount policy using /z . 414
8.35 Automount policy for zFS . 415
8.36 Automount of a zFS file system . 416
8.37 zFS file systems mounted (automount). 417
8.38 zFS file system clone . 418
8.39 Backup file system - zFS clone . 419
8.40 zFS clone mounted . 420
8.41 Using the clone . 421
8.42 File sharing in a sysplex and mounts . 422
8.43 MOUNT command options . 423
8.44 Shared file systems in a sysplex . 424
8.45 Sysplex environment setup . 425
8.46 File systems in a shared sysplex . 427
8.47 Multiple systems: Different versions . 428
8.48 Update BPXPRMxx for sysplex. 429
8.49 OMVS couple data set . 431
8.50 File sharing in a sysplex . 433
8.51 UNMOUNT option . 434
8.52 UNMOUNT option support . 435
8.53 UNMOUNT option support . 436
8.54 Mount file system panel . 437
8.55 Set AUTOMOVE options. 438
8.56 AUTOMOVE system list (syslist). 439
8.57 AUTOMOVE parameters for mounts . 440
8.58 AUTOMOVE wildcard support . 441
8.59 AUTOMOVE wildcard examples . 442
8.60 Defining process limits . 443
8.61 Mount limiting corrective action. 444
8.62 Mounting shared sysplex file systems. 445
8.63 Accessing shared sysplex file systems . 447
8.64 Shared file system AUTOMOVE takeover . 448
8.65 Moving file systems in a sysplex . 450
8.66 Logical file system (LFS). 451
8.67 Systems accessing file systems . 452
8.68 zFS PFS termination on SY1 . 453
8.69 LFS sysplex support . 454
8.70 z/OS V1R6 LFS design . 456
8.71 Stopping zFS. 457
8.72 Restarting the PFS . 458
8.73 Mounting file systems with SET OMVS. 459
8.74 Messages from shutdown of a ZFS single system . 460
8.75 Messages for the restart of ZFS . 461
 Contents ix

8.76 Stopping ZFS with z/OS V1R8 . 462
8.77 Command (f omvs,stoppfs=zfs) . 464
8.78 Stopping the ZFS address space . 465
8.79 PFS termination and LFS support for z/OS V1R6. 466
8.80 Systems accessing file systems . 467
8.81 Accessing file systems when zFS terminates . 468
8.82 AUTOMOVE behavior with z/OS V1R6 . 469
8.83 z/OS V1R6 AUTOMOVE handling change . 470
8.84 zFS command changes for sysplex . 471
8.85 zfsadm command changes for sysplex . 472
8.86 z/OS V1R7 zfsadm command changes . 473
8.87 Configuration options - z/OS V1R7 . 474
8.88 zFS command forwarding support . 475
8.89 Command forwarding support . 476
8.90 Centralized BRLM support . 477
8.91 Distributed BRLM . 478
8.92 Define BRLM option in CDS . 479
8.93 BRLM problems in a sysplex. 480
8.94 z/OS V1R8 BRLM recovery of locks . 481
8.95 File system access . 482
8.96 File access . 483
8.97 List file and directory information . 484
8.98 File security packet - extattr bits . 485
8.99 Extended attributes . 487
8.100 APF-authorized attribute . 489
8.101 Activate program control . 490
8.102 Shared address space attribute . 491
8.103 Shared library attribute . 492
8.104 File format attribute . 493
8.105 Extended attribute command example . 495
8.106 Sticky bit . 496
8.107 Set the UID/GID bit . 498

Chapter 9. Overview of TCP/IP. 501
9.1 Introduction to TCP/IP. 502
9.2 TCP/IP terminology . 504
9.3 IP addressing . 506
9.4 User login to the z/OS UNIX shell . 508
9.5 Configuration files used by TCP/IP . 509
9.6 Resolver address space . 511
9.7 TCPDATA search order . 513
9.8 Resolver definitions. 515
9.9 Customize the TCP/IP profile data set . 516
9.10 Customize TCPDATA . 517
9.11 z/OS IP search order. 518
9.12 z/OS IP search order (2) . 520
9.13 Customize the TCP/IP procedure . 521
9.14 Customizing PARMLIB members for TCP/IP . 523
9.15 PARMLIB members to customize for TCP/IP . 524
9.16 RACF customization for TCP/IP . 525
9.17 Customizing TCP/IP . 527
9.18 TCP/IP shell commands . 528
x ABCs of z/OS System Programming Volume 9

Chapter 10. TCP/IP applications . 529
10.1 Overview of z/OS UNIX data access . 530
10.2 Sockets . 532
10.3 z/OS Communications Server . 534
10.4 z/OS UNIX sockets support . 536
10.5 Customizing sockets . 537
10.6 Logging in to the z/OS UNIX shell. 538
10.7 Using inetd - master of daemons . 539
10.8 Customize inetd . 540
10.9 Customize inetd (2) . 541
10.10 Login to a Unix system . 543
10.11 rlogin to z/OS UNIX services. 544
10.12 Activating z/OS UNIX rlogin daemon . 545
10.13 Comparing shell login methods. 547
10.14 Define TCP/IP daemons . 548
10.15 The syslogd daemon. 549
10.16 The FTPD daemon . 550
10.17 z/OS IP search order for FTP . 551
10.18 z/OS IP search order for /etc/services . 552
10.19 Start the TCP/IP daemons . 553
10.20 Message integration support . 554
10.21 Message routing to z/OS. 555
10.22 syslogd command options. 556
10.23 syslogd defined instances . 557
10.24 syslogd configuration file . 558
10.25 Start procedure for syslogd . 560
10.26 syslogd availability considerations . 561

Chapter 11. z/OS UNIX PARMLIB members . 563
11.1 BPXPRMxx PARMLIB member . 564
11.2 BPXPRMFS PARMLIB member . 565
11.3 BPXPRMxx control keywords . 566
11.4 BPXPRMxx PARMLIB member . 567
11.5 Controlling the number of processes . 568
11.6 Resource limits for processes . 570
11.7 MAXFILEPROC statement . 572
11.8 Setting file descriptors. 574
11.9 Setting file descriptor for a single user . 576
11.10 Memory mapped files . 578
11.11 Controlling thread resources . 579
11.12 Creating a process using fork() . 581
11.13 Values for forked child process . 583
11.14 Starting a program with exec() . 584
11.15 Values passed for exec() program . 586
11.16 z/OS UNIX processes get STEPLIBs . 587
11.17 Locating programs for z/OS UNIX processes . 589
11.18 Shared pages for the fork() function . 590
11.19 Spawn function . 591
11.20 Interprocess communication functions . 593
11.21 Address Space Memory Map z/OS V1R5. 594
11.22 Control IPC resources. 596
11.23 Kernel support for IBM 5.0 JVM . 598
11.24 Interprocess communication signals . 600
 Contents xi

11.25 Pipes . 602
11.26 Other BPXPRMxx keywords . 603
11.27 More BPXPRMxx parameters . 604
11.28 FILESYSTYPE statement . 605
11.29 FILESYSTYPE and NETWORK . 606
11.30 ROOT and MOUNT statements . 607
11.31 Examples of MKDIR in BPXPRMxx . 608
11.32 Allocating SWA above the line . 609
11.33 z/OS UNIX Web site . 610

Chapter 12. Maintenance . 611
12.1 Example of SMP/E SMPMCS . 612
12.2 Active root file system . 613
12.3 Inactive root file system (clone). 614
12.4 /SERVICE directory. 616
12.5 Sample SMP/E DDDEFs. 617
12.6 Prepare for SMP/E . 618
12.7 SMP/E APPLY process. 620
12.8 Supporting multiple service levels . 622
12.9 Supporting multiple service levels (2) . 623
12.10 ISHELL display of root . 624
12.11 The chroot command . 625
12.12 Testing a root file system . 626
12.13 Testing the updated root . 627
12.14 Dynamic service activation . 628
12.15 Dynamic service activation commands . 629
12.16 Using the new service . 631
12.17 Deactivate service. 632
12.18 Display service . 633

Chapter 13. z/OS UNIX operations. 635
13.1 Commands to monitor z/OS UNIX . 636
13.2 Display summary of z/OS UNIX . 638
13.3 Display z/OS UNIX options . 639
13.4 Display BPXPRMxx limits . 640
13.5 Display address space information . 641
13.6 Display process information . 643
13.7 Display the kernel address space . 645
13.8 z/OS V1R7 command options. 647
13.9 Mount error messages displayed . 648
13.10 Mount failure messages . 649
13.11 Stopping BPXAS address spaces. 650
13.12 LFS soft shutdown . 651
13.13 z/OS V1R8 file system shutdown . 652
13.14 Options with the D OMVS,F command . 654
13.15 Options with the D OMVS,F command . 655
13.16 New command examples . 656
13.17 New command examples . 657
13.18 New command examples . 658
13.19 z/OS UNIX shutdown . 659
13.20 Recommended shutdown procedures . 661
13.21 Application registration . 662
13.22 Display application registration . 663
xii ABCs of z/OS System Programming Volume 9

13.23 F OMVS,SHUTDOWN . 664
13.24 Blocking processes completion. 665
13.25 Shutdown processing completion . 666
13.26 Shutdown for permanent processes . 667
13.27 Shutdown processing final cleanup. 668
13.28 F OMVS,RESTART. 669
13.29 Display information about processes . 670
13.30 Stop a process . 671
13.31 Superkill function. 672
13.32 Superkill example . 673
13.33 Changing OMVS parameter values . 674
13.34 Manage interprocess communication . 675
13.35 System problems . 676
13.36 z/OS UNIX abends and messages . 677
13.37 USS errors and codes. 678
13.38 CTIBPX00 and CTCBPXxx . 680
13.39 Tracing z/OS UNIX events . 681
13.40 Debugging a z/OS UNIX problem . 682
13.41 IPCS OMVSDATA reports . 683

Chapter 14. z/OS UNIX shell and programming tools . 685
14.1 Language Environment run-time library . 686
14.2 Using pre-LE run-time libraries . 688
14.3 Overview of c89/cc/c++. 690
14.4 Customization of /etc/profile for c89/cc/c++ . 691
14.5 Compile, link-edit, and run . 693
14.6 Customization of Java for z/OS. 695
14.7 Java virtual machine . 696
14.8 Management of software and the make utility. 697
14.9 The dbx debugger . 699
14.10 The dbx debugger . 701
14.11 Introduction to shells . 702
14.12 REXX, CLISTs, and shell scripts. 704
14.13 Shell script syntax . 706
14.14 BPXBATCH enhancements . 707
14.15 BPXBATCH implementation . 708
14.16 BPXBATCH summary . 710
14.17 TSO/E ALLOCATE command for STDPARM . 712
14.18 STDERR and STDOUT as MVS data sets . 713
14.19 BPXBATCH sample job . 715
14.20 Child process created for MVS data sets . 716
14.21 BPXBATCH utility . 717

Chapter 15. Performance, debugging, recovery, and tuning 719
15.1 z/OS UNIX performance overview . 720
15.2 WLM in goal mode . 721
15.3 Defining service classes . 722
15.4 Workload Manager service classes . 723
15.5 Subsystem type panel . 724
15.6 WLM work qualifiers . 725
15.7 OMVS work qualifiers . 726
15.8 Defining classification rules. 727
15.9 Classification rules . 728
 Contents xiii

15.10 Classification rules for STC. 729
15.11 Virtual lookaside facility (VLF). 730
15.12 VLF for z/OS UNIX . 732
15.13 COFVLFxx updates for z/OS UNIX. 733
15.14 AIM Stage 3 and z/OS V1R4 . 734
15.15 Further tuning tips . 736
15.16 zFS fast mount performance improvement . 738
15.17 zFS fast mount performance improvement - continued . 739
15.18 zFS performance tuning . 740
15.19 zFS cache . 741
15.20 zFS cache locations . 743
15.21 Metadata backing cache . 744
15.22 Performance APIs . 745
15.23 Performance monitoring APIs . 746
15.24 zfsadm command changes . 748
15.25 The IOEZADM utility from TSO for commands . 749
15.26 Directory cache . 750
15.27 The zfsadm query -iobyaggr command. 751
15.28 SMF recording. 752
15.29 RMF reporting . 754
15.30 RMF Monitor III support for zFS . 755
15.31 zFS access to file systems . 756
15.32 RMF Overview Report Selection Menu. 758
15.33 zFS Summary Report . 759
15.34 zFS Summary I/O details by type . 760
15.35 User and vnode cache detail. 762
15.36 DFSMSdss dump and restore for zFS file systems. 764
15.37 UNQUIESCE command . 765
15.38 zFS recovery support . 766
15.39 zFS aggregate corruption . 768
15.40 Debugging data sets . 770
15.41 zFS hang detection . 772
15.42 z/OS UNIX Internet information. 774

Chapter 16. Printing services for z/OS UNIX . 775
16.1 How do I print and where . 776
16.2 z/OS Infoprint Server. 777
16.3 Infoprint Server components . 778
16.4 Installation of Infoprint Server . 779
16.5 Infoprint Server HFS directories/files . 781
16.6 Printer Inventory directories and files . 782
16.7 Starting Print Interface . 784
16.8 Operator console started job. 785
16.9 Operator console started task . 786
16.10 Printing from UNIX System Services . 787
16.11 UNIX commands with Infoprint Server . 789
16.12 z/OS UNIX user prints a data set . 790
16.13 Transform commands . 793
16.14 Infoprint Server job attributes . 796
16.15 UNIX user issues the lpstat command . 797
16.16 lpstat -t command . 798

Related publications . 799
xiv ABCs of z/OS System Programming Volume 9

IBM Redbooks . 799
Other publications . 799
Online resources . 800
How to get IBM Redbooks . 800
Help from IBM . 800
 Contents xv

xvi ABCs of z/OS System Programming Volume 9

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2006, 2008. All rights reserved. xvii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
BookManager®
C/MVS™
C/370™
CICS®
CUA®
Domino®
DB2®
DFS™
DFSMS™
DFSMSdfp™
DFSMSdss™
DFSMShsm™
Geographically Dispersed Parallel

Sysplex™

GDPS®
IBM®
IMS™
IP PrintWay™
Language Environment®
Lotus®
MVS™
MVS/ESA™
NetSpool™
NetView®
Open Class®
OS/390®
Parallel Sysplex®
PrintWay™
ProductPac®

Redbooks®
Redbooks (logo) ®
RACF®
REXX™
RISC System/6000®
RMF™
S/390®
SystemPac®
Tivoli®
VTAM®
WebSphere®
z/Architecture®
z/OS®
zSeries®

The following terms are trademarks of other companies:

ABAP, SAP R/3, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in
several other countries.

PostScript, and Portable Document Format (PDF) are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, other countries, or both.

Java, JDK, JVM, Sun, SunOS, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Windows NT, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xviii ABCs of z/OS System Programming Volume 9

Preface

The ABCs of z/OS® System Programming is an 11-volume collection that provides an
introduction to the z/OS operating system and the hardware architecture. Whether you are a
beginner or an experienced system programmer, the ABCs collection provides the
information that you need to start your research into z/OS and related subjects. If you would
like to become more familiar with z/OS in your current environment, or if you are evaluating
platforms to consolidate your e-business applications, the ABCs collection will serve as a
powerful technical tool.

This IBM® Redbooks® publication describes UNIX® System Services (z/OS UNIX). It will
help you install, tailor, configure, and use the z/OS Version 1 Release 6 version of z/OS
UNIX. Topics covered in this volume are the products and components used with z/OS UNIX:

� An overview of z/OS UNIX

� z/OS UNIX pre-installation requirements

� Step-by-step installation of UNIX System Services using the ServerPac

� The z/OS UNIX shell and utilities

� z/OS UNIX security customization using RACF®

� The Hierarchical File System (HFS) and zFS

� TCP/IP overview and customization; TCP/IP applications

� z/OS UNIX PARMLIB member definitions

� How to perform maintenance

� Using z/OS UNIX operator commands

� The z/OS UNIX shell and programming tools

� Using the workload manager; performance and tuning considerations

� z/OS UNIX printing options

The contents of the volumes are as follows:

Volume 1: Introduction to z/OS and storage concepts, TSO/E, ISPF, JCL, SDSF, and z/OS
delivery and installation

Volume 2: z/OS implementation and daily maintenance, defining subsystems, JES2 and
JES3, LPA, LNKLST, authorized libraries, SMP/E, Language Environment®

Volume 3: Introduction to DFSMS™, data set basics storage management hardware and
software, catalogs, and DFSMStvs

Volume 4: Communication Server, TCP/IP, and VTAM®

Volume 5: Base and Parallel Sysplex®, System Logger, Resource Recovery Services (RRS),
global resource serialization (GRS), z/OS system operations, automatic restart management
(ARM), Geographically Dispersed Parallel Sysplex™ (GDPS®)

Volume 6: Introduction to security, RACF, Digital certificates and PKI, Kerberos, cryptography
and z990 integrated cryptography, zSeries® firewall technologies, LDAP, and Enterprise
identity mapping (EIM)
© Copyright IBM Corp. 2006, 2008. All rights reserved. xix

Volume 7: Printing in a z/OS environment, Infoprint Server and Infoprint Central

Volume 8: An introduction to z/OS problem diagnosis

Volume 9: z/OS UNIX System Services

Volume 10: Introduction to z/Architecture®, zSeries processor design, zSeries connectivity,
LPAR concepts, HCD, and HMC

Volume 11: Capacity planning, performance management, WLM, RMF™, and SMF

The team that wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Paul Rogers is a Consulting IT Specialist at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM classes
worldwide on various aspects of z/OS, z/OS UNIX, JES3, and Infoprint Server. Before joining
the ITSO 20 years ago, Paul worked in the IBM Installation Support Center (ISC) in
Greenford, England for seven years providing OS/390® and JES support for IBM EMEA and
also in the Washington Systems Center for three years. He has worked for IBM for 40 years.

Richard Conway is a systems programmer at the International Technical Support
Organization, Poughkeepsie Center. He has extensive knowledge of UNIX System Services
and all of the products installed at the ITSO. He has worked in the ITSO for the last 15 years.

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:
xx ABCs of z/OS System Programming Volume 9

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xxi

http://www.redbooks.ibm.com/contacts.html

xxii ABCs of z/OS System Programming Volume 9

Chapter 1. Products and components

This chapter provides a brief overview of UNIX System Services (z/OS UNIX) and related
components. z/OS UNIX interacts with the following elements and features of z/OS:

� BCP (WLM and SMF components)

� XPG4-compliant shell application

� Data Facility Storage Management Subsystem (DFSMS) (HFS is a component of
DFSMS)

� Security Server RACF

� Resource Measurement Facility (RMF)

� Time Sharing Option/Extended (TSO/E)

� z/OS Communications Server (TCP/IP)

� System Modification Program Extended (SMP/E)

� Virtual Lookaside Facility (VLF)

� Tivoli® Storage Manager (TSM)

� z/OS Distributed File Service zSeries File System (zFS)

1

© Copyright IBM Corp. 2006, 2008. All rights reserved. 1

1.1 UNIX System Services

Figure 1-1 Implementation of UNIX System Services

UNIX System Services
The name OpenEdition was changed to OS/390 UNIX System Services beginning with
OS/390 Release 5. UNIX Services can then be abbreviated OS/390 UNIX.

When OS/390 was renamed to z/OS, the new abbreviation for UNIX System Services
became z/OS UNIX.

z/OS UNIX was originally implemented in MVS/ESA™ 4.3 as OpenEdition and supported the
POSIX standards (1003.1, 1003.1a, 1003.1c, and 1003.2) with approximately 300 functions.
In MVS/ESA 5.2.2 many additional functions were added to meet the XPG4 requirements.

In MVS/ESA 5.2.2 more than 1100 functions were included in the OpenEdition
implementation. This incorporated the full X/Open Portability Guide issue 4 (XPG4) and over
90% of the single UNIX specification as defined in XPG4.2. The remaining functions were
added afterwards, and OpenEdition became branded as a UNIX system.

The XPG4.2 support includes all commands and utilities, most of the additional C services
defined in the standard and curses, which was included in specification 1170 but not in the
XPG4.2 itself. Curses is the UNIX multi-color, multi-language screen control package which
comes from the Novell SVID Edition 3 package.

Since OS/390 V2R2, the following items were added: STREAMS, X/Open Transport Interface
(XTI), XPG4.2 regular expressions, XPG4.2 context switching, and XPG4.2 behavior specific
to sockets.

A new name for OpenEdition
Abbreviation - OS/390 UNIX

Beginning with OS/390 Release 5
New abbreviation - z/OS UNIX

Beginning with z/OS Version 1 Release 1

POSIX
XPG4 XPG4.2

MVS/ESA 4.3 and 5.1

MVS/ESA 5.2.2 and OS/390 R1
OS/390 R2

Full
UNIX
Branding

1993 1996
2 ABCs of z/OS System Programming Volume 9

XPG4 branding
XPG4 branding means that products use a common set of UNIX APIs. X/Open branding is
the procedure by which a vendor certifies that its product complies with one or more of
X/Open's vendor-independent product standards and OpenEdition in MVS™ 4.2.2 received
base branding. In 1996, OpenEdition in MVS/ESA SP Version 5 Release 2 received a full
XPG4.2 branding. Branding allows applications that are developed on one branded flavor of
UNIX to run unchanged on other branded UNIX systems.

It is called branding because it allows the right to use the X/Open Trade Mark. OpenEdition in
MVS was shown to comply with the specifications, and therefore IBM is entitled to use the
X/Open Trade Mark in relation to OpenEdition having X/Open-compliant features. That right
continues for as long as z/OS UNIX remains compliant and registered in the Directory of
X/Open Branded Products.

POSIX standards
The work on Portability Operating Systems Interface (POSIX) started as an effort to
standardize UNIX and was performed by a workgroup under the Institute of Electrical and
Electronics Engineers (IEEE). What they defined was an application programming interface
which could be applied not only to UNIX systems but to other operating systems like MVS.

POSIX is not a product. It is an evolving family of standards describing a wide spectrum of
operating system components ranging from C language and shell interfaces to system
administration.

The POSIX standard is sponsored by the International Organization for Standardization (ISO)
and is incorporated into X/Open Portability Guides (XPG). Each element of the standard is
defined by a 1003.* number.

POSIX defines the interfaces and not the solution or implementation. In this way POSIX can
be supported by any operating system. Implementation of POSIX can be different in areas
such as performance, availability, and recoverability. All POSIX-compliant systems aren't the
same, although they all support basically the same interface.

The support for open systems in z/OS is based on the POSIX standard.
Chapter 1. Products and components 3

1.2 z/OS and z/OS UNIX

Figure 1-2 z/OS UNIX and the z/OS operating system

z/OS UNIX services
The z/OS support for UNIX System Services (z/OS UNIX) enables two open systems
interfaces on z/OS:

� An application program interface (API)
� An interactive z/OS shell interface

API interface
With the APIs, programs can run in any environment—including in batch jobs, in jobs
submitted by TSO/E users, and in most other started tasks—or in any other MVS application
task environment. The programs can request:

� Only MVS services
� Only z/OS UNIX
� Both MVS and z/OS UNIX

The shell interface is an execution environment analogous to TSO/E, with a programming
language of shell commands analogous to the Restructured eXtended eXecutor (REXX™)
language. The shell work consists of:

� Programs run by shell users
� Shell commands and scripts run by shell users
� Shell commands and scripts run as batch jobs

Callable
Services

z/OS
Operating
System
(MVS)

APIAPI
InterfaceInterface

(C functions)(C functions)

Shell Shell
InterfaceInterface

(commands)(commands)

KernelKernel

z/OSz/OS
UNIXUNIX

ServicesServices

VLFVLF

WLMWLM

SMFSMF

LE
4 ABCs of z/OS System Programming Volume 9

Shell interface
To run a shell command or utility, or any user-provided application program written in C or
C++, you need the C/C++ run-time library provided with the Language Environment (LE).

With the z/OS UNIX System Services Application Services, users can:

� Request services from the system through shell commands. Shell commands are like
TSO/E commands.

� Write shell scripts to run tasks. Shell scripts are analogous to REXX EXECs.

� Run programs interactively (in the foreground) or in the background.

Many users use similar interfaces on other systems, such as AIX® for the RISC
System/6000® or UNIX, and use terminology different from z/OS terminology. For example,
they call virtual storage “memory.” The work done by their system administrators is handled
by system programmers in a z/OS system.

Application programmers are likely to do the following when creating UNIX-compliant
application programs:

� Design, code, and test programs on their workstations using XPG4 UNIX-conforming
systems.

� Send the source modules from the workstation to z/OS.

� Copy the source modules from the MVS data sets to HFS files.

� Compile the source modules and link-edit them into executable programs.

� Test the application programs.

� Use the application programs.

A z/OS UNIX program can be run interactively from a shell in the foreground or background,
run as a z/OS batch job, or called from another program. The following types of applications
exist in a z/OS system with z/OS UNIX:

� Strictly conforming XPG4 UNIX-conforming applications

� Applications using only kernel services

� Applications using both kernel and z/OS services

� Applications using only z/OS services

A z/OS program submitted through the job stream or as a job from a TSO/E session can
request kernel services through the following:

� C/C++ functions

� Shell commands, after invoking the shell

� Callable services

Dubbed as a z/OS UNIX process
At the first request for a kernel service, the system dubs the program as a z/OS UNIX
process. C/C++ applications that use RUNOPT 'POSIX(ON)' are always dubbed implicitly.
POSIX(OFF) or non-C/C++ applications are not dubbed until an explicit kernel service
request is issued.
Chapter 1. Products and components 5

1.3 Product and component support for z/OS UNIX

Figure 1-3 Products and components used by z/OS UNIX

Products and components
The rest of this chapter provides an introduction to the products (RACF, TCP/IP, DFSMS,
TSM, RMF, TSO/E, and SMP/E) and components (VLF, SMF, and WLM) used with UNIX
System Services. Following are the z/OS components used by z/OS UNIX:

WLM The workload manager (WLM) transaction initiators provide address spaces when
programs issue the fork(), spawn(), C function, or z/OS callable services.

VLF RACF allows caching of UID and GID information in the Virtual Lookaside Facility
(VLF). Add the following VLF options to the COFVLFxx member of SYS1.PARMLIB to
enable caching since it will improve the performance of z/OS UNIX. VLF is still valid if
you have not converted to AIM stage 3.

SMF System management facilities (SMF) collects data for accounting. SMF job and
job-step accounting records identify processes by user, process, group, and session
identifiers. Fields in these records also provide information on resources used by the
process. SMF File System records describe file system events such as file open, file
close, file system mount, unmount, quiesce, and unquiesce.

 CLASS NAME(IRRUMAP)
 EMAJ(UMAP)
CLASS NAME(IRRGMAP)
 EMAJ(GMAP)

RACF DFSMS

TSM

RMF

SMF

WLM

VLF SMP/E

TCP/IP

TSO/E

UNIX
SERVICES
6 ABCs of z/OS System Programming Volume 9

1.4 Security Server RACF

Figure 1-4 Security Server RACF

Security Server RACF
RACF or an equivalent security product like ACF2 can manage system and data set security
by verifying a user and checking that the user can access a resource.

The security products also take care of who is allowed to issue special commands, define
new users, and change access permissions.

The permission to access directories and files is verified by the security product. RACF is
responsible for the OMVS segment which allows the user to access UNIX Services.

In other words, if someone wants to access z/OS UNIX file systems, whether a directory or a
file, RACF checks whether this user is allowed to have access in the z/OS UNIX environment.
The security checking to access specific directories or files is then handled by UNIX System
Services itself.

RACF is not able to change permission bits or owner statements in the z/OS UNIX
environment. RACF only checks whether a user or program is allowed to access z/OS UNIX
services.

The RACF user profile definition was expanded with a segment called OMVS for z/OS UNIX
support. All users and programs that need access to z/OS UNIX must have a RACF user
profile defined with an OMVS segment which has, as a minimum, a UID specified. A user
without a UID cannot access z/OS UNIX.

z/OS UNIX requires a security product

z/OS UNIX users defined in RACF database
OMVS segment of user profile
UIDs and GIDs

Userid
Default
 Group Connect Groups TSO DFP OMVS

UID Home Program

15 /u/smith /bin/sh
SMITH PROG1 PROG1 PROG2
Chapter 1. Products and components 7

1.5 Data Facility System-Managed Storage (DFSMS)

Figure 1-5 DFSMS and z/OS UNIX

DFSMS and z/OS UNIX
During the first quarter of 2000, PTFs removed the requirement that HFS data sets reside on
SMS-managed volumes. HFS data sets still need to be cataloged in the master or user
catalog in order for the HFS data sets to be mounted by z/OS UNIX. However, you do not
need to catalog the HFS data sets if you plan on dumping them using DFSMSdss™.

Data Facility System-Managed Storage (DFSMS) manages the z/OS UNIX data sets used for
processing. These hierarchical file system (HFS) data sets make up a file hierarchy.

DFSMS manages the hierarchical file system (HFS) data sets that contain the file systems.
To use kernel services in full-function mode, SMS must be active.

Note: Although the HFS data set does not have to be SMS-managed, it is still highly
suggested. Multivolume HFS data sets are only supported as SMS-managed. (That is, you
cannot have multivolume non-SMS-managed data sets.) As a user adds files and extends
existing files, the data set increases in size to a maximum of 123 extents if secondary
extents are specified in the allocation.

S
M
S

File system data sets can reside on SMS-managed
volumes

SMS-managed is optional

Although the file system does not have to be
SMS-managed, it is still highly suggested

Multivolume file systems are only supported as
SMS-managed

HFS HFS
and and
zFSzFS
8 ABCs of z/OS System Programming Volume 9

1.6 Transmission Control Protocol/Internet Protocol (TCP/IP)

Figure 1-6 TCP/IP and z/OS UNIX

TCP/IP and z/OS UNIX
Transmission Control Protocol/Internet Protocol is a peer-to-peer network protocol. It is
officially named the TCP/IP Internet Protocol Suite and is referred to as TCP/IP (after the
name of its two main standard protocols). TCP/IP is a set of industry standard protocols and
applications.

The TCP/IP Internet Protocol Suite is a layered set of protocols that allow cooperating
computers to share resources across a network or networks. The physical networks can be of
different types.

UNIX shell users
One way to enter the shell environment is by using rlogin or telnet from a workstation in the
TCP/IP network. ssh is a client program for logging into a z/OS shell. It is a more secure
alternative to rlogin.

User-written socket applications
User-written socket applications can use TCP/IP as a communication vehicle. Both client and
server socket applications can use the socket interface to communicate over the Internet
(AF_INET) and between other socket applications by using local sockets (AF_UNIX). An
assembler interface is also provided for those applications that do not use the C/C++ run-time
library.

User written socket applications

z/OS UNIX
Requires full function mode
IEASYSxx parmlib member

OMVS=nn

TCP/IP

Enter UNIX shell
rlogin - telnet - ssh
Chapter 1. Products and components 9

Running in full function mode
The OMVS= parameter in the IEASYSxx parmlib member specifies the BPXPRMxx member
or members that determine the configuration of the kernel service. Minimum mode provides
the minimum requirements for kernel services; you will not be able to use the shell or TCP/IP
in this mode. If you do not specify OMVS= in the IEASYSxx parmlib member, or if you specify
OMVS=DEFAULT, then kernel services start up in a minimum configuration mode with all
BPXPRMxx parmlib options taking their default values when the system is IPLed. This mode
is for installations that do not plan to use the kernel services.
10 ABCs of z/OS System Programming Volume 9

1.7 System Modification Program Extended (SMP/E)

Figure 1-7 SMP/E and z/OS UNIX

SMP/E and z/OS UNIX
SMP/E is a basic tool for installing and maintaining software in MVS systems and
subsystems. It controls these changes by:

� Selecting the proper levels of elements to be installed from a large number of potential
changes.

� Calling system utility programs to install the changes.

� Keeping records of the installed changes (in the CSI).

SMP/E is an integral part of the installation, service, and maintenance processes for CBIPOs,
CBPDOs, ProductPacs, ServicePacs, and selective follow-on service for CustomPacs. In
addition, SMP/E can be used to install and service any software that is packed in SMP/E
system modification (SYSMOD) format.

SMP/E can be run either using batch jobs or using dialogs under Interactive System
Productivity Facility/Program Development Facility (ISPF/PDF).

Two types of dialogs are provided by SMP/E:

� CBIPO dialogs for installing and redistributing Custom-Built Installation Process Offering
(CBIPO) packages.

� SMP/E dialogs help you interactively query the SMP/E database, as well as create and
submit jobs to process SMP/E commands.

SMP/ESMP/E

PTFs

Software Installation
Maintenance

Install service into the HFS

CSICSI
ModulesModules

New
Software

HFS
Chapter 1. Products and components 11

1.8 System Management Facility (SMF)

Figure 1-8 SMF and z/OS UNIX

SMF recording
System Management Facility (SMF), which is a component of the BCP element, collects data
for accounting. SMF job and job-step accounting records identify processes by user, process,
group, and session identifiers. Fields in these records also provide information on resources
used by the process. SMF file system records describe file system events such as file open,
file close, and file system mount, unmount, quiesce, and unquiesce.

You can use SMF to report on activity from a user application, to report activity on a job and
jobstep basis, and to report activity of mounted file systems and files.

SMF job and job-step accounting records identify z/OS UNIX processes by:

� User (UID)

� Process (z/OS address space)

� Group (GID)

� Session identifiers

File system activity by process
 Fork, spawn address spaces

Kernel activity
Activity on mounted file systems

SMF
12 ABCs of z/OS System Programming Volume 9

1.9 Resource Measurement Facility (RMF)

Figure 1-9 RMF and z/OS UNIX

RMF and z/OS UNIX
Resource Measurement Facility (RMF) collects data used to describe z/OS UNIX
performance. RMF reports support an address space type of OMVS for address spaces
created by fork or spawn callable services and support two swap reason codes.

RMF monitors the use of resources in an OMVS Kernel Activity report.

The software products supporting system programmers and operators in managing their
systems heavily influence the complexity of their jobs, and their ability to keep systems at a
high level of availability.

RMF collects data used to describe z/OS UNIX performance. RMF reports support an
address space type of OMVS for address spaces created by fork or spawn callable services.

When an installation specifies an OMVS subsystem type in the workload manager service
policy, RMF shows the activity of forked address spaces separately in the RMF Workload
Activity report.

RMF
DATA

Performance
Analysis
and
Problem
Determination

Monitor III

UNIX performance
Fork, spawn A/S
Kernel activity
zFS caching and I/O

z/OS V1R7
Chapter 1. Products and components 13

1.10 Virtual Lookaside Facility (VLF)

Figure 1-10 VLF and z/OS UNIX

VLF and z/OS UNIX
You can assign a z/OS UNIX user identifier (UID) to a RACF user by specifying a UID value
in the OMVS segment of the RACF user profile. When assigning a UID to a user, make sure
that the user is connected to at least one group that has an assigned GID. This group should
be either the user's default group or one that the user specifies during logon or on the batch
job. A user with a UID and a current connect group with a GID can use z/OS UNIX functions
and access z/OS UNIX files based on the assigned UID and GID values. If a UID and a GID
are not available as described, the user cannot use z/OS UNIX functions.

VLF
The Virtual Lookaside Facility is a set of easy-to-use high-performance services that provide
an alternate fast path method for making frequently used named data objects available to
many users. It will reduce I/O operations for frequently accessed programs that are provided
now in central or expanded storage.

Whether you are developing a new application or modifying an existing one, the kind of
application that can use VLF effectively is an application that frequently retrieves a repetitive
set of data from DASD on behalf of many end users.

COFVLFxx PARMLIB member
Caching UIDs and GIDs improves performance for commands such as ls -l, which must
convert UID numbers to user IDs and GID numbers to RACF group names. RACF allows you

Improve performance
Cache UIDs and GIDs
AIM stage 3

VLF
Address
Space

SYS1.PARMLIB

RACF

RACF Data Base

RACF
Profiles

COFVLFxx

Virtual
Lookaside

Facility
(VLF)
14 ABCs of z/OS System Programming Volume 9

to cache UID and GID information in VLF. Add the following VLF options to the COFVLFxx
member of SYS1.PARMLIB to enable the caching:

For details about the VLF classes, see z/OS Security Server RACF System Programmer's
Guide, SA22-7681.

AIM stage 3
In stage 3, RACF locates application identities, such as UIDs and GIDs, for users and groups
by using an alias index that is automatically maintained by RACF. This allows RACF to more
efficiently handle authentication and authorization requests from applications such as z/OS
UNIX than was possible using other methods, such as the UNIXMAP class and VLF. Once
your installation reaches stage 3 of application identity mapping (AIM), you will no longer
have UNIXMAP class profiles on your system, and you can deactivate the UNIXMAP class
and remove VLF classes IRRUMAP and IRRGMAP.

CLASS NAME(IRRUMAP)
 EMAJ(UMAP)
CLASS NAME(IRRGMAP)

 EMAJ(GMAP)
 CLASS NAME(IRRGTS)
 EMAJ(GTS)
 CLASS NAME(IRRACEE)
 EMAJ(ACEE)
 CLASS NAME(IRRSMAP)

EMAJ(SMAP)

Important: Associating RACF user IDs and groups to UIDs and GIDs has important
performance considerations. If your installation shares the RACF database with systems
running releases prior to OS/390 Version 2 Release 10, it is important to use the VLF
classes IRRUMAP and IRRGMAP and the UNIXMAP class to improve performance by
avoiding sequential searches of the RACF database for UID and GID associations.

If your installation shares the RACF database with only systems running z/OS, or OS/390
Version 2 Release 10 or above, you may be able to achieve improved performance without
using UNIXMAP and VLF. However, before you can avoid using UNIXMAP and VLF, you
need to implement stage 3 of application identity mapping by running the IRRIRA00
conversion utility.
Chapter 1. Products and components 15

1.11 Time Sharing Option/Extended (TSO/E)

Figure 1-11 TSO/E and z/OS UNIX

TSO/E and z/OS UNIX
The TSO Extensions (TSO/E) licensed program is based on the Time Sharing Option (TSO),
which allows users to interactively share computer time and resources.

TSO/E is composed of modules that communicate with the user and perform the work
requested by the user. When a user logs on to TSO/E, the user must either specify the name
of a LOGON procedure by the LOGON command or accept that user's default procedure
name from the user attribute data set.

One way to enter the UNIX shell environment is by using TSO/E. A user logs on to a TSO/E
session and enters the TSO/E OMVS command.

The z/OS environment has other TSO/E commands, for example, to logically mount and
unmount file systems, create directories in a file system, and copy files to and from MVS data
sets. Users can switch from the shell to their TSO/E session, enter commands, or do editing,
and switch back to the shell. For information on how to perform these tasks using TSO/E
commands, see z/OZ UNIX System Services User's Guide, SA22- 7801.

User
Interface

Used to enter the UNIX shell - OMVS command

Used to enter the ISHELL - ISHELL command

TSO commands - MOUNT, OGET/OPUT, OEDIT

z/OS UNIX
16 ABCs of z/OS System Programming Volume 9

1.12 Workload Manager (WLM)

Figure 1-12 WLM and z/OS UNIX

WLM and z/OS UNIX
The purpose of workload management is to balance the available system resources to meet
the demands of S/390® subsystem work managers such as CICS®, BATCH, TSO, UNIX
Services, and WebServer, in response to incoming work requests.

The workload manager is a component of the BCP element. When using WLM, you do not
need to do any tuning or issue any commands. The kernel uses WLM to create child
processes when running in goal mode or compatibility mode, or both.

Prior to OS/390 V2R4, APPC/MVS transaction initiators provided address spaces when
programs issued the fork() or spawn() C function or z/OS callable services. Now, when
programs issue fork or spawn, the BPXAS PROC found in SYS1.PROCLIB is used to provide
a new address space. For a fork, the system copies one process, called the parent process,
into a new process, called the child process. Then it places the child process in a new
address space. The forked address space is provided by WLM.

System A
No delays

WLM

Control UNIX address spaces
Start and stop (fork and spawn)
Performance of processes

System A

System B

System C
Chapter 1. Products and components 17

1.13 Tivoli Storage Manager (TSM)

Figure 1-13 Tivoli and z/OS UNIX

TSM and z/OS UNIX
Tivoli Storage Manager (TSM) is a client/server storage management product that provides
administrator-controlled, highly automated, centrally scheduled, network-based backup and
archive functions for workstations and LAN file servers. A TSM server backs up and/or
archives data from a TSM client and stores the data in the TSM server storage pool for z/OS
UNIX clients.

There are two types of backup: incremental, in which all new or changed files are backed up;
and selective, in which the user backs up specific files.

Backup can be performed automatically or when the user requests it. The user can initiate a
specific type of backup or start the scheduler, which will run whatever action the TSM
administrator has scheduled for the user's machine.

As a TSM authorized user, you also have the authority to back up and archive all eligible files
in all locally mounted file systems on your workstation, restore and retrieve all backup and
archive files for your workstation from TSM storage, within the limits imposed by the UNIX file
access permissions. A TSM authorized user can also grant users access to specific files in
TSM storage.

Information about using the z/OS UNIX client is documented in:

� TSM Using the Backup-Archive Clients, SH26-4105
� TSM Installing the Clients, SH26-4102

 TSM
Server

HFS - zFS
Volumes

TSM
Storage Pools
18 ABCs of z/OS System Programming Volume 9

Data Facility System-Managed Storage Hierarchical Storage Manager (DFSMShsm™)
provides automatic backup facilities for HFS data sets. The system programmer uses
DFSMShsm facilities to back up mountable file systems by backing up the HFS data sets that
contain them on a regular basis; the data sets can be restored when necessary. DFSMShsm
is also used for migrating (archiving) and restoring unmounted file systems.
Chapter 1. Products and components 19

20 ABCs of z/OS System Programming Volume 9

Chapter 2. UNIX System Services overview

This chapter provides a brief overview of the most important components of UNIX System
Services (z/OS UNIX). The following topics are discussed:

� z/OS UNIX terminology

� z/OS UNIX physical file systems

� Hierarchical file system structure

� File system data sets

� The z/OS UNIX components

� z/OS UNIX processes

� z/OS UNIX interfaces

� Methods for direct login to the z/OS UNIX shell

2

© Copyright IBM Corp. 2006, 2008. All rights reserved. 21

2.1 z/OS UNIX and UNIX applications

Figure 2-1 UNIX applications using z/OS UNIX

z/OS UNIX and SPEC1170
IBM added UNIX to the MVS environment to compete for new work on S/390. In addition to
the characteristics of UNIX described earlier, portability is important due to the openness of
UNIX. The compliance of systems to SPEC1170, which is the Open Group's single UNIX
standard. IBM looked at the SPEC1170 specifications that say "these are what the UNIX
interfaces are" and implemented those specifications directly into its operating system as
OpenEdition services, which is now called z/OS UNIX. The OpenEdition MVS Shell and
Utilities, with many of the Korn shell features, were first to take advantage of the new UNIX
System Services now in z/OS.

Reasons for z/OS UNIX
For installations, portability of skills from one UNIX to another is important. If you work on a
UNIX system, you can port most of your skills onto another UNIX platform.

For applications, portability of source code from one UNIX platform to another is important. If
applications consisted of only interfaces that meet the X/Open SPEC1170 specifications (also
known as X/Open XPG4.2, or UNIX95, or Single UNIX Specification), a port would require no
changes to the applications. But, in the real world, where applications contain some
non-standard UNIX code, the applications do require some changes.

Accessing UNIX from database applications
As an example of database applications using z/OS UNIX, when using the DB2® ODBC
product for data set access, if you build a DB2 ODBC application in z/OS UNIX, you can use

IBM implemented UNIX based on SPEC1170
specifications

Reasons for z/OS UNIX

Run all types of applications on z/OS and zSeries

Portability of programmer skills

Portability of source code and applications

Accessing databases

DB2 can be called directly from a UNIX application

Importance on UNIX to MVS programmers
22 ABCs of z/OS System Programming Volume 9

the c89 compile command to compile your application. Although you compile your application
under z/OS UNIX, you can directly reference the non-HFS DB2 ODBC data sets in the c89
command. There is no need to copy the DB2 ODBC product files to HFS.

Importance of UNIX to MVS programmers
MVS-experienced system programmers now installing, maintaining, and debugging z/OS
UNIX are faced with new responsibilities that require learning new vocabulary and new
concepts. Perhaps they must now interact with UNIX or TCP/IP computer personnel from
whom they have been isolated before now. Differences between the familiar MVS world and
the new UNIX world sometimes seem cultural and philosophical, as well as technical.
Chapter 2. UNIX System Services overview 23

2.2 Terminology overview

Figure 2-2 z/OS UNIX terminology

z/OS UNIX process
With z/OS, processes can be created by fork or spawn functions. Existing MVS address
space types such as TSO, STC, Batch, and APPC can request z/OS UNIX services. When
one of those address spaces makes its first request to the z/OS kernel, the kernel dubs the
task; that is, it identifies the task as a z/OS UNIX process.

z/OS UNIX thread
A process can have one or more threads; a thread is a single flow of control within a process.
Application programmers create multiple threads to structure an application in independent
sections that can run in parallel for more efficient use of system resources.

z/OS UNIX daemon
Daemon processes perform continuous or periodic systemwide functions, such as a Web
server. Daemons are programs that are typically started when the operating system is
initialized and remain active to perform standard services.

z/OS UNIX shell
The UNIX shell interface is an execution environment analogous to TSO/E, with a
programming language of shell commands analogous to the Restructured eXtended
eXecutor (REXX) Language. The shell work consists of:

� Programs run by shell users
� Shell commands and scripts run by shell users

An address space is a process in UNIX

A task (TCB) is called a thread

A started task (STC) is a daemon

z/OS has TSO/E and ISPF and UNIX has a shell

Applications are written in different languages and
jobs are submitted for processing in different ways

HFS - Hierarchical file system

Structure of the file system - directories and files

PFS - Physical file system

z/OS UNIX kernel

Shared file system in a sysplex
24 ABCs of z/OS System Programming Volume 9

� Shell commands and scripts run as batch jobs

z/OS UNIX has two shells, the z/OS shell and the tcsh shell. They are collectively called the
z/OS UNIX shells.

z/OS UNIX applications
The following types of applications exist in z/OS UNIX:

� Strictly conforming XPG4-conforming applications

� Applications using only kernel services

� Applications using both kernel and MVS services

� Applications using only MVS services

z/OS UNIX file systems
z/OS UNIX files are organized in a hierarchical file system, as in other UNIX systems. Files
are members of a directory, and each directory is in turn a member of another directory at a
higher level. The highest level of the hierarchy is the root directory. Each instance of the
system contains only one root directory.

z/OS UNIX physical file systems
A physical file system (PFS) is the part of the operating system that handles the actual
storage and manipulation of data on a storage medium. In z/OS UNIX, for creating and
accessing HFS files, there are two PFSes, zFS and HFS.

z/OS UNIX kernel
The kernel address space contains the MVS support for z/OS UNIX services. This address
space can also be called the kernel and is the part of z/OS UNIX that contains programs for
such tasks as I/O, management, control of hardware, and the scheduling of user tasks.

Shared file system in a sysplex
By establishing the shared file system environment, sysplex users can access data
throughout the file hierarchy from any system in the sysplex. With shared file system support,
all file systems that are mounted by a system participating in a shared file system are
available to all participating systems. In other words, once a file system is mounted by a
participating system, that file system is accessible by any other participating system.

Although it is suggested that you exploit shared file system support when running in a sysplex
environment, you are not required to do so. If you choose not to, you will continue to share file
systems as you have before.
Chapter 2. UNIX System Services overview 25

2.3 HFS and zFS file system PFSes

Figure 2-3 HFS and zFS file system PFSes

HFS and zFS file systems
The zSeries File System (zFS) is a UNIX file system that can be used in addition to the HFS.
This file system actually has been available since 1995 as part of the DCE component of
MVS/ESA V5R2.2, OS/390, and z/OS V1R1. It is a high-performance, log-based file system.
The DCE DFS™ Local File System is part of the OSF DFS product, and as such is included
in the Distributed File Service base element of z/OS V1R2. zFS is a separate component of
the DFS base element, so it can be serviced separately from the other components of DFS.

HFS stabilization
In early 2004, IBM announced that Hierarchical File System (HFS) function is stabilized. The
zSeries File System (zFS) is the strategic UNIX System Services file system for z/OS. IBM
has enhanced zFS function in z/OS V1R7 so that you can use zFS file systems at all levels
within the file hierarchy. HFS may no longer be supported in future releases and you will have
to migrate the remaining HFS file systems to zFS.

Using zFS
The zSeries File System (zFS) is a UNIX file system that can be used in addition to the HFS.
zFS is the strategic file system for z/OS. Therefore, in z/OS V1R7, zFS file system functions
are extended beyond those provided by HFS by improving usability, performance, and
making it easier to migrate your data from HFS file systems to zFS file systems.

HFS is a UNIX File System PFS for z/OS
Introduced with OpenEdition

zFS is a UNIX File System PFS for z/OS
Component of the Distributed File Service since 1995

HFS now stabilized - will be removed in future release

Using zFS, you can
Run applications just like HFS

Use zFS in addition to HFS or replace HFS

Advantages of zFS over HFS:
 Better performance

 Enhanced administrative functions

 Less loss of data on system failures
26 ABCs of z/OS System Programming Volume 9

2.4 Using z/OS UNIX

Figure 2-4 Using z/OS UNIX for applications and users

Creating UNIX files
When you are logged into the shell you have a choice of editors to create and change files,
depending on which terminal interface you are using, OMVS or the asynchronous terminal
interface. Accessing UNIX files can be done from application programs. Also, ISPF Edit
provides a full-screen editor to create and edit HFS files. You can access ISPF Edit in several
ways:

� Using the oedit shell command

� Using the TSO/E OEDIT command at the TSO/E READY prompt or from the shell
command line

� From the ISPF menu (if a menu option is installed)

� From the ISPF shell (accessed using the TSO/E ISHELL command)

Requests from kernel to PFS
When users access file data, the kernel passes the user request to the correct PFS to do the
I/O to the file system.

Physical file systems
A physical file system (PFS) controls access to data. PFSs receive and act upon requests to
read and write files that they control. The format of these requests is defined by the PFS
interface.

UNIX applications and users

Create files in the hierarchical file system

z/OS UNIX kernel passes access request to a PFS

Beginning with OpenEdition, this PFS was called HFS

Beginning with z/OS V1R2, zFS became a PFS

Physical file systems (PFSs)

File system requests can be passed to either HFS or
zFS physical file systems

Defined in the BPXPRMxx parmlib member
Chapter 2. UNIX System Services overview 27

A physical file system (PFS) is packaged as one or more MVS load modules. These load
modules must be installed in an APF-authorized MVS load library. The hierarchical file
system is not available when a PFS is loaded, so it cannot be installed in the file system.

A PFS is defined to z/OS UNIX through the BPXPRMxx PARMLIB member you specify when
you start the kernel address space (OMVS=xx). The FILESYSTYPE statement defines a
single instance of a PFS.

HFS and zFS
When IBM created OpenEdition as part of MVS, the PFS that did the I/O to the file system
was called HFS.

Beginning with z/OS V1R2, a second PFS, called ZFS, was added. In current z/OS operating
systems, both the HFS and ZFS PFSs can be used to access file system data.

User-written programs use the POSIX API to issue file requests. These requests are routed
by the logical file system (LFS) to the appropriate PFS through the PFS interface.
28 ABCs of z/OS System Programming Volume 9

2.5 UNIX System Services

Figure 2-5 UNIX System Services and the Kernel

POSIX-API
The Application Programming Interface (API) consists of C programming calls that can be
used by C/370™ programs to access z/OS UNIX. These C calls are defined in the POSIX
1003.1 standard. Many of the C calls will use callable services to interact with the z/OS
system to perform the services requested. Some C calls will interface directly with the z/OS
UNIX kernel.

The callable services can be used directly by Assembler programs to access z/OS UNIX, for
example to access files in the hierarchical file system. This possibility allows other high-level
languages (excluding C) and Assembler to use z/OS UNIX.

The API interface provides the ability to run XPG4.2 programs on z/OS. A program that
conforms to the XPG4.2 standard can be developed on one system and then ported to
another system, compiled and link-edited, and then executed on that system. Such a program
is referred to as portable.

A programmer can develop a program that uses a mix of standard z/OS services and z/OS
UNIX. Such a program is often referred to as a mixed program. A mixed program can, for
example, be a z/OS program that uses some of the Assembler callable services to access
files in the hierarchical file system, or a pipe for temporary data storage.

z/OS UNIX
programs

POSIX-API
C RTL

ASM/C/C++

z/OS UNIX Callable Services interfaces

Logical file system

z/OS UNIX-PFS interface

HFS PFSPhysical file
systems

Kernel

Interactive interface

REXX

ShellShell
cmdscmds
Chapter 2. UNIX System Services overview 29

Shell interactive interface
The interactive interface is called the z/OS UNIX shell. The shell is a command interpreter
that accepts commands defined in the POSIX 1003.2 standard. Shell commands can be put
together in a sequence, stored in a text file as a shell script, and then executed. The request
is then passed to the callable services interface. The shell script is similar to z/OS CLISTs
and REXX execs.

REXX
TSO REXX has been extended to provide access to the z/OS UNIX callable services. A
REXX exec using UNIX System Services can be run from TSO/E, in z/OS batch, or in the
shell.

You can use a set of z/OS UNIX extensions to TSO/E REXX—host commands and
functions—to access kernel callable services. The z/OS UNIX extensions, called syscall
commands, have names that correspond to the names of the callable services that they
invoke, for example, access, chmod, and chown.

You can run a REXX program with z/OS UNIX extensions from MVS, TSO/E, the shell, or a C
program. The REXX exec is not portable to an operating system that does not have z/OS
UNIX installed.

Physical file system (PFS)
The PFS interface is a set of protocols and calling interfaces between the logical file system
(LFS) and the PFSs that are installed on z/OS UNIX. In a UNIX System Services
environment, UNIX programs and UNIX users access their files through these interfaces.
PFSs mount and unmount file systems and perform other file operations.

Supported file types
z/OS UNIX supports the following types of files:

� Regular files

� Directories

� Symbolic links

� Character special files (for example, terminals)

� Pipes (both FIFOs and unnamed)

� Sockets
30 ABCs of z/OS System Programming Volume 9

2.6 Physical file systems

Figure 2-6 z/OS UNIX and physical file systems

Physical file systems
A physical file system (PFS) is packaged as one or more MVS load modules. These load
modules must be installed in an APF-authorized MVS load library. The hierarchical file
system is not available when a PFS is loaded, so it cannot be installed in the file system.

A PFS controls access to data. PFSs receive and act upon requests to read and write files
that they control. The format of these requests is defined by the PFS interface. In a z/OS
UNIX, the physical file systems are defined in the BPXPRMxx PARMLIB member. zFS, as a
physical file system, is also defined in the PARMLIB member. Figure 2-6 shows all the
physical file systems that can be defined in a UNIX System Services environment. The logical
file system (LFS) is called by POSIX programs, non-POSIX z/OS UNIX programs, and VFS
servers.

PFS interface‘
The PFS interface is a set of protocols and calling interfaces between the LFS and the PFSs
that are installed on z/OS UNIX. PFSs mount and unmount file systems and perform other file
operations.

There are two types of PFSs, those that manage files and those that manage sockets:

� File management PFSs, such as HFS and zFS, deal with objects that have path names
and that generally follow the semantics of POSIX files.

read write open close

auto-
mountTFS IP

sockets
Local

sockets
NFS
clientHierarchical

File System
ZFS

HFSVOLHFSVOL ZFSVOLZFSVOL

FF

/

F
F F

F F

/

F
F F

F

Physical File Systems

Migration

Copy HFS to zFS

z/OS UNIX Callable Services Interfaces

Logical File System

z/OS UNIX-PFS Interface

Kernel
Chapter 2. UNIX System Services overview 31

� Socket PFSs deal with objects that are created by the socket() and accept() functions and
that follow socket semantics.

HFS to zFS migration
Because IBM has announced the stabilization of the HFS PFS, a migration of HFS file
systems (both mounted and unmounted) to zFS file systems must occur over time.

Advantages of zFS
Like HFS, zFS is a UNIX file system. It contains files and directories that can be accessed
with the APIs available for HFS. In general, the application view of zFS is the same as the
application view of HFS. Once a zFS file system is mounted, it is almost indistinguishable
from any other mounted HFS. The benefits of using zFS are:

� Improved performance

zFS provides significant performance gains in many customer environments accessing
files approaching 8K in size that are frequently accessed and updated. The access
performance of smaller files is equivalent to HFS.

� Underlying architecture supports additional functions

Only zFS supports security labels. Therefore, in a multilevel-secure environment, you
must use zFS file systems instead of HFS file systems.

As an optional function, zFS allows the administrator to make a read-only clone of a file
system in the same data set. This clone file system can be made available to users to
provide a read-only point-in-time copy of a file system.

zFS runs as a z/OS UNIX colony address space. Therefore, zFS can be stopped using the
p zfs operator command. zFS file systems should be unmounted or moved to another
sysplex member before stopping zFS.

� Improved crash recovery

zFS provides a reduction in exposure to loss of updates. zFS writes data blocks
asynchronously and does not wait for a sync interval. zFS is a logging file system. It logs
metadata updates. If a system failure occurs, zFS replays the log when it comes back up
to ensure that the file system is consistent.
32 ABCs of z/OS System Programming Volume 9

2.7 z/OS UNIX file systems

Figure 2-7 Hierarchical file system structure for HFS and zFS file systems

HFS and zFS file systems
The hierarchical file system is used to store data and organize it in a hierarchical way by
employing file system entries such as directories and files. These file system entries have
certain attributes, such as ownership, permission bits, and access time stamps. The data and
the attributes of a file are stored with the file in the file system.

Path name
The path name is constructed of individual directory names and a file name separated by the
forward-slash character, for example:

/dir1/dir2/dir3/myfile

Like UNIX, z/OS UNIX is case-sensitive for file and directory names. For example, in the
same directory, the file MYFILE is a different file than myfile.

z/OS UNIX data sets
HFS data sets, zFS data sets, and z/OS data sets can reside on the same DASD volume.

The integration of the HFS file system with existing MVS file system management services
provides automated file system management capabilities that may not be available on other
POSIX platforms. This allows file owners to spend less time on tasks such as backup and
restore of entire file systems.

DirectoryDirectoryDirectoryDirectory

DirectoryDirectoryDirectoryDirectoryDirectory

DirectoryDirectoryDirectoryDirectory

DirectoryDirectoryDirectoryDirectoryDirectoryDirectoryDirectoryDirectoryDirectory

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

Directory

Directory

HFS file system

DirectoryDirectoryDirectoryDirectory

DirectoryDirectoryDirectoryDirectoryDirectory

DirectoryDirectoryDirectoryDirectory

DirectoryDirectoryDirectoryDirectoryDirectoryDirectoryDirectoryDirectoryDirectory

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

File

Directory

Directory

zFS file system

Resides in a MVS data set Resides in a Linear VSAM
data set

File system structure
Chapter 2. UNIX System Services overview 33

2.8 File system data sets

Figure 2-8 File system data sets

z/OS UNIX files
z/OS UNIX files are organized in a hierarchy, as in a UNIX system. All files are members of a
directory, and each directory is in turn a member of another directory at a higher level in the
hierarchy. The highest level of the hierarchy is the root directory.

MVS views an entire file hierarchy as a collection of hierarchical file system data sets (HFS
data sets). Each HFS data set is a mountable file system. DFSMS facilities can be used to
manage an HFS data set, and DFSMS Hierarchical Storage Manager (DFSMShsm*) is used
to back up and restore an HFS data set.

A file in the hierarchical file system is called an HFS file. HFS files are byte-oriented, rather
than record-oriented, as are MVS data sets.

Root file system
The root file system is the first file system mounted. Subsequent file systems can be mounted
on any directory within the root file system or on a directory within any mounted file system.
The root system is the starting point for the overall HFS file structure. It contains the root
directory and any related HFS or zFS files or subdirectories. The root file system is created as
part of the installation process, either by the ServerPac method or CPBDO, when you install
z/OS.

Pathname
The pathname is a file name specifying all directories leading to a file.

Mounted file system is a zFS
data set at directory /u

Pathname to files: /notesdata/mail

 OMVS.USERS.ZFS

zfs

Root /

u usr notesdata

mail

files
34 ABCs of z/OS System Programming Volume 9

2.9 File and directory permission bits

Figure 2-9 Permission bits in the FSP

Permission bits
Permission bit information is stored in the file security packet (FSP) within each file and
directory. (ACLs may also be stored with the file.) Permission bits allow you to specify read
authority, write authority, or search authority for a directory. They also allow specification of
read, write, or execute authority for a file. Because there are three sets of bits, separate
authorities can be specified for the owner of the file or directory, the owning group, and
everyone else, which is the other category.

File security packet (FSP)
Security information, such as the owner's UID-GID and the permission bits for a file, is kept in
a 64-byte area called the file security packet (FSP), which is mapped by IRRPIFSP. The FSP
is the security-related section of a file's attributes.

The FSP is created by a SAF call from the PFS when a file is created. Some of the
information is taken from the current security environment, and some of it is passed as
parameters.

The PFS stores the FSP with the attributes of the file.

When an access check is to be done, the PFS calls SAF with the type of check that is being
requested, the audit_structure from the current call, and the file's FSP. SAF passes these to
the security product, which extracts user information from the current security environment
and compares it against the access control that is stored within the FSP.

File
Owner

UID

File
Owner

GID

S
e
t
U
I
D

S
e
t
G
I
D

S
t
i
c
k
y

r w x r w x r w x

Owner Group Other

File Permission Bits

File Mode

extattr

Permission bit settings checked by security product

For access to every file and directory

Permission Bit Examples:
700 owner(7=rwx) group(0=---) other(0=---)
755 owner(7=rwx) group(5=r-x) other(5=r-x)

FSP
Chapter 2. UNIX System Services overview 35

2.10 MVS data sets versus file system files

Figure 2-10 Comparison of MVS data set and file system files

Comparing MVS and UNIX files
The z/OS master catalog is analogous to the root directory in a hierarchical file system.

The user prefix assigned to MVS data sets points to a user catalog. The organization of the
user catalog is analogous to a user directory (/u/ibmuser) in the file system. Typically, one
user owns all the data sets whose names begin with his user prefix. For example, the data
sets belonging to the TSO/E user ID IBMUSER all begin with the prefix IBMUSER. There
could be data sets named IBMUSER.C, and IBMUSER.C(PGMA).

In the file system, ibmuser would have a user directory named /u/ibmuser. Under that
directory there could be subdirectories named /u/ibmuser and /u/ibmuser/c/pgma.

Of the various types of MVS data sets, a partitioned data set (PDS) is most like a user
directory in the file system. In a partitioned data set such as IBMUSER.C, you could have
members PGMA, PGMB, and so on. For example, you could have IBMUSER.C(PGMA) and
IBMUSER.C(PGMB). A subdirectory such as /u/ibmuser/c can hold many files, such as
pgma, pgmb, and so on.

All data written to the hierarchical file system can be read by all programs as soon as it is
written. Data is written to a disk when a program issues an fsync().

...

z/OS

MASTER CATALOG
ALIAS IBMUSER

USER
CATALOG

DSN=IBMUSER.C
PDS
DSN=IBMUSER.C(PGMA)

IBMUSER
FILE1
SEQ

FILE2
PDS
(FILE3)
(FILE4)

FILE5
VSAM

RECFM, BLKSIZE,
TYPE OF DATA SET

UNIX System Services

ROOT
/

/u/ibmuser
USER DIRECTORY

/u/ibmuser/c/

/u/ibmuser/c/pgma

/u/ibmuser

file1 file2/
file3 file4

Organization provided
by the application

file5
36 ABCs of z/OS System Programming Volume 9

2.11 zFS or HFS data sets

Figure 2-11 zFS or HFS data sets

File system data sets
A z/OS UNIX hierarchical file system is contained in a data set type called zFS or HFS. A zFS
or HFS data set can reside on an SMS-managed volume, and it is a single volume data set if
it is non-SMS-managed. zFS or HFS data sets can reside with other MVS data sets on
SMS-managed volumes or non-SMS-managed volumes. Multiple systems can share a zFS
or HFS data set if it is mounted in read-only mode. Beginning with OS/390 V2R9, sharing can
be done in read-write mode.

An HFS data set is allocated by specifying HFS in the DSNTYPE parameter. You can also
define a data class for zFS or HFS data sets. OS/390 V2R7 began to support multivolume
access up to 59 physical volumes, but then the data set must be SMS-managed.

Note: APAR OW35441 now gives you the ability to allocate PDSE and HFS data sets on
unmanaged (non-SMS) volumes, if running DFSMS 1.4 or DFSMS 1.5.

Multivolume

 DFSMS with z/OS V1R5 allows
Up to 59 volumes
Multivolume file systems are only supported as
SMS-managed

zFS or HFS data set

F F
F F F

 /
Chapter 2. UNIX System Services overview 37

2.12 z/OS UNIX components

Figure 2-12 The components of z/OS UNIX

z/OS UNIX components
z/OS UNIX offers open interfaces for applications and interactive users on a z/OS system.
The z/OS UNIX components and their functions are now described.

The z/OS UNIX kernel
At system IPL time, kernel services are started automatically. The kernel provides z/OS UNIX
System Services in answer to requests from programs and the shell. The kernel manages the
file system, the communications, and the program processes.

The hierarchical file system is shipped as part of DFSMS. zFS is shipped with the Distributed
File Service.

The POSIX standard introduces a completely new terminology in the MVS environment. A
typical UNIX operating system consists of a kernel that interfaces directly with the hardware.
Built on the kernel is the shell and utilities layer that defines a command interface. Then there
are application programs built on the shell and utilities.

In a z/OS UNIX environment the file system is considered part of the kernel because it is
allocated to the kernel. The support for the file system is provided by the DFSMS product.
Figure 2-12, showing the file system as part of the kernel, shows a logical view of the
solution.

Shell and Utilities

Applications
C / C++ for

 z/OS
Compiler

DBX

Debugger

DFSMS

HFS NFS
Language Environment

for z/OS

z/OS UNIX Kernel
Process Management

File Systems
Communications

z/OS Base

Assembler and
REXX Interface

Daemons

zFS
38 ABCs of z/OS System Programming Volume 9

The z/OS UNIX API conforms to the POSIX and XPG4 standard. OS/390 was branded as a
UNIX system by the Open Group in 1996. To support the APIs, the z/OS system must provide
some system services that are included in the kernel, such as the file system and
communication services.

Daemons are programs that are typically started when the operating system is initialized and
remain active to perform standard services. Some programs are considered daemons that
initialize processes for users even though these daemons are not long-running processes.
z/OS UNIX supplies daemons that start applications and start a user shell session when
requested.

The z/OS UNIX shell and utilities
This is an interactive interface to z/OS UNIX services that interprets commands from
interactive users and programs. The shell and utilities component can be compared to the
TSO function in z/OS.

The z/OS UNIX debugger (dbx)
The z/OS UNIX debugger is a tool that application programmers can use to interactively
debug a C program. The dbx debugger is not part of the POSIX standard and is well known in
many UNIX environments.

The C/C++ compiler and C run-time libraries
The C/C++ compiler and C run-time libraries are needed to make executables that the kernel
understands and can manage.

DFSMS
DFSMS manages the hierarchical file system (HFS) data sets that contain the file systems.
To use kernel services in full-function mode, SMS must be active.

Network File System (NFS) enables users to mount file systems from other systems so that
the files appear to be locally mounted. You end up with a mixture of file systems that come
from systems where the UIDs and GIDs may be independently managed.

Language Environment (LE)
The C compiler and Language Environment feature library are changed and extended to
include support for the POSIX and XPG4 C function calls. The LE product provides a
common run-time environment and language-specific run-time services for compiled
programs.

To run a shell command or utility, or any user-provided application program written in C or
C++, you need the C/C++ run-time library provided with the Language Environment.

zFS
The zSeries File System (zFS) is a UNIX file system that can be used in addition to the
hierarchical file system physical file system. This file system has been available since 1995
as part of the DCE component of MVS/ESA V5R2.2, OS/390, and z/OS V1R1. The file
system has been known as the DCE DFS Local File System (LFS), sometimes referred to as
Episode. It is a high-performance, log-based file system. The DCE DFS Local File System is
part of the OSF DFS product, and as such is included in the Distributed File Service base
element of z/OS V1R2. zFS is a separate component of the DFS base element, so it can be
serviced separately from the other components of DFS.
Chapter 2. UNIX System Services overview 39

2.13 z/OS UNIX programs (processes)

Figure 2-13 z/OS UNIX programs (processes) and components

z/OS UNIX processes
A process is a program using kernel services. The program can be created by a fork()
function, fork callable service, or spawn() function; or the program can be dubbed because it
requested kernel services. The three types of processes are:

� User processes, which are associated with a program or a shell user

� Daemon processes, which perform continuous or periodic system-wide functions, such as
printer spooling

� Kernel processes, which perform system-wide functions for the kernel such as cleaning up
zombie processes (init process)

UNIX commands
When you enter a shell command, you start a process that runs in an MVS address space.
When you enter that command, the z/OS shell runs it in its own process group. As such, it is
considered a separate job and the shell assigns it a job identifier—a small number known
only to the shell. A shell job identifier identifies a shell job, not an MVS job. When the process
completes, the system displays the shell prompt.

UNIX programs and components
UNIX programs running in MVS address spaces use or access the following:

ASM/C++/C These programming languages can be used to create the programs.

z/OS Operating System
UNIX System Services (Kernel)

MVS
Data
Sets

AS
AS AS

PARMLIB
VTAM TCP/IP

SAF

ASM
C++/C

UNIX programs (processes)
execute in MVS Address Spaces

Communications Server for z/OS

HFS
Files
40 ABCs of z/OS System Programming Volume 9

SAF A security product is required when running UNIX System Services. SAF is
the interface to RACF, Top Secret, or ACF2.

BPXPRMxx This PARMLIB member determines the number of processes that may be
started in the z/OS system.

MVS data sets UNIX programs may access MVS data sets.

HFS files UNIX programs may access HFS files.

TCP/IP Workstation users can enter the shell environment by using rlogin or
telnet in a TCP/IP network. User-written applications can use TCP/IP as a
communication vehicle.

VTAM Workstation users can access TSO/E through VTAM. z/OS UNIX is then
accessed from TSO/E.
Chapter 2. UNIX System Services overview 41

2.14 Create a process

Figure 2-14 Creating a process

Creating a process
A process is created by using any of the following methods:

� C fork() function

Creates a child process that is identical to the parent process in a new address space
scheduled by the Workload Manager (WLM).

� C spawn() function

Creates a child process that executes a different program than the parent, either in a new
address space scheduled by WLM, or in the same address space as the parent process
(local spawn).

� z/OS UNIX callable services

When a program uses a z/OS UNIX assembler callable service, the z/OS address space
is dubbed a z/OS UNIX process. The address space gets a PID. The dub does not result
in a new address space.

Using the fork() function
Fork() is a POSIX/XPG4 function that creates a duplicate process referred to as a child
process. The process that issues the fork() is referred to as the parent process.

With z/OS UNIX, a program that issues a fork() function creates a new address space that is
a copy of the address space where the program is running. The fork() function does a

prog1
............
fork()....
............

prog1
............
fork()....
............

WLM

ASID=428
ASID=547

prog2

prog4

prog3

................
spawn(prog3)
spawn(prog4)

................

................

................

................

................

................

ASID=1012

ASID=1423

SYS1.PROCLIBParent Process
Child Process

z/OS
 UNIX
Kernel

BPXAS
42 ABCs of z/OS System Programming Volume 9

program call to the kernel, which uses WLM/MVS facilities to create the child process. The
contents of the parent address space are then copied to the child address space.

After the fork() function, the program in the child AS will start at the same instruction as the
program in the parent AS. Control is returned to both programs at the same point. The only
difference that the program sees is the return code from the fork() function. A return code of
zero is returned to the child after a successful fork(). All other return codes are valid only for
the parent.

Child address space
Once the child address space has been created, the child gets the required storage from a
STORAGE request. The kernel then copies the contents of the parent AS to the child AS
using the MVCL instruction. Once the copy has been completed, a short conversation
between the kernel and the child process takes place. At this point, both the parent and child
process are activated. The program in the child AS gets control at the same point as the
program in the parent AS. The only difference is the return code from the fork() function.

The child address space is almost an identical copy of the parent address space. User data,
for example private subpools, and system data, like Recovery Termination Management
(RTM) control blocks, are identical.

WLM and the kernel
The kernel interfaces to WLM to create the new address space for a fork or spawn. WLM
uses an IBM-supplied procedure, BPXAS, to start up a new address space. This new address
space then initializes the UNIX child process to run in the address space. After the child
process completes, this address space can be reused for another fork or spawn. If none is
waiting, BPXAS times out after being idle for 30 minutes.
Chapter 2. UNIX System Services overview 43

2.15 z/OS UNIX processes

Figure 2-15 z/OS UNIX processes

z/OS UNIX processes
z/OS UNIX uses processes to run programs, and to associate resources to the programs. A
z/OS address space can contain one or multiple processes. A process is created by another
process, or by a request for a z/OS UNIX service. The process that creates a new process is
called a parent process and the new process is called a child process. There will be a
hierarchy of processes in the system.

Process ID (PID)
Every process is identified by a process ID (PID) and is associated with its parent process by
a parent process ID (PPID).

z/OS UNIX supports processes that run in unique address spaces. These would be created
by fork() and exec() services. It also supports local processes. These will share an address
space and are created by the spawn() service.

The system also assigns a process group identifier (PGID) and a process identifier (PID).
When only one command is entered, the PGID is the same as the PID. The PGID can be
thought of as a system-wide identifier. If you enter more than one command at a time using a
pipe, several processes, each with its own PID, will be started. However, these processes all
have the same PGID and shell job identifier. The PGID is the same as the PID for the first
process in the pipe.

ASID=218

ASID=256

ASID=425

ASID=671

PID=57
PPID=42

PID=42
PPID=18

PID=60
PPID=35

PID=73
PPID=60

PID=96
PPID=73

PID=81
PPID=73
44 ABCs of z/OS System Programming Volume 9

Process identifiers
Process identifiers associated with a process are as follows:

PID A process ID. A unique identifier assigned to a process while it runs. When the
process ends, its PID is returned to the system. Each time you run a process, it has a
different PID (it takes a long time for a PID to be reused by the system). You can use
the PID to track the status of a process with the ps command or the jobs command, or
to end a process with the kill command.

PGID Each process in a process group shares a process group ID (PGID), which is the
same as the PID of the first process in the process group. This ID is used for signaling
related processes. If a command starts just one process, its PID and PGID are the
same.

PPID A process that creates a new process is called a parent process; the new process is
called a child process. The parent process ID (PPID) becomes associated with the
new child process when it is created. The PPID is not used for job control.

A process can create one or more child processes, and the child processes can be parent
processes of new child processes, thus creating a hierarchy of related processes. The PPID
maintains the relationship between processes. Usually, a process creates a child process to
perform a separate task, for example a shell command. The child process ends when the task
is completed while the parent process continues to execute. If for some reason a parent
process should terminate before a child process, the child process will become an orphan
process. Orphan processes are inherited by the first process created in the system, called the
init process.
Chapter 2. UNIX System Services overview 45

2.16 z/OS UNIX interactive interfaces

Figure 2-16 z/OS UNIX interactive interfaces

z/OS UNIX interactive interfaces
Figure 2-16 is an overview of the two interactive interfaces, z/OS UNIX shell and the ISHELL.
In addition, there are some TSO/E commands to support z/OS UNIX, but they are limited to
certain functions such as copying files and creating directories.

The z/OS UNIX shell is based on the UNIX System V shell and has some of the features from
the UNIX Korn shell. The POSIX standard distinguishes between a command, which is a
directive to the shell to perform a specific task, and a utility, which is the name of a program
callable by name from the shell. To the user, there is no difference between a command and
a utility.

ISHELL or OMVS shell
Interactive users of z/OS UNIX have a choice between using a UNIX-like interface (the shell),
a TSO interface (TSO commands), and an ISPF interface (ISPF CUA® dialog). With these
choices, users can choose the interface which they are most familiar with and get a quicker
start on z/OS UNIX.

The z/OS UNIX shell provides the environment that has the most functions and capabilities.
Shell commands can easily be combined in pipes or shell scripts and thereby become
powerful new functions. A sequence of shell commands can be stored in a text file which can
be executed. This is called a shell script. The shell supports many of the features of a regular
programming language.

z/OS UNIX
(z/OS Shell)
OMVS command

ISPF Shell
(ISHELL)
ISHELL command

UNIX interface
POSIX 1003.2
Command interface

ISPF-based
Menu interface

TSO experienced userUNIX experienced user

type filename

dir bin
dir etc

ls -l
46 ABCs of z/OS System Programming Volume 9

TSO commands for interactive use
There are some TSO commands which provide support for UNIX System Services, as
follows:

ISHELL The ISHELL command will invoke the ISPF shell. The ISHELL is a good starting
point for users familiar with TSO and ISPF who want or need to use z/OS UNIX.
The ISHELL provides CUA panels where users can work with the hierarchical file
system. There are also panels for mounting/unmounting file systems and for doing
some z/OS UNIX administration.

OMVS The OMVS command used to invoke the z/OS UNIX shell.

The ISHELL is an ISPF dialog for users and system administrators which can be used instead
of shell commands to perform many tasks related to file systems, files, and z/OS UNIX user
administration.

REXX support
The REXX support for z/OS UNIX is not really an interactive interface, but we chose to
introduce it here since it is most often used in TSO or in the shell. The SYSCALL environment
is not built into TSO/E, but an external function call called SYSCALLS initializes the
environment.

An interactive user who uses the OMVS command to access the shell can switch back and
forth between the shell and TSO/E, the interactive interface to MVS.

Programmers whose primary interactive computing environment is a UNIX or AIX workstation
find the z/OS shell programming environment familiar.

Programmers whose primary interactive computing environment is TSO/E and ISPF can do
much of their work in that environment.

Interactive users of z/OS UNIX have a choice between using a UNIX-like interface (the shell),
a TSO interface (TSO commands), or an ISPF interface (ISPF CUA dialog). With these
choices, users can choose the interface which they are most familiar with and get a quicker
start on z/OS UNIX.

Note: The shell is the initial host environment, which means that the SYSCALL
environment is automatically initialized. A difference between the REXX support and shell
scripts is that a REXX EXEC can be invoked from a C program, while a shell script can
only be interpreted from the shell. A REXX EXEC can be called from a shell script.
Chapter 2. UNIX System Services overview 47

2.17 ISPF Option 6

Figure 2-17 ISPF Option 6 panel

Interactive use via ISPF Option 6
After a logon to TSO/E, enter Option 6 under ISPF to use the OMVS and ISHELL commands.

If you are a user with an MVS background, you may prefer to use the ISPF shell panel
interface instead of shell commands or TSO/E commands to work with the file system. The
ISPF shell also provides the administrator with a panel interface for setting up users for z/OS
UNIX access, for setting up the root file system, and for mounting and unmounting a file
system.

You can also run shell commands, REXX programs, and C programs from the ISPF shell.
The ISPF shell can direct stdout and stderr only to an HFS file, not to your terminal. If it has
any contents, the file is displayed when the command or program completes.

 Menu List Mode Functions Utilities Help
 __
 ISPF Command Shell
 Enter TSO or Workstation commands below:

 ===> ISHELL__
 __
 __

 Place cursor on choice and press enter to Retrieve command

 => ishell
 => omvs
 => netstat
 =>
 =>
 =>
 =>
 =>
 =>
 =>
48 ABCs of z/OS System Programming Volume 9

2.18 ISHELL command (ish)

Figure 2-18 Panel displayed after issuing the ish command

ISHELL command panel
Figure 2-18 shows the ISHELL or ISPF Shell panel displayed as a result of the ishell or ish
command being entered from ISPF Option 6.

To search a user's files and directories, type the following and press Enter:

/u/userid

At the top of the panel is the action bar, with seven choices:

� File
� Directory
� Special file
� Tools
� File systems
� Options
� Setup
� Help

When you select one of these choices, a pull-down panel with a list of actions is displayed.

EUID
The effective user ID, (EUID), of the current user or process, is initialized at shell startup

 File Directory Special_file Tools File_systems Options Setup Help

 UNIX System Services ISPF Shell

 Enter a pathname and do one of these:

 - Press Enter.
 - Select an action bar choice.
 - Specify an action code or command on the command line.

 Return to this panel to work with a different pathname.
 More: +
 /u/rogers
 __
 __
 __

 EUID=0
Chapter 2. UNIX System Services overview 49

2.19 User’s files and directories

Figure 2-19 Display of a user’s files and directories

Displaying files and directories
An action code is a single character you can enter to select a specific action for a file. To
display the valid action codes for a file type, put the cursor under the file type and press the
Help function key.

Shown in the figure are the files and directories of user rogers. The user can then use action
codes to do the following:

b Browse a file or directory

e Edit a file or directory

d Delete a file or directory

r Rename a file or directory

a Show the attributes of a file or directory

c Copy a file or directory

 File Directory Special_file Commands Help
 __
 Directory List
 Command ===> ___

 Select one or more files with / or action codes. If / is used also select an
 action from the action bar otherwise your default action will be used. Select
 with S to use your default action. Cursor select can also be used for quick
 navigation. See help for details.
 EUID=0 /u/rogers/
 Type Perm Changed-EST5EDT Owner ------Size Filename Row 1 of 12
 _ Dir 700 2006-01-25 14:16 HAIMO 8192 .
 _ Dir 555 2006-01-25 14:15 HAIMO 0 ..
 _ File 600 2006-01-23 16:37 HAIMO 2203 .sh_history
 _ File 400 2006-01-20 18:47 HAIMO 17408 .ishell-reflist-ROGERS
 _ File 755 2005-11-28 08:46 HAIMO 0 tst102
 _ File 755 2005-09-19 12:29 HAIMO 29 rich.txt
 _ File 755 2005-08-17 14:01 HAIMO 0 apf.file
 _ File 755 2005-08-16 13:24 HAIMO 0 tst101
 _ File 755 2005-08-16 13:10 HAIMO 0 tst100
 _ File 755 2005-08-15 17:37 HAIMO 0 tmp1
 _ Dir 755 2005-08-09 17:12 HAIMO 8192 tmp
 _ File 600 2001-03-14 14:44 HAIMO 793 .profile

50 ABCs of z/OS System Programming Volume 9

2.20 OMVS command shell session

Figure 2-20 OMVS shell session display after issuing the OMVS command

Entering the UNIX shell using the OMVS command
Use the OMVS command to invoke the z/OS UNIX shell. Once you are working in a shell
session, you can switch to subcommand mode, return temporarily to TSO/E command mode,
or end the session by exiting the shell.

Shell commands often have options (also known as flags) that you can specify, and they
usually take an argument, such as the name of a file or directory. The format for specifying
the command begins with the command name, then the option or options, and finally the
argument, if any. In Figure 2-20, the following command is shown to list the files and
directories:

ls -al /u/rogers

where ls is the command name, -al are the options.

This figure shows the screen when the OMVS command is issued from ISPF Option 6. This
command lists the files and directories of the user. If the pathname is a file, ls displays
information on the file according to the requested options. If it is a directory, ls displays
information on the files and subdirectories therein. You can get information on a directory
itself using the -d option.

ROGERS @ SC65:/u/rogers>ls -al
total 120
drwx------ 3 HAIMO SYS1 8192 Jan 17 18:17 .
dr-xr-xr-x 7 HAIMO TTY 0 Jan 17 18:06 ..
-r-------- 1 HAIMO SYS1 17408 Jan 17 18:17 .ishell-reflist-ROGERS
-rw------- 1 HAIMO SYS1 793 Mar 14 2001 .profile
-rw------- 1 HAIMO SYS1 2480 Jan 17 18:20 .sh_history
-rwxr-xr-x 1 HAIMO SYS1 0 Aug 17 14:01 apf.file
-rw-r--r-- 1 HAIMO SYS1 3436 Jul 19 2001 ilmamgmttool.cfg
-rw-r--r-- 1 HAIMO SYS1 559 Jul 19 2001 ilmamgmttool.err
-rwxr-xr-x 1 HAIMO SYS1 29 Sep 19 12:29 rich.txt
drwxr-xr-x 2 HAIMO SYS1 8192 Aug 9 17:12 tmp
-rwxr-xr-x 1 HAIMO SYS1 0 Aug 15 17:37 tmp1
-rwxr-xr-x 1 HAIMO SYS1 0 Aug 16 13:10 tst100
-rwxr-xr-x 1 HAIMO SYS1 0 Aug 16 13:24 tst101
-rwxr-xr-x 1 HAIMO SYS1 0 Nov 28 08:46 tst102
ROGERS @ SC65:/u/rogers>
 ===>
Chapter 2. UNIX System Services overview 51

Z/OS UNIX shell
The shell is a command processor that you use to:

� Invoke shell commands or utilities that request services from the system.

� Write shell scripts using the shell programming language.

� Run shell scripts and C-language programs interactively (in the foreground), in the
background, or in batch.

If you do not specify any options, ls displays only the file names. When ls sends output to a
pipe or a file, it writes one name per line; when it sends output to the terminal, it uses the -C
(multicolumn) format.
52 ABCs of z/OS System Programming Volume 9

2.21 ls -al command - list files in the root

Figure 2-21 A UNIX command that lists the files in the root

Displaying files and directories
To display files and directories from the shell in the root file system, Figure 2-21 shows the
result of the ls -al command. It displays the files and directories and shows the file access
allowed for the owner user, the user's group, and other users, which are called permission
bits, for example:

rwxrwxrwx

Permission bits
The default mode (read-write-execute permissions) for a directory created with the mkdir
command is:

� owner=rwx

� group=rwx

� other=rwx

ROGERS @ SC65:/>ls -al
total 2648
lrwxrwxrwx 1 HAIMO SYS1 9 Mar 13 2000 $SYSNAME -> $SYSNAME/
lrwxrwxrwx 1 HAIMO SYS1 9 Mar 13 2000 $VERSION -> $VERSION/
drwxr-xr-x 72 HAIMO SYS1 24576 Jan 16 04:25 .
drwxr-xr-x 72 HAIMO SYS1 24576 Jan 16 04:25 ..
dr-xr-xr-x 2 HAIMO SYS1 8192 Mar 13 2000 ...
-rwxrwxrwx 1 HAIMO SYS1 180 Jul 9 2004 .profile
-rw------- 1 HAIMO SYS1 2794 Jan 16 05:15 .sh_history
drwx------ 2 LUTZ SYS1 8192 Jul 15 2003 .ssh
-rw-rw-rw- 1 HAIMO SYS1 15902 Apr 15 2004 CimDirectoryElementDefaultTrace
drwxr-xr-x 3 HAIMO SYS1 8192 Feb 8 2001 DB2V7
-rw-r----- 1 HAIMO SYS1 6804 Nov 13 2003 ESZZSPB1.txt
-rw-r----- 1 HAIMO SYS1 8991 Nov 13 2003 ESZZSPB2.txt
-rw-r----- 1 HAIMO SYS1 17901 Nov 13 2003 GETSRC.TXT
drwxr-xr-x 4 HAIMO SYS1 8192 Oct 29 2003 JDK13
drwxr-xr-x 3 HAIMO SYS1 8192 Apr 22 2003 JDK14
-rw-r--r-- 1 HAIMO SYS1 55 May 27 2002 Kdns63-dns64.+157+37860.key
-rw-r--r-- 1 HAIMO SYS1 81 May 27 2002 Kdns63-dns64.+157+37860.private
-rw-r--r-- 1 HAIMO SYS1 54 May 25 2002 Krncd-dns63.+157+34912.key
-rw-r--r-- 1 HAIMO SYS1 81 May 25 2002 Krncd-dns63.+157+34912.pri
 ===>
 MORE...
Chapter 2. UNIX System Services overview 53

2.22 Direct login to shell

Figure 2-22 Diagram of a login to the shell from a terminal workstation

Entering a shell session from a workstation
A z/OS UNIX user can log in directly to the z/OS UNIX shell using one of the following
solutions:

rlogin When the inetd daemon is set up and active, you can rlogin to the shell from a
workstation that has rlogin client support and is connected via TCP/IP or
Communications Server to the MVS system. To log in, use the rlogin (remote log in)
command syntax supported at your site.

telnet The telnet support comes with the TCP/IP z/OS UNIX feature. It also uses the inetd
daemon, which must be active and set up to recognize and receive the incoming
telnet requests.

There are some differences between the asynchronous terminal support (direct shell login)
and the 3270-terminal support (OMVS command):

� You cannot switch to TSO/E. However, you can use the TSO shell command to run a
TSO/E command from your shell session.

� You cannot use the ISPF editor (this includes the oedit and TSO/E OEDIT commands,
which invoke ISPF edit).

The TCP/IP chapters have more details about this. It is mentioned here to give you a picture
of the methods available to invoke the shell. Later chapters also have more information about
differences between the 3270 and the direct login methods.

z/OS UNIX kernel
TCP/IP

shell

rlogind

shell

telnetd

inetd

WS

WSWS

telnet-C

UNIXUNIX

rlogin-C

WS
54 ABCs of z/OS System Programming Volume 9

2.23 Telnet access to z/OS UNIX

Figure 2-23 Telnet login to the shell screen

Shell session using Telnet
This figure shows the z/OS shell returned after a Telnet login.

From this session, you cannot switch to TSO/E or use the ISPF editor.

Telnet is a terminal emulation protocol that allows end users to log on to remote host
applications as though they were directly attached to that host. Telnet protocol requires that
the end user have a Telnet client emulating a type of terminal the host application will
understand. The client connects to a Telnet server, which communicates with the host
application. The Telnet server acts as an interface between the client and host application. A
PC can support several clients simultaneously, each with its own connection to any Telnet
server.
Chapter 2. UNIX System Services overview 55

56 ABCs of z/OS System Programming Volume 9

Chapter 3. UNIX System Services
pre-installation requirements

This chapter describes the necessary pre-installation requirements to get UNIX System
Services up and running.

It explains in detail the following topics:

� Customization of the root file system

� The difference between ServerPac and CBPDO

� The RACF definitions needed before initializing UNIX System Services

� Allocation of the root file

� The TSO/E debugging necessary when using the z/OS UNIX ISHELL

3

© Copyright IBM Corp. 2006, 2008. All rights reserved. 57

3.1 Customization of the root

Figure 3-1 The root file system

Root file system
The root file system is the starting point for the overall file system structure. It consists of the
root (/) directory, system directories, and files. A system programmer defines the root file
system. The system programmer must have an OMVS UID of 0 to allocate, mount, and
customize the root directories. It usually contains system-related files and files that belong to
a program product.

Directories in the root
The z/OS UNIX root file system directories and their contents are as follows:

bin Contains executable modules, mostly shell commands.

var Contains dynamic data that is used internally by products and by elements and
features of z/OS. Any files or directories that are needed are created during
execution of code. An example of this is caching data.

dev Contains character-special files that are used when logging into the OMVS shell
environment and also during c89 processing. Prior to OS/390 V2R7, these
character-special files were created by running the BPXISMKD REXX exec or
would be part of your ServerPac order. Beginning with OS/390 V2R7, /dev is
shipped empty. The necessary files are created when the system is IPLed, and
on a per-demand basis.

etc Contains customization data. Keeping the /etc file system in an HFS data set
separate from other file systems allows you to separate your customization data

Root

USR VAR

/samples
/bin
/lib
/usr
/opt

symlinks

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.HFS

/samples
/bin
/lib
/usr
/opt

/

SYSTEM/

symlinks

symlinks

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.HFS

OMVS.ETC.HFS

OMVS.VAR.HFS

OMVS.TMP.HFS

OMVS.DEV.HFS

DEV TMP VAR ETC

DEV TMP VAR ETCBINSAMPLES LIB USR OPT

BINSAMPLES LIB USR OPTU

mail man sbin include

DOMINO TCPIP

lpp
58 ABCs of z/OS System Programming Volume 9

from IBM’s service updates. It also makes migrating to another release easier.
After you complete instructions for a ServerPac or CBPDO installation, you will
have an /etc file system in its own HFS data set.

tmp Contains temporary data that is used by products and applications. The directory
/tmp is created empty, and temporary files are created dynamically by different
elements and products. You have the option of mounting a temporary file system
(TFS) on /tmp.

lib This directory contains symbolic links to the TCP/IP directory for the X11 Window
interface. In a z/OS UNIX system, it is used as a library containing C run-time
libraries.

samples Contains examples of files that can be customized and used in the /etc directory.

u Contains user home directories

usr/lpp Contains subdirectories for other applications like Domino®, WebSphere®,
TCP/IP, DCE, daemons, and so on.

SYSTEM The root file system contains an additional directory, /SYSTEM; existing
directories, /etc, /dev, /tmp and /var are converted into symbolic links. These
changes, however, are transparent to the user who brings up a single system
environment.

Symbolic links (Symlinks)
The presence of symbolic links is transparent to the user. In the illustrations used throughout
this redbook, symbolic links are indicated with an arrow.

Customization of the root file system
In Figure 3-1, the root file system contains an additional directory, /SYSTEM; existing
directories, /etc, /dev, /tmp, and /var are converted into symbolic links. These changes,
however, are transparent to the user who brings up a single system environment. During
installation, IBM defines directories in the /etc directory but does not install files there.
Because the configuration and customization data in your existing /etc directory might not be
correct for the new system, you might need to make changes to the files in your new /etc
directory. IBM recommends that you make these changes before the first IPL of the new
system. The presence of symbolic links is transparent to the user.

Starting in OS/390 V2R9, place the contents of the /etc, /dev, /tmp, and /var directories for
each system into separate HFS data sets if they have not already been set up that way. This
task is required for both non-sysplex users and sysplex users. Some utilities that are provided
by z/OS UNIX require the use of certain configuration files. Customers are responsible for
providing these files if they expect to use these utilities at their installation. IBM provides
default configuration files as samples in the /samples directory. Before the first use of any of
these utilities, you must copy these IBM-provided samples to the /etc directory (in most
cases). You can add further customization of these files to include installation-dependent
information.

Note: If the content of the symbolic link begins with $SYSNAME and SYSPLEX is
specified as NO in the BPXPRMxx member, then $SYSNAME is replaced with /SYSTEM
when the symbolic link is resolved.

Note: If the content of the symbolic link begins with $SYSNAME and SYSPLEX is
specified as NO, then $SYSNAME is replaced with /SYSTEM when the symbolic link is
resolved.
Chapter 3. UNIX System Services pre-installation requirements 59

3.2 Installing z/OS using ServerPac

Figure 3-2 Installing z/OS using the ServerPac

ServerPac installation
ServerPac is a software delivery package consisting of products and services for which IBM
has performed the SMP/E installation steps and some of the post-SMP/E installation steps.
To install the package on your system and complete the installation of the software it
includes, you use the CustomPac Installation Dialog, the same dialog that is used for all the
CustomPac offerings, including SystemPac® and ProductPac®.

Two types of ServerPac installation are available:

� A full system replacement

� A software upgrade

ServerPac and the root HFS
For z/OS ServerPac customers, IBM delivers a single-root HFS. This HFS is unloaded when
you perform “Establishing UNIX Services” in the ServerPac installation process. Not only
does the single-root HFS make cloning of file systems easier, but it also dramatically reduces
the number of jobs run by system programmers to establish z/OS UNIX.

Note: A full system replacement will provide system software related data sets like Dlib
and Target, as well as SMP/E CSI data sets and sample libraries. A software upgrade can
only be done if those data sets are available.

Full copy
or

Upgrade

Copy Copy

CustomPac dialog

DASD

Beginning with z/OS V1R6 - Electronic delivery

or

Installs z/OS UNIX
Root file system
and all products
60 ABCs of z/OS System Programming Volume 9

Electronic delivery
ShopzSeries is an Internet application you can use to order z/OS software products and
service. Using ShopzSeries, you can order corrective and preventive service over the
Internet, with delivery over the Internet or by tape. Service with ShopzSeries reduces your
research time and effort by using your uploaded SMP/E consolidated software inventory
(CSI) to ensure that all applicable service, including reachahead service, for the installed
FMIDs in the target zones is selected. The ShopzSeries Web address is:

http://www.ibm.com/software/shopzseries
Chapter 3. UNIX System Services pre-installation requirements 61

3.3 Installing z/OS using CBPDO

Figure 3-3 Installing z/OS using CBPDO

CBPDO installation
Custom-Built Product Delivery Option (CBPDO) is a software delivery package consisting of
uninstalled products and unintegrated service. You must use SMP/E to install the individual
z/OS elements and features, and their service, before you can IPL.

The CBPDO installation process is split into separate stages, called waves. These waves
group related activities together so that at the completion of each wave, the wave
components can be activated (like performing an IPL).

These waves are:

� Wave 0 installs prerequisite FMIDs onto the driving system, such as HLASM and SMP/E.
� Wave 1 installs FMIDs that do not install into HFS.
� Wave 2 installs FMIDs that do install into HFS.
� Wave 3 installs FMIDs for JES2 or JES3.

BPXISHFS member of samplib
For customers who use the CBPDO software delivery package, a sample job called
BPXISHFS (found in SYS1.SAMPLIB) is provided. It allocates the root and /etc HFS data
sets and then mounts them at a given mount point. This job allocates a file system that is
mounted on the /etc directory so that z/OS-delivered code is part of a single HFS, while
customized data can be kept separate. This allows for easier cloning of file systems.

Product or
 Service

SMP/ESMP/E

Wave Processing

DASD

Installs z/OS UNIX
Root file system
and all products
62 ABCs of z/OS System Programming Volume 9

3.4 ServerPac and CBPDO

Figure 3-4 ServerPac and the root file system

Installation data sets
For z/OS ServerPac customers, IBM delivers a single-root HFS. This HFS is unloaded when
you perform the “Establishing UNIX Services” step in the ServerPac installation process. Not
only does the single-root HFS make cloning of file systems easier, but it also dramatically
reduces the number of jobs run by system programmers to establish z/OS UNIX.

IBM also delivers a separate HFS data set for /etc.

Performing ServerPac installation requires that you be a superuser with UID(0) or have
access to the BPX.SUPERUSER resource in the FACILITY class.

For customers who use the Custom-Built Product Delivery Option (CBPDO) software delivery
package, a sample job called BPXISHFS (found in SYS1.SAMPLIB) is provided. It allocates
the root and /etc HFS data sets and then mounts them at a given mount point. This job
allocates a file system that is mounted on the /etc directory so that z/OS-delivered code is
part of a single HFS, while customized data can be kept separate. This allows for easier
cloning of file systems.

/etc file system
The /etc file system contains customization data, such as the definition files for the automount
facility. The install process creates an empty /etc directory into which customers must copy
their existing /etc file system. This directory is similar to SYS1.PARMLIB, but differs in some
aspects. For example, the /etc file system cannot be shared between systems, nor can the

Provide two HFS data sets:

Root file system

Files and executables

ETC file system

Contains only empty directories and symlinks

Recommendation for separate file system data sets

/tmp - /var - /dev - /etc

Separate customized data from shipped code
Chapter 3. UNIX System Services pre-installation requirements 63

/etc file system be concatenated with other directories like SYS1.PARMLIB can. To keep your
customization data separated from IBM's service updates and to make migration to another
release easier, keep the /etc file system in an HFS data set separate from other file systems.
When you complete all instructions for installing z/OS, whether through a ServerPac or
CBPDO, you have an /etc file system in its own HFS data set.

To ensure that your customization files are not modified, IBM does not create any files in the
/etc file system. IBM does, however, create directories when they are needed. Furthermore,
IBM does not ship maintenance into /etc via SMP/E.

Starting in OS/390 V2R9, place the contents of the /etc, /dev, /tmp, and /var directories for
each system into separate HFS data sets if they have not already been set up that way. This
task is required for both sysplex and non-sysplex users.
64 ABCs of z/OS System Programming Volume 9

3.5 UNIX System Services installation

Figure 3-5 Components needed for z/OS UNIX installation

Customizing the z/OS UNIX environment
The ServerPac provides you with full system replacement and software upgrade options.
Online panels contain the jobs and present the information you need to proceed through the
ServerPac installation. Before you can install and set up UNIX System Services, the following
must be set up in your environment:

� RACF

The security administrator defines a user by creating a RACF user profile with an
ADDUSER command or alters the user profile with an ALTUSER command to make the
user a z/OS UNIX user.

� SMS

System Managed Storage (SMS), which is part of the DFSMSdfp™ element of z/OS, can
be configured, whether you define the kernel in minimum mode or full function mode.

� TSO/E

To make certain TSO/E commands (such as OEDIT, OBROWSE, and ISHELL) and some
shipped REXX execs available to users, concatenate the following target libraries to the
appropriate ISPF data definition names (ddnames). The following data sets are for the
English panels, messages, and tables:

SYS1.SBPXPENU concatenated to ISPPLIB
SYS1.SBPXMENU concatenated to ISPMLIB
SYS1.SBPXTENU concatenated to ISPTLIB
SYS1.SBPXEXEC concatenated to SYSEXEC or SYSPROC

Customization:

RACF

TSO/E
RACF profiles with commands

ALTUSER, ADDUSER

TSO/E commands and REXX execs

Make available to users
Chapter 3. UNIX System Services pre-installation requirements 65

3.6 z/OS UNIX security

Figure 3-6 z/OS UNIX security products

Security products
To provide data and system security, the security administrator and security auditor need to
set up and maintain security with the tasks used by z/OS UNIX.

z/OS UNIX provides security mechanisms that work with the security offered by the z/OS
system. A security product is required, either RACF or an equivalent security product. This
chapter assumes that you are using RACF. If you are using an equivalent security product,
you should refer to that product's documentation. If you do not have a security product, you
must write SAF exits to simulate all of the functions.

RACF stores z/OS UNIX data in OMVS segments, but Solution Developer products such as
CA-ACF2 and CA-Top Secret have also implemented solutions to seamlessly support z/OS
UNIX.

Security product required:

RACF

CA - ACF2

CA - Top Secret

SAF Exits - security product simulation
66 ABCs of z/OS System Programming Volume 9

3.7 RACF definitions

Figure 3-7 RACF definitions for z/OS UNIX

Providing security with RACF
The RACF component of the Security Server authenticates users and verifies whether they
are allowed to access certain resources. An equivalent security product can be used to do
those tasks.

To provide data and system security, the security administrator and security auditor need to
set up and maintain security. z/OS UNIX provides security mechanisms that work with the
security offered by the z/OS system. A security product is required, either RACF or an
equivalent security product. It is assumed that you are using RACF. If you are using an
equivalent security product, you should refer to that product's documentation. If you do not
have a security product, you must write SAF exits to simulate all of the functions.

z/OS UNIX provides security mechanisms that work with the security offered by the z/OS
system. Before you can install and debug UNIX System Services, you need to have access to
UNIX System Services data sets and members that are named in directories and files. RACF
and other security-related products allow access to the z/OS UNIX environment. This access
can be allowed without being a TSO/E user.

Permission bits
RACF uses permission bit settings for files and directories to determine if a request for
access to the file or directory can be granted.

RACF
OMVS

RACF
OMVS

Segment

UIDs - GIDs RACF database

User profile
OMVS segment

Permission
Bits

Control access to files and
directories
Chapter 3. UNIX System Services pre-installation requirements 67

Create an OMVS segment
If your user ID should have access to z/OS UNIX, your security administrator has to specify
the home directory, the shell program, and a UID in the OMVS segment. In addition, the
administrator has to provide a group ID (GID) for any RACF group the user is connected to. If
this is done you should be able to access the UNIX shell or work with the ISPF-driven
ISHELL. The decision whether you will be able to access directories or files will be made by
UNIX security.

OMVS segments can be created using the RACF commands ADDUSER and ALTUSER.

Create user IDs for z/OS UNIX
In addition, your RACF administrator has to provide a user ID that is assigned to the OMVS
and BPXOINIT address spaces (Started Procedure). This user ID needs only to have an
OMVS segment and should be connected to a RACF group with a GID.
68 ABCs of z/OS System Programming Volume 9

3.8 RACF OMVS segments

Figure 3-8 z/OS UNIX RACF OMVS segments

User profiles with OMVS segments
All users and programs that need access to z/OS UNIX System Services must have a RACF
user profile defined, with an OMVS segment which has at least a UID specified. A user
without a UID cannot access z/OS UNIX.

RACF user profile
The RACF user profile has a segment called OMVS for z/OS UNIX support. A user ID must
have an OMVS segment defined in order to use UNIX System Services, for example, access
the ISHELL or the shell. This segment has three fields, as follows:

UID A number from 0 to 2147483647 that identifies a z/OS UNIX user. A z/OS UNIX
user must have a UID defined.

Home The name of a directory in the file system. This directory is called the home
directory. This field is optional.

Program The name of a program. This is the program that will be started for the user
when the user begins a z/OS UNIX session. Usually this is the program name
for the z/OS UNIX shell. This field is optional.

Note: It is possible for multiple users to have the same UID number specified. However,
this is not recommended.

Groupid
Superior
Group Connected Users

PROG2 PROGR SMITH WHITE

Group profile (no OMVS segment)

Groupid
Superior
 Group Connected Users OMVS

GID

25
PROG1 PROGR SMITH BROWN

Group profile

Userid
Default
 Group

Connect Groups TSO DFP OMVS
UID Home Program

15 /u/smith /bin/shSMITH PROG1 PROG1 PROG2

User profile
Chapter 3. UNIX System Services pre-installation requirements 69

RACF group profile
The RACF group also has a segment called OMVS to define z/OS UNIX groups. It contains
only one field, as follows:

GID A number from 0 to 2147483647 which identifies a z/OS UNIX group.

The home directory is the current directory when a user invokes z/OS UNIX. During z/OS
UNIX processing this can be changed temporarily by using the cd (change directory) shell
command. The command will not change the value in the RACF profile. The directory
specified as home directory in the RACF profile must exist (be pre-allocated) before a user
can invoke z/OS UNIX. If a home directory is not specified in RACF, the root (/) directory will
be used as default.

The example in Figure 3-8 shows a user profile for TSO/E user ID SMITH which is connected
to two groups, PROG1 and PROG2. SMITH is defined as a z/OS UNIX user because he has
a UID specified. His home directory is /u/smith and he will get into the shell when he issues
the OMVS command because the name of the shell, /bin/sh is specified as program name.

The program name in the OMVS segment specifies the name of the first program to start
when z/OS UNIX is invoked. Usually this is the name of the z/OS UNIX shell.
70 ABCs of z/OS System Programming Volume 9

3.9 OMVS segment fields

Figure 3-9 Fields in the OMVS segment

Controlling resources for users
You can control the amount of resources consumed by certain z/OS UNIX users by setting
individual limits for these users. The resource limits for the majority of z/OS UNIX users are
specified in the BPXPRMxx PARMLIB member. These limits apply to all users except those
with UID(0), which indicates superuser authority. Instead of assigning superuser authority to
application servers and other users so they can exceed BPXPRMxx limits, you can
individually set higher limits for these users. Setting user limits allows you to minimize the
number of assignments of superuser authority at your installation and reduces your security
risk.

Setting limits for z/OS UNIX users
Specify limits for z/OS UNIX users by choosing options on the ADDUSER or ALTUSER
commands. The limits are stored in the OMVS segment of the user profile. You can set the
following limits in the OMVS user segment:

ASSIZEMAX MAXASSIZE is the maximum region size (in bytes) for an address
space. You can set a system-wide limit in BPXPRMxx and then set
higher limits for individual users. Use the RACF ADDUSER or
ALTUSER command to specify the ASSIZEMAX limit on a per-user
basis as follows:

ALTUSER userid OMVS(ASSIZEMAX(nnnn)

OMVS Segment
UID= 0000000000
HOME= /
PROGRAM= /bin/sh
-
CPUTIMEMAX= NONE
ASSIZEMAX= NONE
FILEPROCMAX= NONE
PROCUSERMAX= NONE
THREADSMAX= NONE
MMAPAREAMAX= NONE
MEMLIMIT | NOMEMLIMIT
SHMEMAX | NOSHMEMAX
Chapter 3. UNIX System Services pre-installation requirements 71

CPUTIMEMAX MAXCPUTIME is the time limit (in seconds) for processes that were
created by rlogind and other daemons. You can set a system-wide limit
in BPXPRMxx and then set higher limits for individual users. Use the
RACF ADDUSER or ALTUSER command to specify the CPUTIMEMAX
limit on a per user basis as follows:

ALTUSER userid OMVS(CPUTIMEMAX(nnnn))

FILEPROCMAX Use MAXFILEPROC to determine the number of character-special files,
/dev/fdxx, that a single process can have open concurrently. You can
also limit the amount of system resources available to a single user
process. You can set a system-wide limit in BPXPRMxx and then set
higher limits for individual users. Use the RACF ADDUSER or
ALTUSER command to specify the FILEPROCMAX limit on a per user
basis as follows:

ALTUSER userid OMVS(FILEPROCMAX(nnnn))

MMAPAREAMAX For MAXMMAPAREA, you can set a system-wide limit in BPXPRMxx
and then set higher limits for individual users. Use the RACF ADDUSER
or ALTUSER command to specify the MMAPAREAMAX limit on a per
user basis as follows:

ALTUSER userid OMVS(MMAPAREAMAX(nnnn))

PROCUSERMAX You can set a system-wide limit in BPXPRMxx and then set higher limits
for individual users. Use the RACF ADDUSER or ALTUSER command
to specify the PROCUSERMAX limit on a per-user basis as follows:

ALTUSER userid OMVS(PROCUSERMAX(nnnn))

THREADSMAX MAXTHREADS is the maximum number of threads that a single process
can have active concurrently. If an application needs to create more
than the recommended maximum in SAMPLIB, it must minimize storage
allocated below the 16M line by specifying C run-time options. You can
set a system-wide limit in BPXPRMxx and then set higher limits for
individual users by using the RACF ADDUSER or ALTUSER command
to specify the THREADSMAX limit on a per user basis as follows:

ALTUSER userid OMVS(THREADSMAX(nnnn))

SHMEMAX SHMEMMAX(shared-memory-size) specifies the maximum number of
bytes of shared memory that can be allocated by the user. The
shared-memory-size value must be numeric 1 - 16777215, followed by
the letter M, G, T, or P. The M, G, T or P letter indicates the multiplier to
be used. The maximum value is 16383P.

MEMLIMIT MEMLIMIT(nonshared-memory-size) specifies the maximum number of
bytes of nonshared memory that can be allocated by the user. The
nonshared-memory-size value must be numeric 0 - 16777215, followed
by the letter M, G, T, or P. The M, G, T or P letter indicates the multiplier
to be used. The maximum value is 16383P.
72 ABCs of z/OS System Programming Volume 9

3.10 UNIX security

Figure 3-10 Security on UNIX platforms

Security on z/OS UNIX
UNIX systems incorporate a concept of users and groups similar to that of RACF. A user
UNIX identifier (or UID) is a number between 0 and some large number that varies between
brands of UNIX. User numbers do not have to be unique and it is possible (though not
recommended) for several users to share the same UID, and even be logged on at the same
time. UNIX sees these users as being the same entities and they receive the same levels of
authorization. A user with UID=0 is what's called a superuser (ROOT on some brands of
UNIX). The superuser has unlimited authority within a UNIX environment. For obvious
reasons, UID=0 needs to be strictly controlled.

Users are all related to a group. Groups allow authority to be controlled in a more economical
way, in that giving access to a group is a lot easier than giving access to a couple of hundred
users. A group identifier (or GID) is a number between 0 and some large number that varies
between brands of UNIX. Any number of users can share the same GID.

pax and tar are UNIX utilities that perform functions like PKZIP and DFSMSdss. The z/OS
implementation of UNIX allows UID and GID numbers up to 2,147,483,647. The pax protocol
supports UIDs and GIDs up to 8 octal digits. The largest value supported is 77777777 octal or
16M decimal. To allow the use of pax and tar, keep the UIDs and GIDs below this value. It is
recommended that the maximum number used should be no more than 77,777,777.

UID = user identifier

Number in range 0 - 2,147,483,647

But.... 0 - 16,777,215 due to pax protocol

0 = Superuser (Root)

GID = group identifier

Number in range 0 - 2,147,483,647

But.... 0 - 16,777,215 due to pax protocol

/etc/passwd - (Not used by z/OS UNIX)
/etc/group - (Not used by z/OS UNIX)
Chapter 3. UNIX System Services pre-installation requirements 73

Security on other UNIX platforms
The /etc/passwd file contains basic user attributes. This is an ASCII file that contains an entry
for each user. Each entry defines the basic attributes applied to a user. When using the
mkuser command to add a user to your system, the command updates the /etc/passwd file.

An entry in the /etc/passwd file has the following form:

Name:Password: UserID:PrincipleGroup:Gecos: HomeDirectory:Shell

Attributes in an entry are separated by a : (colon). For this reason, you should not use a :
(colon) in any attribute. The attributes are defined as follows:

Name Specifies the user's login name. The user name must be a unique
string of 8 bytes or less. There are a number of restrictions on naming
users. See the mkuser command for more information.

Password Contains an * (asterisk) indicating an invalid password or an !
(exclamation mark) indicating that the password is in the
/etc/security/passwd file. Under normal conditions, the field contains
an !. If the field has an * and a password is required for user
authentication, the user cannot log in.

UserID Specifies the user's unique numeric ID. This ID is used for
discretionary access control. The value is a unique decimal integer.

PrincipleGroup Specifies the user's principal group ID. This must be the numeric ID of
a group in the user database or a group defined by a network
information service. The value is a unique decimal integer.

Gecos Specifies general information about the user that is not needed by the
system, such as an office or phone number. The value is a character
string. The Gecos field cannot contain a colon.

HomeDirectory Specifies the full path name of the user's home directory. If the user
does not have a defined home directory, the home directory of the
guest user is used. The value is a character string.

Shell Specifies the initial program or shell that is executed after a user
invokes the login or su command. If a user does not have a defined
shell, /usr/bin/sh, the system shell, is used. The value is a character
string that may contain arguments to pass to the initial program.

The /etc/group file contains basic group attributes. This is an ASCII file that contains records
for system groups. Each record appears on a single line and has the following format:

Name:Password:ID:User1,User2,...,Usern

Each attribute must be separated by a colon. Records are separated by new-line characters.
The attributes in a record have the following values:

Name Specifies a group name that is unique on the system. The name is a
string of 8 bytes or less. See the mkgroup command for information
on the restrictions for naming groups.

Password Not used. Group administrators are provided instead of group
passwords. See the /etc/security/group file for more information.

ID Specifies the group ID. The value is a unique decimal integer string.

User1,User2,...,Usern Identifies a list of one or more users. Separate group member names
with commas. Each user must already be defined in the local
database configuration files.
74 ABCs of z/OS System Programming Volume 9

3.11 z/OS UNIX superuser

Figure 3-11 z/OS UNIX and superusers

Defining superusers
z/OS UNIX has no predefined numbering scheme for UIDs and GIDs, with the exception of
UID=0. UID=0 is a superuser (also known as ROOT on other UNIX platforms). While some
functions require a UID of 0, in most cases you can choose among the three ways. When
choosing among them, try to minimize the number of “human” user IDs (as opposed to
started procedures) set up with UID(0) superuser authority. To summarize the choices,
UID(0) gives you access to all UNIX functions and resources, as is true for all UNIX systems.

However, in z/OS, RACF allows certain users to perform specific privileged functions without
being defined as UID(0). BPX.SUPERUSER allows you to request that you be given such
access, but you do not have the access unless you make the request. And, the UNIXPRIV
class allows you to do other privileged functions, such as mounting a file system. Both these
definitions are similar to having UID(0) in that, before RACF grants access to a system
resource or use of it, the system checks these definitions.

Defined in the user profile
A superuser is a user with a UID of 0 and this UID is in the RACF profile of the user. A
superuser can be a started procedure with a trusted or privileged attribute defined in the
RACF STARTED Class or added to the RACF Started Procedures Table. The procedure
must have a UID. However, when a started procedure is trusted or privileged, RACF does not
base authority checking on the UID value; the UID can have any value.

User having a UID(0)

Specified in RACF user profile

Can access any file or directory

Required for many of the customization and

administration tasks

Required to perform some functions like MOUNT

Superusers can be defined using the following:

BPX.SUPERUSER RACF profiles

UNIXPRIV class (RACF)
Chapter 3. UNIX System Services pre-installation requirements 75

Superuser authority
A superuser can do the following:

� Pass all security checks, so that the superuser can access any file in the file system.

� Perform the mount function.

� Change identity from one UID to another.

� Manage processes.

� Have an unlimited number of processes running concurrently. For a started procedure,
this is true only if it has a UID of 0. It is not true for a trusted or privileged process with a
different UID.

� Change identity from one UID to another.

� Use setrlimit to increase any of the system limits for a process.

BPX.SUPERUSER profiles
Using the BPX.SUPERUSER resource in the FACILITY class is another way for users to get
the authority to do most of the tasks that require superuser authority.

UNIXPRIV class
You can define profiles in the UNIXPRIV class to grant RACF authorization for certain z/OS
UNIX privileges. By defining profiles in the UNIXPRIV class, you can specifically grant certain
superuser privileges with a high degree of granularity to users who do not have superuser
authority. This allows you to minimize the number of assignments of superuser authority at
your installation and reduces your security risk.
76 ABCs of z/OS System Programming Volume 9

3.12 RACF commands and user IDs

Figure 3-12 The RACF commands used to define users and groups

Defining user IDs
For our UNIX System Service installation we should provide the following setup in RACF:

� Provide a GID for our default RACF group.

� Define the OMVS RACF segment.

� Define the OMVSKERN user ID and group.

� Define the OMVS and BPXOINIT cataloged procedures.

RACF commands
The following RACF commands can be used to fulfill the UNIX RACF prerequisites:

ALTGROUP SYS1 OMVS(GID(0))
ALTUSER KORN OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))
ADDGROUP OMVSGRP OMVS(GID(1))
ADDUSER OMVSKERN DFLTGRP(OMVSGRP) OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))
PASSWORD(ONE6PACK).
RDEFINE STARTED OMVS.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(YES))
RDEFINE STARTED BPXOINIT.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(NO))

ALTUSER
ADDUSER

ADDGROUP
ALTGROUP

OMVSKERN
OMVSGRP

TT SS
OO

(User IDs)

(RACF
Commands)

ALTGROUP SYS1 OMVS(GID(0))
ALTUSER KORN OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))
ADDGROUP OMVSGRP OMVS(GID(1))
ADDUSER OMVSKERN DFLTGRP(OMVSGRP) OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))
PASSWORD(ONE6PACK).
RDEFINE STARTED OMVS.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(YES))
RDEFINE STARTED BPXOINIT.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(NO))
Chapter 3. UNIX System Services pre-installation requirements 77

3.13 RACF commands to define groups

Figure 3-13 RACF commands used to define z/OS UNIX groups

RACF commands for defining groups
The ALTGROUP, ADDGROUP, and LISTGRP commands have keywords for administering
the OMVS segment.

� Use ALTGROUP (ALG) to modify an existing RACF group, with or without an OMVS
segment. The OMVS segment can be added, modified, or deleted.

� Use ADDGROUP (AG) to define a new RACF group, with or without an OMVS segment.
The OMVS keyword can be used to define this group as a z/OS UNIX group.

� The LISTGRP (LG) command will display the OMVS segment if the OMVS keyword is
specified.

A z/OS UNIX group is a RACF group with an OMVS segment and a GID defined. Figure 3-13
shows examples of how to use the RACF commands to add, change or delete the OMVS
segment for a group.

Using NOGID removes a GID definition, and NOOMVS removes the OMVS segment.

A user can belong to (or be connected to) multiple groups. A z/OS UNIX user must belong to
at least one z/OS UNIX group. It is not necessary that all the groups a z/OS UNIX user
belongs to are defined as z/OS UNIX groups. Only the groups that are defined as z/OS UNIX
groups will be used for authorization checking in z/OS UNIX.

Add OMVS segment to existing group SYSADM:

 ALTGROUP SYSADM OMVS(GID(0))

Define a new group PROG1:

 ADDGROUP PROG1 OMVS(GID(25))

List the OMVS segment of group TTY:

 LG TTY OMVS
78 ABCs of z/OS System Programming Volume 9

3.14 RACF commands to define users

Figure 3-14 RACF commands to define z/OS UNIX users

RACF commands for defining users
The RACF commands ALTUSER, ADDUSER, and LISTUSER have keywords for
administering the OMVS segment, as follows:

� Use the ALTUSER (ALU) command to change the definitions for an existing TSO/E user
ID. An OMVS segment can be added, modified, or deleted.

� Use the ADDUSER (AU) command to define a new TSO/E user ID with or without an
OMVS segment.

� The LISTUSER (LU) command is used for listing the definitions for a TSO/E user ID.
When the OMVS keyword is specified, the values specified in the OMVS segment will also
be listed.

ADDUSER sets up a new user, whereas ALTUSER modifies an existing user. To remove a
specification in the OMVS segment, use the keywords NOUID (to remove UID), NOHOME (to
remove home directory definition), or NOPROGRAM (to remove program definition). The
NOOMVS keyword will remove all the definitions in the OMVS segment. The OMVS keyword
must be used on the LISTUSER command if you want the OMVS segment definitions to be
displayed.

The z/OS UNIX ISPF shell (ISHELL) provides some menus for administering user IDs.
However, before a user can use the ISHELL, he must have a user ID with a UID defined (and
a group with a GID defined). This must be done using the RACF commands.

Note: The values shown are case-sensitive in the definitions for HOME and PROGRAM.

Add OMVS segment to existing user NEILOC:

 ALTUSER NEILOC +
 OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))

Define a new user SMITH:

 ADDUSER SMITH +
 OMVS(UID(15) HOME('/u/smith')PROGRAM('/bin/sh'))

List the OMVS segment of user JONES:

 LU SMITH OMVS

Note: UID=0 is a Superuser
Chapter 3. UNIX System Services pre-installation requirements 79

3.15 LU and LG command examples

Figure 3-15 RACF commands to display z/OS UNIX OMVS segments

List user and group commands
Specifying the NORACF option stops the LU and LG commands from displaying general
information. You only see the OMVS segment information.

Note that users are only allowed to display their OMVS segments if RACF field-level access
has been enabled.

lu smith omvs noracf
 USER=SMITH
 OMVS INFORMATION

 UID= 0000000015
 HOME= /u/smith
 PROGRAM= /bin/sh
 CPUTIMEMAX= NONE
 ASSIZEMAX= NONE
 FILEPROCMAX= NONE
 PROCUSERMAX= NONE
 THREADSMAX= NONE
 MMAPAREAMAX= NONE
lg prog1 omvs noracf
 INFORMATION FOR GROUP PROG1
 OMVS INFORMATION

 GID= 0000000025
80 ABCs of z/OS System Programming Volume 9

3.16 Define a terminal group name

Figure 3-16 Defining a terminal group name

Terminal group name
Certain shell commands, such as mesg, talk, and write require pseudoterminals to have a
group name of TTY. When a user logs in, or issues the OMVS command from TSO/E, the
group name associated with these terminals is changed to TTY. As part of your installation,
you have to define the group TTY.

Pseudoterminal files
Pseudoterminals (pseudo-TTYs) are used by users and applications to gain access to the
shell. A pseudo_TTY is a pair of character special files, a master file and a corresponding
slave file. The master file is used by a networking application such as OMVS or rlogin. The
corresponding slave file is used by the shell or the user's process to read and write terminal
data.

When a user enters the TSO/E OMVS command or logs in using rlogin or telnet to initialize
a shell, the system selects an available pair of these files. The pair represents the connection.
The maximum number of pairs is 10000.

Define a RACF group for pseudoterminals

Group name - TTY (default)

Group id (GID)

ADDGROUP TTY OMVS(GID(2))

TTY group is used by shell programs

Shell users are assigned group TTY
Chapter 3. UNIX System Services pre-installation requirements 81

3.17 TSO/E support

Figure 3-17 TSO/E component used with z/OS UNIX

Using TSO/E for z/OS UNIX
One benefit to users of UNIX System Services is the UNIX System Services shell. The UNIX
System Services shell is a command processor that you use to:

� Invoke shell commands or utilities that request services from the system (similar to
TSO/E).

� Write shell scripts using the shell programming language (similar to REXX).

� Run shell scripts and C-language programs interactively in the foreground, in the
background, or in batch (again, similar to REXX).

Once z/OS UNIX is installed, the shell can be invoked through the TSO/E command OMVS.
Like the OBROWSE, OEDIT, and ISHELL commands, the OMVS command can also be
added to an ISPF selection panel, or entered as a TSO/E command.

The z/OS UNIX ISPF Shell or ISHELL is an ISPF panel interface that you can use instead of
TSO/E commands or shell commands to perform tasks against z/OS UNIX user IDs and
HFSs.

If you are more comfortable using the ISPF editor and ISPF pull-down menus, the ISHELL is
the tool for you.

OMVS.ROOT
Data Set

TSO OMVS
 command

RACF
Data
Base
82 ABCs of z/OS System Programming Volume 9

3.18 User access to TSO/E commands

Figure 3-18 Using TSO/E commands with z/OS UNIX

Customizing the TSO/E environment for z/OS UNIX
In order to make the TSO/E commands OEDIT, OBROWSE, and ISHELL (ISPF Shell)
available to users, the following data sets should be concatenated to the appropriate ISPF
DD names (in the TSO/E logon procedure, or CLIST/REXX EXEC if used):

� SYS1.SBPXPENU (concatenated to ISPPLIB)
� SYS1.SBPXMENU (concatenated to ISPMLIB)
� SYS1.SBPXTENU (concatenated to ISPTLIB)
� SYS1.SBPXEXEC (concatenated to SYSEXEC or SYSPROC)

These TSO/E commands can be invoked from a TSO/E command line, but it is more
convenient for users if they are added as an option to an ISPF menu. They can be added to
the ISPF/PDF primary option menu (ISR@PRIM) or any other menu the installation prefers to
use.

TSO/E users need to be defined with an OMVS segment in RACF before they can use the
ISHELL, OEDIT, or OBROWSE commands.

ISHELL
OEDIT
OBROWSE

TSO Commands

TSO Logon Procedures

ISPPLIB

ISPMLIB

ISPTLIB

SYSEXEC or
SYSPROC

SYS1.SBPXPENU

SYS1.SBPXMENU

SYS1.SBPXTENU

SYS1.SBPXEXEC

ISPF menu

ISR@PRIM
0 ...
1 ..
2 ...
Chapter 3. UNIX System Services pre-installation requirements 83

84 ABCs of z/OS System Programming Volume 9

Chapter 4. UNIX System Services
installation

This chapter provides information on installing UNIX System Services, and how to avoid or fix
installation problems. It explains how to:

� Install UNIX System Services

� Allocate HFS data sets

� Mount HFS data sets

� Restore file systems

4

© Copyright IBM Corp. 2006, 2008. All rights reserved. 85

4.1 z/OS UNIX PARMLIB - PROCLIB members

Figure 4-1 PARMLIB and PROCLIB members for z/OS UNIX

Customization of SYS1.PARMLIB
SYS1.PARMLIB has several members in which some customization needs to be done. z/OS
UNIX requires definitions in one or more BPXPRMxx members that are defined in the
IEASYSxx member.

Use the PROGxx member to define language environment run-time libraries.

The COFVLFxx member is used for VLF definitions to cache UIDs and GIDs for performance
when RACF does authorization checks for access to files and directories. The COMMNDxx
member can be used to specify the start command for VLF.

Customization of SYS1.PROCLIB
The following procedures are required in SYS1.PROCLIB for the z/OS UNIX address spaces:

� OMVS - The main z/OS UNIX address space

� BPXOINIT - The z/OS UNIX initialization address space

� BPXAS - For address spaces for all UNIX processes

SYS1.PARMLIB

One or more BPXPRMxx members

IEASYSxx member to define BPXPRMxx members

PROGxx member to define language environment

COFVLFxx member for VLF definitions

COMMNDxx member for start of VLF

SYS1.PROCLIB

Procedures required for z/OS UNIX address spaces

OMVS - Main z/OS UNIX address space

BPXOINIT - z/OS UNIX initilaization address space

BPXAS - Address spaces for all UNIX processes
86 ABCs of z/OS System Programming Volume 9

4.2 IEASYSxx PARMLIB member

Figure 4-2 PARMLIB settings needed to start z/OS UNIX

PARMLIB definitions to start z/OS UNIX
The initial PARMLIB settings for the z/OS UNIX kernel are pointed to by the OMVS parameter
in the IEASYSxx PARMLIB member. The OMVS parameter in the IEASYSxx PARMLIB
member lets you specify one or more BPXPRMxx PARMLIB members to be used to specify
the initial PARMLIB settings for the kernel. If you do not specify the OMVS parameter, or if
you specify OMVS=DEFAULT, the kernel is started in a minimum configuration mode with all
BPXPRMxx PARMLIB statements taking their default values.

OMVS may also be left out or coded as DEFAULT. This allows the z/OS UNIX kernel to start
in a minimum configuration. All BPXPRMxx values will take their default values and a
temporary root file system will be set up in memory.

Activation of kernel services is available in two modes:

� Minimum mode
� Full-function mode

You can set up kernel services in either minimum mode or full function mode. If you want to
use any z/OS UNIX service, TCP/IP, or other functions that require the kernel services, you
will need to use full function mode; otherwise, you can use minimum mode. In order to apply
service to the HFS, you need at least one system that can run in full function mode.

Note: The start and stop commands for the z/OS UNIX kernel are no longer supported.

OMVS=xx

OMVS=(xx,yy,...)

OMVS=DEFAULT

Levels of operation

Minimum mode
Full-function mode

IEASYSxx

SYS1.PROCLIB

OMVS
BPXOINIT
BPXAS

SYS1.PARMLIB

BPXPRMxx
BPXPRMyy
Chapter 4. UNIX System Services installation 87

4.3 z/OS UNIX minimum mode

Figure 4-3 z/OS UNIX running in minimum mode

Using minimum mode
Minimum mode is intended for installations that do not intend to use z/OS UNIX System
Services, but which allow the IPL process to complete. In this mode many services are
available to programs. Some that require further customization, such as a fork(), will fail.

If you do not specify OMVS= in the IEASYSxx PARMLIB member or if you specify
OMVS=DEFAULT, then kernel services start up in minimum mode when the system is IPLed.
This mode is intended for installations that do not plan to use the kernel services. In minimum
mode:

� Many services are available, but some functions such as TCP/IP sockets that require
other system customization may not work.

� TCP/IP sockets (AF_INET) are not available.

� A temporary file system (TFS) is used. A TFS is an in-storage file system, hence no
physical DASD data set needs to exist or be mounted.

A temporary file system (kept in memory) is created for the root. The required directories
(/bin, /etc, /tmp, /dev, and /dev/null) are built. There are no executables in this file system.

z/OS UNIX Address SpacesSYS1.PARMLIB

OMVS=DEFAULT

SYS1.PROCLIB

O
M
V
S

B
P
X
O
I
N
I
T

TFS

. . .

PID=1IEASYSxx

BPXPRM00

OMVS
BPXOINIT

In Storage

HFS
88 ABCs of z/OS System Programming Volume 9

4.4 Minimum mode: TFS

Figure 4-4 The TFS in minimum mode

TFS in minimum mode
A temporary file system is an in-memory file system which delivers high-speed I/O. If the
kernel is started in minimum setup mode, the TFS is automatically mounted. The system is in
minimum mode when:

� OMVS=Default
� There is no OMVS Statement in IEASYSxx (no BPXPRMxx member in the PARMLIB)

A temporary file system is used as the root file system. The temporary file system is initialized
and primed with a minimum set of files and directories, specifically the following:

/ (root directory)
 /bin directory
 /etc directory
 /tmp directory
 /dev directory
 /dev/null file

Note: Any data written to this file system is not written to DASD.

Root-HFS

Minimum mode

/

bin etc tmp dev
Chapter 4. UNIX System Services installation 89

There are no executables in the temporary file system (that is, you will not find the Shell and
Utilities). Do not attempt to install z/OS UNIX System Services Application Services in the
TFS, since no data will be written to DASD. Because the TFS is a temporary file system,
unmounting it causes all data stored in the file system to be discarded. If, after an unmount,
you mount another TFS, that file system has only a dot (.) and a dot-dot (..) and nothing else.
90 ABCs of z/OS System Programming Volume 9

4.5 z/OS UNIX full-function mode

Figure 4-5 z/OS UNIX full function mode

Using full-function mode
Full-function mode is started at IPL time when the OMVS parameter in the IEASYSxx
PARMLIB member points to one or more BPXPRMxx PARMLIB members.

There must be a root HFS built and defined in BPXPRMxx for OMVS to initialize correctly,
and SMS, WLM, and RACF customization should be completed.

BPXPRMnn
STARTUP_PROC is a 1 to 8 character name of a started procedure JCL that initializes the
z/OS UNIX kernel. The default is OMVS.

The ROOT statement defines and mounts the root file system. In this example:

� HFS is the TYPE of the file system.
� OMVS.ROOT is the file system, which is the name of an already defined HFS data set.
� The root file system has a default of read/write mode.

If an active BPXPRMxx PARMLIB member specifies FILESYTYPE TYPE(HFS), or FILESYSTYPE
TYPE(ZFS), then the kernel services start up in full-function mode when the system is IPLed.
To use the full function, you need to:

� Set up BPXPRMxx PARMLIB definitions
� Set up DFSMS
� Set up the hierarchical file systems

SYS1.PARMLIB

OMVS=00

O
M
V
S

B
P
X
O
I
N
I
T(Kernel)

PID=1IEASYSxx

BPXPRM00

SYS1.PROCLIB

OMVS
BPXOINIT

BPXAS

STARTUP_PROC=OMVS
...
...
ROOT FILESYSTEM('OMVS.ROOT')
 TYPE(HFS)

F F
F F F

 /

OMVS.ROOTOMVS.ROOT

HFS

zFS

z/OS UNIX Address Spaces

BPXAS
Chapter 4. UNIX System Services installation 91

� Set up the security product definitions for z/OS UNIX
� Set up the users' access and their individual file systems

DFSMS manages the HFS data sets that contain the file systems. zFS data sets are VSAM
linear data sets defined in aggregates.

BPXOINIT address space
BPXOINIT is the started procedure that runs the initialization process. BPXOINIT is also the
jobname of the initialization process. BPXOINIT is shipped in SYS1.PROCLIB.

At system IPL time, kernel services are started automatically. If the OMVS parameter in the
IEASYSxx PARMLIB parameter is not specified, the kernel services are started in minimum
mode. If the OMVS parameter specifies one or more BPXPRMxx PARMLIB members, they
are all used to configure the kernel services when the system is IPLed.

The BPXOINIT address space has two categories of functions:

1. It behaves as PID(1) of a typical UNIX system. This is the parent of /etc/rc, and it inherits
orphaned children so that their processes get cleaned up using normal code in the kernel.
This task is also the parent of any MVS address space that is dubbed and not created by
fork or spawn. Therefore, TSO/E commands, batch jobs, and so forth have a parent PID
of 1.

2. Certain functions that the kernel performs need to be able to make normal kernel calls.
This address space is used for these activities, for example, mmap() and user ID alias
processing.

Note: APAR OW35441 now gives you the ability to allocate PDSE and HFS data sets on
unmanaged (non-SMS) volumes, if running DFSMS 1.4 or DFSMS 1.5.
92 ABCs of z/OS System Programming Volume 9

4.6 z/OS HFS root

Figure 4-6 z/OS UNIX root install using ServerPac

ServerPac jobs
The z/OS ServerPac provides two jobs to complete the installation of the root HFS. They
create a single HFS data set structure that contains the following:

� The root directory

� All z/OS related products placed into the ServerPac order that require UNIX System
Services.

ALLOCDS job
The ALLOCDS job allocates and catalogs your new target system data sets. For z/OS orders,
this job also allocates the couple data sets. Many of these data sets have unique
considerations for serialization, availability, security, backup and recovery. For these
considerations, see the planning and implementation books for the products you are
installing. If you are installing your order on SMS-managed target system volumes, you likely
performed SMS setup work earlier in the installation dialog, such as defining storage classes.

RESTFS job
The restore of the archive file is directed to the Install Directory on the driving system. Earlier
in the installation process, you specified the Install Directory variable (FA00PQ04) during the
Define Installation Variables function of the dialog. By default, the Install Directory is /Service.
This value cannot be blank (the job will fail). If you specified a directory other than /Service,
ensure that the name you use does not exceed 20 characters in length. In a multilevel
directory path, the lowest level from the root is automatically created. Higher directories are

Single HFS structure containing:

Root directory

All z/OS related products

Simplifies installation and management of HFS

Two jobs to complete installation - ServerPac

ALLOCDS - Allocates HFS data sets

RESTFS - Restores the root file system - and -
mounts new root and additional file systems

RESTFS job

Requires submitting user ID to be superuser

BPX.SUPERUSER profile - Effective UID is 0

BPX.FILEATTR.APF - BPX.FILEATTR.PROGCTL
Chapter 4. UNIX System Services installation 93

not created. If your driving system's UNIX file system is mounted read-only, the specified
directory must already exist.

Understand that the target system's UNIX file system will be mounted to the Install directory
during the restore. As a result, the real names of the target system's UNIX file system data
sets must be unique in your environment.

This job mounts the new Root file system, and creates mount points for and mounts the
additional file systems. The BPXPRMFS member of CPAC.PARMLIB is updated to reflect the
file system structure.

The RESTFS job then restores those files into the Root file system.

RESTFS job requirements
The RESTFS job (and corresponding subsystem jobs) previously required the submitting
user ID to have UID(0) set in its OMVS segment. Access to the BPX.SUPERUSER profile in
the FACILITY class would provide the required authority without the need for UID(0). The
ServerPac now sets the effective UID to zero when the user ID has access to
BPX.SUPERUSER. This eliminates the need for the user to have to execute the restore of
the ServerPac to have UID(0) authority.

In addition, regardless of your installation method, the user ID must be permitted read access
to the FACILITY classes BPX.FILEATTR.APF and BPX.FILEATTR.PROGCTL (or
BPX.FILEATTR.* if you choose to use a generic facility for both facility classes).

In order to define these FACILITY classes, you can use the following commands (which are
also provided in SYS1.SAMPLIB):

RDEFINE FACILITY BPX.FILEATTR.APF UACC(NONE)
RDEFINE FACILITY BPX.FILEATTR.PROGCTL UACC(NONE)
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)
PERMIT BPX.FILEATTR.APF CLASS(FACILITY) ID(your_userid) ACCESS(READ)
PERMIT BPX.FILEATTR.PROGCTL CLASS(FACILITY) ID(your_userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

RESTFS is historically the number one source of service calls. To help eliminate some of the
problems, logic checking for common setup problems, new error messages, and more
specific error messages for better diagnosis have been added. RESTFS calls pax and
BPXISETS from within the exec to eliminate bypass checking and job elimination. A new
status message indicator shows progress of the job.

Note: This does not affect the pax utility. You still required UID(0) in order to execute the
pax command outside of the ServerPac processing. This change is for ServerPac process-
ing only.
94 ABCs of z/OS System Programming Volume 9

4.7 zFS with z/OS V1R7

Figure 4-7 zFS as the preferred file system

HFS migration to zFS
In z/OS V1R7, zFS is the preferred file system. Continued use of HFS will be discouraged.
Some effort is needed to migrate data from HFS file systems to zFS file systems. A migration
tool is implemented in z/OS V1R7 to help with migration as needed.

The HFS physical file system is stabilized and will be removed in a future z/OS release.

Migration tool BPXWH2Z
You can use the ISPF-based tool, BPXWH2Z, to migrate HFS file systems to zFS file
systems. It has a panel interface that enables you to alter the space allocation, placement,
SMS classes, and data set names. With this tool, you can:

� Migrate HFS file systems (both mounted and unmounted) to zFS file systems. If the HFS
being migrated is mounted, the tool automatically unmounts it and then mounts the new
zFS file system on its current mount point.

� Define zFS aggregates by default to be approximately the same size as the HFS. The new
allocation size can also be increased or decreased.

� Have the migration run in a TSO foreground or a UNIX background.

zFS is the preferred file system

HFS may no longer be supported in future releases
and you will have to migrate the remaining HFS file
systems to zFS

Continued use of HFS will be discouraged

Effort is needed to migrate data from HFS file
systems to zFS file systems

 Tools to help with migration are needed

BPXWH2Z tool - ISPF based in z/OS V1R7
Chapter 4. UNIX System Services installation 95

4.8 HFS or zFS data sets

Figure 4-8 Choose between HFS or zFS data sets

ServerPac changes in z/OS V1R5
Beginning with z/OS V1R5, you can type over the Data set type field with the new value, as
follows:

HFS To change a zFS data set to an HFS data set

PDS To change a PDSE data set to a PDS data set (if the PDSE was originally shipped
as a PDS data set)

PDSE To change a PDS data set to a PDSE data set

ZFS To change an HFS data set to a zFS data set

For data sets that are not eligible to be changed, the Data Set Type field is read-only. The
dialog does not, for example, allow you to change your order's PDSE data sets to PDS data
sets, because they contain members that cannot be loaded into a PDS.

CHANGE DSNTYPE command
You can use the CHANGE DSNTYPE command to convert your shipped order's data sets to
a different format:

� PDS data sets to PDSE data sets.
� PDSE data sets to PDS data sets. (This can be done only for data sets that were originally

PDS data sets.)
� HFS data sets to zFS data sets.
� zFS data sets to HFS data sets.

You can choose whether each filesystem is to be an
HFS or a zFS:

On the data set attributes panels

With the new CHange DSNTYPE command

Exception: The root file system must be an HFS

New data set types in the installation dialog:

HFS, zFS, PDS, PDSE, SEQ, and VSAM

>---+--- CHANGE ---+---+--- DSNTYPE ---+---+--- PDS PDSE ---+---<
 | | | | | |
 +--- CH -------+ +--- TYPE ------+ +--- PDSE PDS ---+
 | | | |
 +--- T ---------+ +--- HFS ZFS ----+
 | |
 +--- ZFS HFS ----+
96 ABCs of z/OS System Programming Volume 9

4.9 Set data set type

Figure 4-9 Choose a data set type

ServerPac changes in z/OS V1R5
The dialog provides you with a general-purpose view and change facility for working with
groups of data sets in your configuration. With this facility, you can:

� Display groups of data sets in your configuration by various attributes

� Make changes to all or some of the data sets in a displayed group

� Save lists of groups you display

When you select a data set from a data set list panel through line command A, the panel
shown in Figure 4-9 is displayed. This panel shows the attributes of a specific data set.

You can then choose to make your file systems’ data sets either HFS or zFS.
Chapter 4. UNIX System Services installation 97

4.10 Choosing zFS

Figure 4-10 Selecting zFS as the data set type

ServerPac processing for zFS
Using a zFS in place of an HFS is transparent to applications. The same utilities work for both
(like pax). This support begins with z/OS V1R5.

But there are some differences, including the following:

� An HFS data set is a non-VSAM data set, while a zFS lives in a VSAM Linear Data Set
(LDS).

� zFS data sets must be preformatted with the IOEAGFMT program.

� Because different programs are used by the system to process HFS and zFS files, a
different FILESYSTYPE statement is required in BPXPRMxx.

� To point to the new FILESYSTYPE statement, a different operand is required on MOUNT.

� Additional security system setup is needed to use zFSs.

Note: Additional ECSA is also required to use zFS data sets.

HFS data set vs. VSAM LDS (aggregate) for zFS

zFS aggregate must be preformatted

Different FILESYSTYPEs used in BPXPRMxx

FILESYSTYPE TYPE(ZFS)
ENTRYPOINT(IOEFSCM) ASNAME(ZFS)

Different operands on MOUNT command

Different security system setup

CICS, DB2, and IMS ServerPacs assume that any
necessary zFS setup has been done
98 ABCs of z/OS System Programming Volume 9

4.11 ServerPac changes if using zFS

Figure 4-11 ServerPac changes for zFS support

ServerPac jobs for zFS processing
All zFS data sets must be formatted with IOEAGFMT. A step to format them is added to the
ALLOCDS job when there is a zFS in the configuration. This support begins with z/OS V1R5.

The RACF setup for zFS is done unconditionally, on the assumption that, sooner or later, you
will want to use zFS.

RESTFS job
The RESTFS job adds a FILESYSTYPE statement for zFS to BPXPRMFS if needed. It is not
added unconditionally because there is a significant amount of free ECSA required to start
the zFS address space.

Before using a zFS, you should review your virtual storage map and make sure there is at
least 70 MB of ECSA available in addition to the ECSA normally required to run your system.

To determine the amount of available ECSA, you can use an RMF Virtual Storage Report that
covers your peak workload periods (vastly preferred!) or format the GDA control block in
IPCS and subtract GDA_ECSA_ALLOC from GDAECSAS to see how much ECSA is free at
that particular time (and guess at the likely variations).

ALLOCDS job formats zFS data sets you define

RACFDRV and RACFTGT Jobs in z/OS orders:

Add group for DFS setup

Add user ID for ZFS address space

RESTFS Job:

Uses appropriate TYPE on MOUNT commands
depending on filesystem type

Puts appropriate TYPE on MOUNT parameters in
BPXPRMFS

Add FILESYSTYPE for zFS to BPXPRMFS if needed
Chapter 4. UNIX System Services installation 99

4.12 UNIX utilities: TSO/E commands

Figure 4-12 TSO/E OGET and OPUT commands

TSO commands and utilities
You can use the OGET command to copy a z/OS UNIX system file to the following:

� A member of an MVS partitioned data set (PDS or PDSE)

� An MVS sequential data set

� You can convert the data from code page 1047 to code page IBM-037 or ASCII while it is
being copied. Do not use the CONVERT option when copying files that contain doublebyte
data. This option is used for singlebyte data only, not for doublebyte data.

You can use the OPUT command to:

� Copy a member of an MVS partitioned data set (PDS or PDSE) to a file.

� Copy an MVS sequential data set to a file.

� You can also convert the data from code page IBM-037 or ASCII to code page IBM-1047.

pathname
Specifies the pathname of the file that is being copied to a data set. This operand is required.
The pathname is:

� A relative or absolute pathname. A relative pathname is relative to the working directory of
the TSO/E session (usually the HOME directory). Therefore, you should usually specify an
absolute pathname.

� Up to 1023 characters long and enclosed in single quotes.

Copy to/from MVS data sets

OGET / OPUT

OPUT mvs_data_set_name{(member_name)} 'pathname'
 {TEXT | BINARY} {CONVERT(character_conversion_table) | YES | NO}

OGET 'pathname' mvs_data_set_name{(member_name)}
 {TEXT | BINARY} {CONVERT(character_conversion_table) | YES | NO}

HFS Files

HFS Files

File
System

Root
Directory

MVS
Data Set

OGET / OPUT
MVS

Data Set

MVS
Data Set

HFS Files

MVS
Data Set
100 ABCs of z/OS System Programming Volume 9

� In uppercase or lowercase characters, which are not changed by the system.

mvs_data_set_name | mvs_data_set_name(member_name)
Specifies the name of an MVS sequential data set or an MVS partitioned data set member to
receive the file that is being copied. One of these two operands is required. The data set
name is:

� A fully qualified name that is enclosed in single quotes, or an unqualified name

� Up to 44 characters long and is converted to uppercase letters by the system

BINARY | TEXT
Specifies whether the file being copied contains binary data or text.

� BINARY

Specifies that the file being copied contains binary data. When you specify BINARY,
OGET operates without any consideration for <newline> characters or the special
characteristics of DBCS data. For example, doublebyte characters might be split between
MVS data set records, or a "shift-out" state might span records.

� TEXT

Specifies that the file being copied contains text. This is the default. If you are using a
DBCS-supported terminal, you should use TEXT. It is assumed that doublebyte data in
the file system includes the <newline> character in order to delineate line boundaries.
Data within these lines that are delineated by <newline> characters must begin and end in
the "shift-in" state.
Chapter 4. UNIX System Services installation 101

4.13 UNIX commands to move and copy data

Figure 4-13 Commands to move and copy data

UNIX commands for copy and move
You can use cp and mv UNIX commands to copy or move files to and from MVS data sets. If
you specify more than one file to be copied, the target (last pathname on the command line)
must be either a directory or a partitioned data set. If the target is an MVS partitioned data
set, the source cannot be a UNIX directory.

The cp and mv commands
You can copy and move:

� One file to another file in the working directory

� One file to a new file on another directory

� A set of directories and files to another place in your file system

� A UNIX file to an MVS data set

� An MVS data set to a file system

� An MVS data set to an MVS data set

To cp or mv to a PDS or PDSE, the data set must be allocated before the copy or move. You
may not cp/mv a partitioned data set to another partitioned data set and you may not cp/mv a
directory to a partitioned data set (you may use dir /* to accomplish copying/moving all files
from the directory to a partitioned data set).

cp (copy) / mv (move) Commands

 copy / move between:
 UNIX file <=> MVS seq ds
 UNIX files <=> MVS PDS or PDSE members
 MVS PDS or PDSE => UNIX dir
 MVS PDS or PDSE member => MVS PDS or PDSE
 MVS seq => MVS seq

 cp/mv can create an MVS sequential data set

HFS Files

HFS Files

File
System

Root
Directory

 MVS
PDS Data

Set

 MVS
PDSE

Data Set

 cp / mvMVS
seq Data

Set

HFS Files
102 ABCs of z/OS System Programming Volume 9

4.14 The pax and tar utilities

Figure 4-14 pax and tar utilities

Read and write files with the pax utility
Use pax to read, write and list archive files. An archive file is a single file containing one or
more files and directories. Archive files can be HFS files or MVS data sets. A file stored inside
an archive is called a component file; similarly, a directory stored inside an archive is called a
component directory.

You can therefore use a single archive file to transfer a directory structure from one machine
to another, or to back up or restore groups of files and directories.

Archives created by pax are interchangeable with those created with the tar utility. Both
utilities can read and create archives in the default format of the other (USTAR for pax and
TAR for tar). Archives are generally named with suffixes such as .pax or .tar (or pax.Z and
tar.Z for compressed files), but this is not required.

Note: MVS data sets cannot be specified for component files. Included with each
component file and directory is recorded information such as owner and group name,
permission bits, file attributes, and modification time.

Used to back up and restore files

Example to back up a complete directory (OMVS shell)

pax -wf archive_file directory_name
pax -wf /u/sysprog/source.pax /u/sysprog/source
tso ''OGET 'archive_file' 'DATA_SET_NAME' BINARY''
tso ''oget '/u/sysprog/source.pax' 'SYSPROG.PAX' binary''

pax and tar support for MVS data sets

When creating portable archives or extracting files

Archives can be MVS sequential or partitioned data sets

MVS data set are only supported as the archive file
pax -wf "//'user.lib(archive)'" *
pax -rf "//'user.lib(archive)'"
Chapter 4. UNIX System Services installation 103

The pax utility
The pax utility can read and write files in CPIO ASCII format, CPIO binary format, TAR format,
or USTAR format. It can read files that were written using tar, cpio, or pax itself. How it
handles filename length and preservation of link information across the backup and restore
process depends on the format you select: If you select CPIO, it behaves like the cpio
command; and if you select TAR, it behaves like the tar command.

Figure 4-14 shows a pax example to back up a complete directory, including the
subdirectories and their contents, into a data set.

In the example:

directory_name The name of the directory you want to archive
archive_file An absolute pathname
DATA_SET_NAME A fully qualified data set name

The pax command
The pax command creates an archive file with the specified name in the current working
directory.

For the pax command:

� The -w option writes to the archive file.

� The -f option lets you specify the name of the archive file.

The OGET command copies the archive file into the specified MVS data set.

Reading archive files
The pax and tar utilities can read an archive file directly from an MVS data set. Use the pax or
tar shell command to restore the directory or file system from the archive file; all the
component files are restored from the archive file.

pax and tar package HFS directory trees into a single file called an “archive.” Archives are
always treated as binary.

Only partitioned data sets in undefined format may store an executable.

Archives can be moved to other systems or directories.

“Extracting files” means moving files from the archive into HFS files. This avoids OPUT of
archives from MVS data sets to UNIX, and OGET of archives from UNIX to MVS data sets.

Note: When writing to a PDS member, the PDS must already exist; pax will automatically
overwrite an existing archive.
104 ABCs of z/OS System Programming Volume 9

4.15 New pax functions in z/OS V1R7

Figure 4-15 pax functions in z/OS V1R7

pax functional changes
pax was selected as the utility for data movement for the migration tool since it is a
well-established utility and there is currently a support structure in place for it. The changes
were made to pax in copy mode for V1R7.

All functions and options from previous levels of pax are still valid at this level.

All automated scripts that use pax at the previous level still work without errors.

Any archives created with previous levels of pax can be extracted by the new version without
problems. The new default behavior of pax is to copy files as sparse files.

Option flags
There are new option flags in this new release of pax. If scripts or commands that use these
new options are run on an older level of pax, then pax will fail with a usage message.

All function and options from previous levels of pax
are still valid at this level

All automated scripts which use pax at the previous
level still work without errors

Any archives created with previous levels of pax can
be extracted by the new version without problems

New option flags for pax

New options on an older level of pax will fail with a
usage message
Chapter 4. UNIX System Services installation 105

4.16 pax migration support and function

Figure 4-16 New pax functions in z/OS V1R7

pax functions and migration support
pax creates empty directories within the target directory tree for each active mountpoint
encountered within the source directory tree.

pax preserves all file attributes from the source to the target of the copy, including
user-requested audit attributes and auditor-requested audit attributes. Preserving all file
attributes of copied files avoids having to manually set desired attributes that may not have
been preserved previously.

pax was selected as the utility for data movement for the migration tool since it is a
well-established utility and there is currently a support structure in place for it.

Sparse files
Sparse files are files with embedded null data. Instead of allocating disk space for the null
data, an offset pointer is used by the file system. This mechanism allows the system to
conserve on disk allocations and speeds up read operations. When pax copies files and there
are blocks of data > 4k (page-aligned) containing only binary zeros, then those sections do
not actually get written to disk.

Read errors
After encountering a read error on the source file system, pax now continues to read the file.
This support allows for some corrupted file systems to be able to salvage some files. pax
prints an error message and returns a non-zero value.

pax changes support the HFS to zFS migration tool:

Create mountpoint directories

Copy all attributes from the source root to the target of
the copy after the copy is complete

pax selected as the utility for migration tool since it is a
well established utility

Sparse files are those which do not use real disk
storage for pages of file data that contain only zeros

Copying files as sparse saves disk space

The ability to skip read errors may allow installations
to salvage some files from corrupted file systems
106 ABCs of z/OS System Programming Volume 9

4.17 ServerPac z/OS UNIX installation

Figure 4-17 ServerPac flow for z/OS UNIX installation

Installing the root file system
For a full configuration you need to build a complete root file system.

ServerPac supplies the jobs, ALLOCDS and RESTORE, to download the PDS from tape to
DASD. The other job, RESTFS uses the pax utility to restore the HFS file systems.

After running these jobs you have a complete root file system containing all the root-level
directories, files, and programs.

ServerPac builds the root for you with all the features that you ordered already installed in it.
They use the UNIX pax utility to compress the hierarchical format into an HFS file. It is
distributed to you as a member of hlq.HFSFILE:

hlq.HFSFILE(BACKUP) Backup of Root File System

In addition to reading and writing archive files (which concatenate the contents of files and
directories), pax can record file modification information such as dates, owner names, and so
on. You can therefore use a single archive file to transfer a directory structure from one
machine to another, or to back up or restore groups of files and directories.

(1) ALLOCDS
The ServerPac job ALLOCDS performs the following tasks for you:

� Creates ROOT HFS

ALLOCDS +
RESTORE

RESTFS

CPAC.HFSFILE
ROOT
ETC, VAR

(1).

(2).

//STEP1 EXEC PGM=IKJEFT1B,COND=(4000,LT)
//SYSEXEC DD DSN=SERVILS1.SCPPCENU,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 %CPPEHFS RESTFS +
 /SERVILS1_Z16 +
 "//'T5Z14.CPAC.HFSFILE(BACKUP)'" +
 OMVS.TCx.TRNRSx.ROOT.HFS +
 OMVS.TCx.ETC +
 OMVS.TCx.VAR +
/*

OMVS.TCx.TRNRSx.ROOT.HFS

/service

OMVS.TCx.ETC
OMVS.TCx.VAR

VAR TMP DEV ETCBINSAMPLES LIB USR OPT U

(3). Update CPAC.PARMLIB(BPXPRMFS)
Chapter 4. UNIX System Services installation 107

� Creates ETC HFS

� Creates the following directories:

VAR - HFS

(2) RESTFS job
The next job to run is RESTFS. This job does the following tasks for you:

� Allocates STDIN, STDOUT and STDERR files (UNIX standard outputs). An RC=4 is
received if the directory is empty.

� Creates /SERVICE directory.

� Calls pax to restore the ROOT HFS.

� Mounts the created ROOT HFS to /SERVICE.

� Mounts the created ETC to /etc and mounts the var data sets.

(3) Update PARMLIB
The installation process RESTFS job updates the CPAC.PARMLIB member as follows:

� Updates the BPXPRMFS with the MOUNT FILESYSTYPE section.

� Updates the BPXPRMFS with the FILESYSTYPE TYPE(....) and the corresponding entry
point.

Note: In z/OS V1R6, the RESTFS job has been combined with the RESTORE job, which
restores the pax archive for the USS file system data sets directly from tape.
108 ABCs of z/OS System Programming Volume 9

4.18 Non-volatile root file system

Figure 4-18 Managing the root file system

Managing the root file system
Extra planning should be done to keep file activity out of the root file system. This will protect
the root and make future migration to new system levels easier.

Installation customized files (such as profiles in /etc) should be kept in their own HFS. This
will protect these files from being overlaid by a future system replace.

Only file systems that are mounted in read-only mode can be shared between multiple
system images. However, IBM no longer recommends mounting the root file system in
read-only mode since it will cause customization problems and incorrect setup.

z/OS is built on a system replace basis. As new levels come out, all systems data sets,
including the root HFS, will be replaced. Therefore, make a plan to get all of your tailored files
out of the root and into their own HFS. Then when the system is replaced, you will only have
to do minimal revising of your profiles and other user-oriented files and remount their HFSs to
the new root. Keeping changes out of the root will make future changes much easier to
manage.

Root-HFS

bin dev etc usr

/

lib

ptyp fd0 null

OMVS.<SYSNAME>.
DEV.HFS

OMVS.<SYSNAME>.
ETC.HFS

tmp u

joe jane

OMVS.<SYSNAME>.
USERS.HFS

TFS

(or Automount)

var

OMVS.<SYSNAME>.
VAR.HFS
Chapter 4. UNIX System Services installation 109

4.19 Installation of other products

Figure 4-19 Installing products that are not part of the ServerPac

Installation of products off the root
When installing products that are not part of the ServerPac order and that install into the HFS,
consider the following:

� Create new directories where the files associated with the new products will be installed.

� If possible, create a new HFS data set and mount it to the new directory. After installation
of the product, all the files will reside in the new HFS data set.

� IBM has created the /usr/lpp directory and each product that puts files in the HFS structure
creates a directory in lpp and then creates and mounts its own HFS at that mount point.

� Keeping new products in different HFS data sets offers better file system management
while maintaining a more stable root file system. This also ensures easier maintenance
when applying service.

Figure 4-19 shows the IBM convention for managing IBM products. Directory /usr/lpp is built
during the build of the root. As products (such as DCE or ICS) are built, they will create a
directory in /usr/lpp and then will mount an HFS to that directory. All the product files will then
be installed in a separate file system. Since the main installation vehicle for z/OS is system
replace, all these directories are built in root as it is built. System replace should include these
products.

bin dev etcu usr

/

tmp lib

Root-HFS

lpp

Tivoli

Tivoli
 files

WebSphere
 files

WebSphere

FW
files

fw

Note: Keep Products separate until ServerPac supports those products
110 ABCs of z/OS System Programming Volume 9

4.20 UNIX System Services installation

Figure 4-20 Display of root file system

Command to display the root
Before we update the provided JCL we should check how the TFS was named. It should be
equal to the name we used in our first step, where we requested an unmount for the TFS.

You can get the information using the D OMVS,F command.

This command provides the following output:

� BPXTFS NAME=ROOT
� PATH = /
� UNIX Service is ACTIVE
� HFS is in Read/Write (RDWR) Mode

The TFS is used to get UNIX System Service up and running during IPL. Since OS/390 V2R3
it is no longer possible to start and stop UNIX System Services from OMVS.

Using the D OMVS,F command shows the mounted file systems; this can also be done by
using the UNIX ISHELL.

BPXO044I 15.23.48 DISPLAY OMVS 971
OMVS 000E ACTIVE OMVS=00
TYPENAME DEVICE ----------STATUS----------- MODE QJOBNAME QPID
BPXTFS 1 ACTIVE RDWR
 NAME=ROOT
 PATH=/

/Display
OMVS,F
Chapter 4. UNIX System Services installation 111

112 ABCs of z/OS System Programming Volume 9

Chapter 5. z/OS UNIX shell and utilities

This chapter provides information on how to invoke, customize, and use the z/OS UNIX shell
and utilities. It includes details on the following topics:

� A brief overview about the z/OS UNIX shell

� How to invoke the shell using different methods

� Creating the required resources for the shell

� Setting up code page translation for the shell

� Shell environment variables

� Global variables

� How to pick up the region size when invoking the shell

� Where and how to set up the time zone variable

� Customizing the c89/cc compiler

� Installing books for OHELP

5

© Copyright IBM Corp. 2006, 2008. All rights reserved. 113

5.1 The z/OS UNIX shell

Figure 5-1 Overview of the z/OS UNIX shell

z/OS UNIX shell
The z/OS UNIX shell can be compared to TSO/E for z/OS. It is the interactive interface to
z/OS UNIX. The shell feature comes with multiple commands and utilities which are in most
cases the same as the ones that come with a UNIX system. The z/OS UNIX shell is based on
the UNIX System V shell with some of the features from the Korn shell. The z/OS UNIX shell
conforms to the POSIX 1003.2 standard and to the XPG4 standard.

POSIX 1003.2 distinguishes between a command (a directive to the shell to perform a
specific task) and a utility (a program callable by name from the shell). To the end user there
is no difference between a command and a utility. For the purpose of this discussion,
command refers to both commands and utilities.

The shell is a command processor that can be used to:

� Invoke shell commands or utilities that request services from the system.
� Write shell scripts using the shell programming language.
� Run shell scripts, REXX EXECS, and C-language programs interactively, in the

background, or in batch.

Shell commands are typically short, and they can be combined in pipes, or in shell scripts.
Once a shell command begins executing it has access to three files:

stdin: standard input Default is the keyboard.
stdout: standard output Default is the screen.
stderr: standard error Default is the screen.

HFS

Shell users z/OS UNIX shell

Hierarchical
file system

stdin
stdout

stderr

Shell c
ommand

s

and
 utili

tie
s

114 ABCs of z/OS System Programming Volume 9

5.2 Input, output, errors with UNIX shell

Figure 5-2 Files that a user has access to in a shell session

Files used by a shell session
z/OS C/C++ programs require that stdin, stdout, and stderr be defined as either a file or a
terminal. Many C functions use stdin, stdout, and stderr. However, it depends on how the
application is coded whether or not it writes to stderr and stdout.

Shell command access to files
When a shell command begins running, it has access to three files:

� It reads from its standard input file. By default, standard input is the keyboard.

� It writes to its standard output file.

– If you invoke a shell command from the shell, a C program, or a REXX program
invoked from TSO READY, standard output is directed to your terminal screen by
default.

– If you invoke a shell command, REXX program, or C program from the ISPF shell,
standard output cannot be directed to your terminal screen. You can specify an HFS
file or use the default, a temporary file.

� It writes error messages to its standard error file.

– If you invoke a shell command from the shell or from a C program or from a REXX
program invoked from TSO READY, standard error is directed to your terminal screen
by default.

Executing commands, REXX or C programs - user has

access to three files:

Input file - This is the input keyboard

Output file - Terminal screen by default

Or, you can specify an HFS file

Error file - Terminal screen for error messages

Or, you can specify an HFS file

File names:

Input - stdin

Output - stdout

Error - stderr
Chapter 5. z/OS UNIX shell and utilities 115

– If you invoke a shell command, REXX program, or C program from the ISPF shell,
standard error cannot be directed to your terminal screen. You can specify an HFS file
or use the default, a temporary file.

If the standard output or standard error file contains any data when the command
completes, the file is displayed for you to browse.

Shell file names
In the shell, the names for these files are:

� stdin for the standard input file

� stdout for the standard output file

� stderr for the standard error file
116 ABCs of z/OS System Programming Volume 9

5.3 Accessing the z/OS UNIX shell

Figure 5-3 Files used when accessing the z/OS UNIX shell

Pseudoterminal files
Certain shell commands, such as mesg, talk, and write require pseudoterminals to have a
group name of TTY. When a user logs in, or issues the OMVS command from TSO/E, the
group name associated with these terminals is changed to TTY. As part of the installation,
you had to define the group TTY or use the group alias support as a GROUP ID in the
security data base, as shown in the following example:

ADDGROUP TTY (OMVS(GID(2))

Pseudo-TTYs
Pseudoterminals (pseudo-TTYs) are used by users and applications to gain access to the
shell. A pseudo_TTY is a pair of character special files, a master file and a corresponding
slave file. The master file is used by a networking application such as OMVS or rlogin. The
corresponding slave file is used by the shell or the user's process to read and write terminal
data. The convention for the names of the pseudo-TTY pair is:

/dev/ptypNNNN for the master (major 1)
/dev/ttypNNNN for the slave (major 2)

NNNN is between 0000 and one less than the MAXPTYS value in the BPXPRMxx
PARMLIB member.

When a user enters the TSO/E OMVS command to initialize a shell, the system selects an
available pair of these files. The pair represents the connection. The maximum number of
pairs is 10000. You can specify an appropriate number of pairs in the MAXPTYS parameter.

Pseudoterminal files - (pseudo-TTYs)

Used by users and applications to gain access to the shell

Pair of character special files - (master and slave)

Master - Used by OMVS and rlogin

Slave - Used by the shell to read and write terminal data

Naming convention:

Master - /dev/ptypNNNN

Slave - /dev/ttypNNNN

NNNN - (0000 to MAXPTYS value -1)
Chapter 5. z/OS UNIX shell and utilities 117

5.4 Controlling session resources

Figure 5-4 Pseudo-TTY files used by shell users

Shell user files
Pseudo-TTY files are dynamically created by the system when they are first referenced. You
can add pseudo-TTYs with the MKNOD TSO/E commands, as shown in the figure, or with
mknod shell commands. You can also use the ISPF shell to perform these functions.

When using an MKNOD command, make:

� The major number 1 for the master and 2 for the slave
� The minor number the same as the NNNN

The commands can be in a CLIST or REXX exec, or they can be entered directly in a TSO/E
session or a shell session.

MAXPTYS statement in BPXPRMxx member
The MAXPTYS statement specifies the maximum number of pseudo-TTY sessions that can
be active at the same time. The range is 1 to 10000; the default and the value in BPXPRMXX
is 256.

MAXPTYS lets you manage the number of interactive shell sessions. When you specify this
value, each interactive session requires one pseudo-TTY pair. You should avoid specifying
an arbitrarily high value for MAXPTYS. However, because each interactive user may have
more than one session, it is recommended that you allow four pseudo-TTY pairs for each
user (MAXIUDS * 4). The MAXPTYS value influences the number of pseudo-TTY pairs that
can be defined in the file system.

/dev/ptypNNNN /dev/ttypNNNN

/dev/ptyp0015 /dev/ttyp0015

major: 1
minor: 15
perm: 666

major: 2
minor: 15
perm: 666

max-1

MKNOD '/dev/ptyp0015' major(1) minor(15) mode(6 6 6)
MKNOD '/dev/ttyp0015' major(2) minor(15) mode (6 6 6)

Master Slave

Pseudo-TTY
MAXPTYS=256

BPXPRMxx
118 ABCs of z/OS System Programming Volume 9

5.5 Dynamic /dev

Figure 5-5 Dynamic /dev definitions

Files created dynamically at IPL
The null file, /dev/null, (major 4) is analogous to an MVS DUMMY data set. Data written to this
file is discarded. The standard null file, named /dev/null, is created the first time the system is
IPLed, or when referenced, if it does not exist already.

The /dev/console (major 9) file is sent to the console and displayed using a write-to-operator
(WTO) within message BPXF024I. This message also contains the user ID of the process
that wrote to the console.

The default controlling terminal can be accessed through the /dev/tty special file (major 3).

The zero file, /dev/zero (major 4, minor 1), is similar to /dev/null in that data written to this file
is discarded, but when the file is read from, it provides an inexhaustible supply of binary
zeros.

The random number files, /dev/random and /dev/urandom (major 4, minor 2) provide
cryptographically secure random output that was generated from the cryptographic hardware
available on zSeries. The foundation of this random number generation is a time-variant input
with a very low probability of recycling. In order to use these device files, Integrated
Cryptographic Service Facility (ICSF) must be started, and a Cryptographic Coprocessor
feature may be required, depending on the model of the zSeries server.

IPL
/dev/null - A null file
/dev/console - The Console (WTO) File
/dev/tty - The Controlling Terminal File
/dev/zero - Contains binary zeros

First
referenced

/dev/ptypNNNN - pseudo-TTY Master
/dev/ttypNNNN - pseudo-TTY Slave
/dev/fnN...N - File Descriptor Files (c89)
/dev/random - /dev/urandom - ISCF must be started

Master Slave

Pseudo-TTY

MAXPTYS=256

BPXPRMxx
Chapter 5. z/OS UNIX shell and utilities 119

5.6 Invoking the shell via TSO/E

Figure 5-6 Invoking the shell from TSO/E or from a remote workstation

Accessing the shell
There are several ways that you can access the z/OS UNIX shells:

� The TSO/E OMVS command, which provides a 3270 interface

� The rlogin command, which provides an ASCII interface

� The telnet command, which provides an ASCII interface

OMVS shell
One of the methods to access the shell is by logging on to TSO/E and issuing the command
OMVS. When accessing the shell from TSO/E, the users can jump back and forth between
the shell and TSO/E. It is also possible to issue TSO/E commands from the shell.

The OMVS TSO/E command, together with the pseudo-TTY function, maps and transforms
the 3270-oriented TSO/E terminal interface and user externals to the POSIX 1003.1 defined
terminal interface expected by the POSIX 1003.2 conforming shell.

When you use the OMVS command to get into the z/OS UNIX shell, you can use ISPF to edit
(OEDIT) and browse (OBROWSE) HFS files. You can switch between the shell and TSO
session. You can have multiple shell sessions at the same time and toggle between the
sessions using PF keys.

The shell process can run in the same address space as the user's TSO/E session.

 SNA

TSO/E z/OS UNIX

ACF/VTAM TCP/IP
TN3270 Pseudo-TTY

Master Slave

shell

 TCP/IP

OMVS
cmd
120 ABCs of z/OS System Programming Volume 9

Network shell connections
The network connection to the shell via TSO/E can be either VTAM or TCP/IP. This includes:

� Real and emulated 3270 terminals in an SNA network.

� UNIX systems and other workstations that in a TCP/IP network support the Telnet 3270
(TN3270) client function. The TN3270 client communicates with the Telnet server (TN-S)
in TCP/IP on z/OS.

Pseudo-terminals
Pseudo-terminals are defined as a pair of character special files, one file designated as the
master, and one file as the slave. The pseudo-TTY master process is traditionally a network
server application; in z/OS UNIX the TSO/E command processor is the server application.
The pseudo-TTY slave process is the user shell process.

The pseudo-TTY function resides in the z/OS UNIX kernel and consists of a master pty and a
slave pty. The master pty is used by the networking application (z/OS UNIX) to communicate
with the user applications, for example the shell. The slave pty is used by the shell process
and associated applications. The TSO/E session reads and writes to the master, and the
shell process reads and writes to the slave.
Chapter 5. z/OS UNIX shell and utilities 121

5.7 Invoking the shell via rlogin or telnet

Figure 5-7 Invoking the shell from a rlogin or telnet

Accessing the shell from a remote terminal
A z/OS UNIX user can log in directly to the z/OS UNIX shell in either of the following ways:

rlogin If the inetd daemon is set up and active on the z/OS system, a workstation user with
rlogin client support can use the TCP/IP network to log into the shell without going
through TSO/E.

telnet Telnet support comes with the z/OS CS. It also uses the inetd daemon, which must
be active and set up to recognize and receive the incoming telnet requests. You
can telnet to the shell from a workstation that is connected via TCP/IP or
Communications Server to the MVS system. Use the telnet command syntax
supported at your site.

ssh ssh (Secure Shell) is a program to log into another computer over a network, to
execute commands in a remote machine, and to move files from one machine to
another. It provides strong authentication and secure communications over
unsecure channels. It is intended as a replacement for rlogin, rsh, and rcp.
Additionally, ssh provides secure X connections and secure forwarding of arbitrary
TCP connections.

The advantage of ssh over Kerberos is that ssh does not require a central database
of users, and users can use their regular password. However, ssh and Kerberos
can safely coexist.

TCP/IP

ptypnnnn ttypnnnn

513 23

inetd rlogind
otelnetd

shell

rlogincrloginc telnetctelnetc

22

sshssh

sshd

shell
122 ABCs of z/OS System Programming Volume 9

z/OS OMVS shell
A z/OS system provides asynchronous terminal support for the z/OS UNIX shell. This is
different from the 3270 terminal support provided by the TSO/E OMVS command. In a UNIX
system, the UNIX shell operates in non-canonical mode (often called raw mode). This means
that each keystroke is transmitted from the terminal to the system. Several UNIX applications,
among them a popular editor called vi, depend on raw mode support. Using the 3270-terminal
interface for the z/OS UNIX shell meant that UNIX applications depending upon raw mode
support could not be ported to z/OS.

Figure 5-7 shows an overview of the two methods for logging in directly to the shell. Directly
logging in to the shell is the only way to get raw mode support. Both rlogin and telnet require
the inetd daemon to be set up and active.

Differences between TSO/E and remote terminal
There are some differences between asynchronous terminal support (direct shell login) and
3270 terminal support (OMVS command):

� You cannot switch to TSO/E. However, you can use the TSO shell command to run a
TSO/E command from your shell session.

� You cannot use the ISPF editor (this includes the oedit and TSO/E OEDIT commands,
which invoke ISPF edit).

Note: The asynchronous interface does not automatically put you in raw mode. The
terminal is set to operate in line mode, and only when using a utility that requires raw mode
will it be changed.
Chapter 5. z/OS UNIX shell and utilities 123

5.8 rlogin and telnet access

Figure 5-8 rlogin and telnet access to the shell

Entering the shell from a remote terminal
The client user issues a telnet or rlogin command in the syntax of the system they are
logged on to. TCP/IP must be set up on both systems to recognize the appropriate system
names and ports.

The inetd daemon provides service management for a network. For example, it starts the
rlogind program whenever there is a remote login request from a workstation.

The rlogind program is the server for the remote login command rlogin commonly found on
UNIX systems. It validates the remote login request and verifies the password of the target
user. It starts a z/OS shell for the user and handles translation between ASCII and EBCDIC
code pages as data flows between the workstation and the shell.

INETD daemon configuration file
When inetd is running and receives a request for a connection, it processes that request for
the program associated with that socket. For example, if a user tries to log in from a remote
system into the z/OS shell while inetd is running, inetd processes the request for connection
and then issues a fork() and execl() to the rlogin program to process the rlogin request. It then
goes back to monitoring for further requests for those applications that can be found as
defined in the /etc/inetd.conf file as follows:

login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -lm

TCP/IP

INETD

login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -lm

RLOGIND
shell

OTELNETD
shell

/etc/inetd.conf

rlogin . .
telnet . . 513

23
124 ABCs of z/OS System Programming Volume 9

Where:

stream stream or dgram. This is the socket_type.

tcp tcp or udp. The protocol is used to further qualify the service name. Both the
service name and the protocol should match an entry in the data set,
/etc/services, which is part of the user's TCP/IP configuration.

nowait wait or nowait. Wait indicates the daemon is single-threaded and another
request will not be serviced until the first one completes. Nowait specifies that the
inetd daemon issues an accept when a connect request is received on a stream
socket. If wait is specified, the inetd daemon does not issue the accept. It is the
responsibility of the server to issue the accept if this is a stream socket.

z/OS UNIX daemons
The rlogin daemon or the telnet daemon is responsible for validating the user, handling
ASCII-to-EBCDIC translation, and invoking the shell.

The presence of the -m option on the command indicates that the shell should start in the
same address space as the daemon. The -l sets default mode for login to line mode.

A pseudo-TTY pair is assigned from the same pool to the shell session. To get multiple shell
sessions the user issues another rlogin or telnet client command.
Chapter 5. z/OS UNIX shell and utilities 125

5.9 Customizing z/OS UNIX initialization

Figure 5-9 Files needed for z/OS UNIX initialization

Files used by z/OS UNIX initialization
The files /etc/init and /usr/sbin/init are referred to synonymously as the initialization program
that is run when the OMVS address space is initialized during the IPL. Copy the file
/samples/init.options to /etc/init.options. At startup, the kernel services attempt to run the
program /etc/init, which is an initialization program created by the user. If that program is not
found, then the kernel services try to run /usr/sbin/init, the default initialization program that is
run when the OMVS address space is initialized. The files are run at IPL.

The /usr/sbin/init and /etc/init programs
The /usr/sbin/init program invokes a shell to execute an initialization shell script that
customizes the environment for z/OS UNIX users. When this shell script finishes or when a
time interval established by /usr/sbin/init expires, kernel services become available for
general batch and interactive use.

Note: You can use a REXX exec in an MVS data set as an alternative to running the
/etc/init initialization program. To activate the REXX exec for initialization, you must specify
its name on the STARTUP_EXEC statement in the BPXPRMxx parmlib member.

/etc is the "SYS1.PARMLIB" for z/OS UNIX

Files to customize - Copy from /samples

/etc/init or /usr/sbin/init

Program that executes an initialization shell script

/etc/init.options

Initialization options file

/etc/rc

Customization commands

Similar to COMMANDxx for z/OS
126 ABCs of z/OS System Programming Volume 9

The /etc/init.options file
Before /usr/sbin/init invokes the shell to execute the system initialization shell script, it reads
the file /etc/init.options for values of various options. The IBM-supplied default is in
/samples/init.options. Copy this file to /etc/init.options and make the appropriate changes. If
you already have /etc/init.options, then compare it to /samples/init.options and retrofit any
new updates.

/etc/init.options can contain up to 25 -e option lines specifying names and values for different
environment variables. /usr/sbin/init passes the resultant environment variable array to the
shell that it invokes. In turn, the shell uses this array to set up an execution environment for
the initialization shell script that is appropriate for the installation. TZ is an example of an
environment variable that should be considered.

The /etc/rc file
You need to copy /samples/rc file to /etc/rc. It contains customization commands for z/OS
UNIX System Services Application Services.
Chapter 5. z/OS UNIX shell and utilities 127

5.10 Initializing z/OS UNIX

Figure 5-10 z/OS UNIX initialization processing

z/OS UNIX initialization
/usr/sbin/init and the customized /etc/init.options and /etc/rc files are run at IPL. There is no
other way to invoke them explicitly. During the IPL, one of the first address spaces to start is
OMVS.

The file /etc/init is referred to as the initialization program that is run when the z/OS UNIX
component is started, even though the /usr/sbin/init file may really be run if no such program
is found. This file contains the default initialization program shipped with the z/OS UNIX shell
and utilities.

BPXOINIT
BPXOINIT is the started procedure that runs the initialization process. BPXOINIT is also the
job name of the initialization process and is shipped in SYS1.PROCLIB. The STEPLIB DD
statement is propagated from OMVS to BPXOINIT. If there is a STEPLIB DD statement in the
BPXOINIT procedure, it is not used if a STEPLIB DD statement was specified in the OMVS
procedure.

The /etc/init program
The /etc/init program invokes a shell to execute an initialization shell script that customizes
the environment for the UNIX kernel. When this shell script finishes or a time interval
established by /etc/init expires, z/OS UNIX becomes available for general batch and
interactive use.

Start init task

Initialize kernel

Initialize all
filesystems

Allocate, open
HFS data sets

Set init.options:

Run rc

/etc/init

/usr/sbin/init

/etc/init.options

/etc/rc

ROOT HFS

SYS1.PROCLIB

OMVS
BPXOINIT

IPL

Start shell /bin/sh
and run "init"

BPXOINITOMVS

Start system
address spaces

or
init

Copy:
/samples/init.options
/samples/rc
 to
/etc/init.options
/etc/rc

PID=1
128 ABCs of z/OS System Programming Volume 9

5.11 Environment variables

Figure 5-11 Environment variables in UNIX systems

Environment variables
Environment variables are global values or settings that determine the default operation of all
shells and are also passed on to application programs. Environment variables contain
information about your working environment. With all UNIX systems, each process has its
own private set of environment variables. By default, when a UNIX process is created it
inherits a duplicate environment of its parent process, except for explicit changes made by
the parent when it creates the child process, for example a fork or exec function. With
different UNIX systems, they do not all use the same variable names. Running programs can
access the values of environment variables for configuration purposes.

The value of an environment variable is a string of characters. For a C-language program, an
array of strings called the environment shall be made available when a process begins. For
z/OS UNIX, environment variables are defined in files in the file structure such as
/etc/init.options, /etc/rc, and /etc/profile.

Environment variable names used by the utilities in the Shell and Utilities volume of IEEE Std
1003.1-2001 consist solely of uppercase letters, digits, and the '_' (underscore) from the
characters defined in Portable Character Set and do not begin with a digit. Other characters
may be permitted by an implementation; processes tolerate the presence of such names.
Uppercase and lowercase letters shall retain their unique identities and shall not be folded
together. The name space of environment variable names containing lowercase letters is
reserved for processes. Processes can define any environment variables with names from
this name space without modifying the behavior of the standard utilities.

All UNIX systems have environment variables

The value of an environment variable is a string of
characters

Each process has its own private set of
environment variables

By default, when a process is created it inherits a
duplicate environment of its parent process

Running programs can access the values of
environment variables for configuration purposes

Shell scripts and batch files use environment
variables to store temporary values for reference
later in the script
Chapter 5. z/OS UNIX shell and utilities 129

5.12 Environment variables

Figure 5-12 Environment variables

Environment variables
When a program begins, an environment is made available to it. The environment consists of
strings of the form name=value, where name is the name associated with the environment
variable, and its value is represented by the characters specified in value. UNIX systems
traditionally pass information to programs through the environment variable mechanism.

SET command
Using the set command without arguments displays the names and values of all shell
variables, sorted by name, in the format Variable="value". An example is:

PWD="/u/rogers"
RANDOM="7322"
SECONDS="2"
SHELL="/bin/sh"
STEPLIB="none"
TERM="dumb"
TZ="EST5EDT,M3.2.0,M11.1.0"

Shell user variables
There are global variables for all shell users and each user can override these variables with
an individual set of variables. You can also change any of the values for the duration of your
session (or until you change them again). You enter the name of the environment variable
and equate it to a new value.

PATH="/usr/lpp/Printsrv/bin:/bin:."
HOME="/u/rogers"
SHELL="/bin/sh"
STEPLIB="none"
TERM="dumb"
TZ="EST5EDT"
_BPXK_SETIBMOPT_TRANSPORT="TCPIPOE"
_BPX_TERMPATH="OMVS"

A name associated with a string of characters made
available to the programs that you run

 Some environment variables used by the shell are

 PATH and TZ

Display variables with SET command
130 ABCs of z/OS System Programming Volume 9

5.13 The /etc/init.options file

Figure 5-13 The /etc/init.options file

Updating the /etc/init.options file
The IBM-supplied default is located in the file /samples/init.options. Copy this file to
/etc/init.options. This file will be used the next time z/OS UNIX is started.

The file /etc/init.options treats all lines in the file that do not start with a hyphen (-) as
comment lines. Lines that start with a hyphen are used to specify options.

The following options can be specified:

-a The maximum time in seconds that /etc/init will wait for the initialization shell script to
complete.

-t Terminate option indicating whether to terminate the script if the timeout occurs.

-sh The pathname of the initializing shell.

-sc The pathname of the initializing shell script.

-e TZ=EST5EDT The time zone environment variable is set to the time for the USA east
coast (five hours east of GMT/UTC). For a detailed description of how to set the time
zone variable, see “Setting up the Time Zone Variable,” in z/OS UNIX System Services
Planning, GA22-7800.

e Environment variable options. The environment variables that are set in this file will only
be valid for the initialization shell. Later figures show how environment variables can be
set for the shell users.

-a 9999 timeout=180 secs (default)

-t 1 terminate shell = yes

-sc /etc/rc shell script = /etc/rc

-e TZ=EST5EDT TZ environment variable

*e LANG=C LANG environment variable

*e NLSPATH=/usr/lib/nls/msg/%L/%N NLSPATH environment variable

*sh /bin/sh shell = /bin/sh

*e PATH=/bin PATH environment variable

*e SHELL=/bin/sh SHELL environment variable

*e LOGNAME=ROOT LOGNAME environment variable.
Chapter 5. z/OS UNIX shell and utilities 131

5.14 The etc/rc file

Figure 5-14 The /etc/rc file used during initialization

Updating the /etc/rc file
A sample initialization shell script can be found in the file /samples/rc. Figure 5-14 shows the
IBM-supplied /samples/.rc file. Copy this file to the /etc directory. No changes will be used
until the next time z/OS UNIX is started.

The initialization script can be used to start daemons, or perform shell commands or scripts
automatically each time z/OS UNIX is started. For example, the inetd daemon can be added
to this script, as well as the automount command if it is to be used.

The /etc/rc file contains customization commands for z/OS UNIX System Services Application
Services. The figure shows the IBM-supplied default in /samples/rc. Copy this file to /etc/rc
and make the appropriate changes. If you already have an /etc/rc file, then compare it to
/samples/rc and retrofit any new updates.

Customize your /etc/rc file by adding shell commands. For instance, you could add a
command to start an installation-supplied daemon. The script can also invoke other scripts,
for instance, an rc.tcpip script to start tcp daemons.

Export variables
Export marks each variable name so that the current shell makes it automatically available to
the environment of all commands run from that shell. Exported variables are thus available in
the environment to all subsequent commands.

Setup uucp utility
. . .

Invoke vi recovery
mkdir -m 777 /etc/recover
/usr/lib/exrecover

Start AUTOMOUNT
/usr/sbin/automount

Start the INET daemon
_BPX_JOBNAME='INETD'
 /usr/sbin/inetd /etc/inetd.conf &

sleep 5
echo /etc/rc script executed, 'date'

Page 2

Initial setup for z/OS UNIX
export _BPX_JOBNAME='ETCRC'

Provide z/OS UNIX Startup Diag.
set -v -x

Setup utmpx file
>/etc/utmpx
chmod 644 /etc/utmpx

Reset all slave tty files
chmod 666 /dev/tty*
chown 0 /dev/tty*

Setup write, talk, mesg utilities
chgrp TTY /bin/write
chgrp TTY /bin/mesg
chgrp TTY /bin/talk
chmod 2755 /bin/write
chmod 2755 /bin/mesg
chmod 2755 /bin/talk

Page 1
132 ABCs of z/OS System Programming Volume 9

The _BPX_JOBNAME variable sets the z/OS job name for this script to ETCRC.

export _BPX_JOBNAME='ETCRC'

Figure 5-14 shows parts of the sample provided in the /samples/rc file. The AUTOMOUNT
facility is started and some lines were taken out to make it fit the figure frame.

/usr/sbin/automount

The example shows that the inetd daemon will be started automatically each time z/OS UNIX
is initialized. The TCP/IP topic will have more information on the inetd start options. This
_BPX_JOBNAME variable will set the z/OS job name to the INETD daemon.

_BPX_JOBNAME='INETD' /usr/sbin/inetd /etc/inetd.conf

/samples/rc file contents
Initialization shell script, pathname = /etc/rc
Initial setup for z/OS UNIX
export _BPX_JOBNAME='ETCRC'
Provide z/OS UNIX Startup Diagnostics
set -v -x
Setup utmpx file
>/etc/utmpx
chmod 644 /etc/utmpx
Reset all slave tty files
chmod 666 /dev/tty*
chown 0 /dev/tty*
Allow only file owner to remove files from /tmp
chmod 1777 /tmp
Allow only file owner to remove files from /var
chmod 1777 /var
Allow only file owner to remove files from /dev
chmod 1755 /dev
Setup write, talk, mesg utilities
chgrp TTY /bin/write
chgrp TTY /bin/mesg
chgrp TTY /bin/talk
chmod 2755 /bin/write
chmod 2755 /bin/mesg
chmod 2755 /bin/talk
Performed at install in HOT7707
Commented out in HOT6609 and performed in SAMPLIB job FOMISCHO
Setup mailx utility
No need to CHGRP /usr/mail directory
No need to CHGRP mailx utility
No need to CHMOD mailx to turn on SETGID
Setup uucp utility
chown uucp:uucpg /usr/lib/uucp
chown uucp:uucpg /usr/lib/uucp/IBM
chown uucp:uucpg /usr/spool/uucp
chown uucp:uucpg /usr/spool/locks
chown uucp:uucpg /usr/spool/uucppublic
chown uucp:uucpg /usr/spool/uucp/.Xqtdir
chown uucp:uucpg /usr/spool/uucp/.Sequence
chown uucp:uucpg /usr/spool/uucp/.Status
chown uucp:uucpg /bin/uucp
chown uucp:uucpg /bin/uuname
Chapter 5. z/OS UNIX shell and utilities 133

chown uucp:uucpg /bin/uustat
chown uucp:uucpg /bin/uux
chown uucp:uucpg /usr/lib/uucp/uucico
chown uucp:uucpg /usr/lib/uucp/uuxqt
chown uucp:uucpg /usr/lib/uucp/uucc
chmod 4775 /bin/uucp
chmod 4775 /bin/uuname
chmod 4775 /bin/uustat
chmod 4775 /bin/uux
chmod 4754 /usr/lib/uucp/uucico
chmod 4754 /usr/lib/uucp/uuxqt
chmod 4774 /usr/lib/uucp/uucc
Performed at install in HOT7707
Commented out in HOT6609 and performed in SAMPLIB job FOMISCHO
Invoke vi recovery
mkdir -m 777 /var/tmp
export TMP_VI="/var/tmp"
mkdir -m 777 /etc/recover
/usr/lib/exrecover
Create TERMINFO database
tic /usr/share/lib/terminfo/ibm.ti
tic /usr/share/lib/terminfo/dec.ti
tic /usr/share/lib/terminfo/wyse.ti
tic /usr/share/lib/terminfo/dtterm.ti
commented tic out in HOT1180 - all TERMINFO files are shipped
Start the INET daemon for remote login activity
#_BPX_JOBNAME='INETD' /usr/sbin/inetd /etc/inetd.conf &
sleep 5
echo /etc/rc script executed, date
134 ABCs of z/OS System Programming Volume 9

5.15 The /etc/inittab file with z/OS V1R8

Figure 5-15 Using the /etc/inittab file with z/OS V1R8

The /etc/inittab file
In z/OS V1R8, the /etc/inittab file is the same as used on other UNIX platforms. You have the
support for /etc/inittab to allow an installation to identify system processes that can be started
at system initialization; and to identify processes that can be restarted automatically when
they unexpectedly end.

The /etc/inittab file lists system processes such as commands and shell scripts that are to be
started when z/OS UNIX is initialized. Copy the IBM-supplied /samples/inittab file to
/etc/inittab and add additional entries if required.

For example, you can add daemons such as syslogd and cron that are normally started from
/etc/rc to take advantage of the respawn capability. The /etc/inittab file is processed only once
during initialization. If a command entry in the file needs to be run again, it must be manually
restarted, for example, from the z/OS UNIX shell or via BPXBATCH.

To restore the respawn attribute, the command can be started using the
_BPXK_INITTAB_RESPAWN environment variable.

Requirement: You must have superuser authority in order to set the
_BPXK_INITTAB_RESPAWN environment variable to YES.

Identify system processes that can be started at system
initialization

To identify processes that can be restarted automatically
when they unexpectedly end - (RESPAWN)

The /etc/inittab file lists system processes, commands
and shell scripts to be started when z/OS UNIX initializes

 Copy the /samples/inittab file to /etc/inittab and edit

Add daemons - syslogd and cron - started from /etc/rc

 /etc/inittab file processed only once during initialization

To run a command again, start manually

From the z/OS UNIX shell or via BPXBATCH

Or - set _BPXK_INITTAB_RESPAWN=YES
Chapter 5. z/OS UNIX shell and utilities 135

5.16 The _BPXK_INITTAB_RESPAWN variable

Figure 5-16 Setting the _BPXK_INITTAB_RESPAWN variable

The _BPXK_INITTAB_RESPAWN variable
The _BPXK_INITTAB_RESPAWN environment variable specifies whether a process is to be
dynamically started with the respawn attribute.

YES Specifies that a process is to be started with the respawn attribute. Setting the YES
attribute after the process has started does not affect the setting of the respawn
attribute. If a process is started by a spawn with _BPXK_INITTAB_RESPAWN=YES
(set by an export shell command, for example), the shell invokes the target program.
The program will be automatically restarted when it ends, even if it was not originally
started from the /etc/inittab file.

NO Disables the respawn capability of the process.

This variable specifies whether a process is to be
dynamically started with the respawn attribute

_BPXK_INITTAB_RESPAWN=YES specifies that a
process is to be started with the respawn attribute
Setting the YES attribute after the process has started
does not affect the setting of the respawn attribute

If a process is started by a spawn with
_BPXK_INITTAB_RESPAWN=YES (set by an export
shell command, for example), the shell invokes the
target program

The program is automatically restarted when it ends,
even if it was not originally started from the /etc/inittab
file
136 ABCs of z/OS System Programming Volume 9

5.17 Rules for coding /etc/inittab

Figure 5-17 Rules for coding /etc/inittab

The /etc/inittab file
The /etc/inittab file lists system processes such as commands and shell scripts that are to be
started when z/OS UNIX is initialized. Copy the IBM-supplied /samples/inittab file, shown in
Figure 5-15, to /etc/inittab and add entries to it.

Rules for coding /etc/inittab
Each entry is delimited by a newline character. A backslash (\) preceding a newline character
indicates the continuation of an entry. There are no limits (other than maximum entry size) on
the number of entries in the /etc/inittab file. The maximum entry size is 1024 characters. Each
entry field is only limited by the maximum entry size. The entry fields are:

Identifier Identifies the inittab entry. The identifier for a given entry can be up to 7 mixed
case characters and it must be unique from other identifiers in the file. Because
the identifier is used as the job name for the command to be run, it must be
syntactically acceptable as a job name. The lowercase characters are
converted to uppercase to be used in the job name

RunLevel Not supported for z/OS UNIX. Identifies the run levels in which this entry can be
processed. Even though the RunLevel field is not supported for z/OS UNIX, it is
in the inittab entry for compatibility with other UNIX implementations. The run
level field can be up to 32 alphanumerical characters.

etcrc::wait:/etc/rc > /dev/console 2>&1
inetd::respfrk:/usr/sbin/inetd /etc/inetd.conf
msgend::once:/bin/echo Done processing /etc/inittab > /dev/console
:end of file

Identifier: - Identifies the inittab entry
Runlevel: - Not supported with z/OS UNIX
Action: - Specifies how to handle the process that is
specified in the command field. The supported actions
are:

once - Start the process and do not wait for it to end
respawn - Process is restarted when it ends
respfrk - For programs that fork a child and go away
wait - Start a process and wait for it to end - never
restarted

/samples/inittab
Chapter 5. z/OS UNIX shell and utilities 137

Action Specifies how to handle the process that is specified in the command field. The
supported actions are:

once Starts the process and does not wait for it to end. When it ends,
The process is not restarted when it ends.

respawn Starts the process as specified in the entry and does not wait for it
to end. Instead, it continues scanning the /etc/inittab file. The
process is restarted when it ends. When a process is spawned
again, it is restarted with the same file descriptors and environment
variables that it was started with originally. If a process ends due to
a shutdown of all fork activity, the process is not restarted until fork
activity is re-enabled. If a respawnable process ends and then
ends again after being restarted within 15 minutes of its first
ending, then message BPXI082D is displayed. The message
identifies the process entry and asks whether to retry or ignore the
error. A process identified for respawn will not be able to register as
a permanent process that can survive a shutdown and restart cycle
because the /etc/inittab file will be processed again during restart.
Tip: To avoid excessive consumption of common storage, limit the
number of processes started with the respawn attribute to 100 or
fewer.

respfrk Starts the process as specified in the entry. Do not wait for the
process to end; in other words, continue scanning the /etc/inittab
file.

� If the process never issues a fork command, then this action
behaves the same way as the respawn action.

� If the process issues a fork, then the respawn attribute is
transferred to the forked child process and the original process
is respawned when the child process ends.

� If the original process issues any additional forks, the respawn
attribute is not transferred. It is only transferred the first time
the fork is issued.

Tip: This option is intended for a program that forks itself to
create a child process which then continues running while the
parent process ends. For example, the cron and inetd
daemons are written this way. This option is not found on any
other UNIX platforms.

wait Starts the process and waits for it to end. The process is not
restarted when it ends.

Note: If /etc/inittab exists in your system, it is used instead of the /etc/rc file.
138 ABCs of z/OS System Programming Volume 9

5.18 Customizing the OMVS command

Figure 5-18 Customizing the use of the OMVS command from TSO/E

Customize the TSO command line for UNIX users
The TSO/E access to the shell can be customized by the following options:

� The logon procedure for users that want to go directly into the shell when they log on to
TSO/E can be modified to issue the OMVS command.

Select or create a TSO/E logon procedure for users who wish to invoke the shell
automatically when they log on to TSO/E.

In the logon procedure, add a PARM parameter to the EXEC statement for program
IKJEFT01.

// EXEC PGM=IKJEFT01, ...
// PARM=OMVS

� A user can then type the OMVS command on the TSO/E logon panel command line.

� To customize the OMVS command for all shell users, you can create a REXX exec with
the customized options. Then specify the name of the REXX exec in the PARM
parameter, instead of with the OMVS command. In the exec, for example, you can specify
changes like these:

– Use of the 3270 alarm

– Number of sessions (default is 1)

– The key or keys to be used for escape

– The settings for the function keys

// EXEC PGM=IKJEFT01,
 PARM=%OMVS
//

Enter LOGON parameters:
Userid ==>
.......
Command ==> OMVS

/* REXX */
P = PROMPT("ON");
"omvs pf1(control) sessions(3)";
X = PROMPT(P);
Return;

TSO logon proc: TSO logon panel:

Sample OMVS REXX EXEC:
Chapter 5. z/OS UNIX shell and utilities 139

– The table to be used for code page conversion

– Shared address space

Using the prompt option
When your profile allows for prompting, the PROMPT function can set the prompting option
on or off for interactive TSO/E commands, or it can return the type of prompting previously
set. When prompting is on, execs can issue TSO/E commands that prompt the user for
missing operands.

The PROMPT function can be used only in REXX execs that run in the TSO/E address
space. To set the prompting option on, use the PROMPT function followed by the word 'ON'
enclosed within parentheses:

P = PROMPT('ON')

To reset prompting to a specific setting saved in variable P, write:

X = PROMPT(P)

Note: The time limit for a shell user is the same as the TSO/E timeout.
140 ABCs of z/OS System Programming Volume 9

5.19 Shell environment variables

Figure 5-19 Specifying environment variables for the shell user

Setting the shell user environment
An environment variable is a variable that describes the operating environment of a process
and typically includes information about the home directory, command search path, the
terminal in use, and the current time zone.

Depending on the commands used to set it, an environment variable can be global (used for
all processes), local (used only for the current process), or can be exported (used for the
current process and for any other processes created by the current process).

Search order for environment variables
Setting an environment variable is optional. If a variable is not set, it will have no value. The
following is a list of the places where environment variables can be set:

� By the system programmer:

– RACF user profile

Sets the LOGNAME, HOME, and SHELL environment variables from data in the RACF
user profile, which was specified in the RACF ADDUSER.

– /etc/profile

A system-wide file that sets environment variables for all z/OS shell users. This file is
only run for login shells.

Compiler
variables

System
mail file

LanguageTimezone

Default
command

path

RACF OMVS Segment
LOGNAME

HOME
SHELL

Search order:
1. RACF user profile
2. /etc/profile
3. $HOME/.profile
4. ENV environment
5. Shell command or script
Chapter 5. z/OS UNIX shell and utilities 141

� By the shell users:

– $HOME/.profile

Sets environment variables for individual users. This file is only run for login shells.

– The file named in the ENV environment variable in $HOME/.profile

This file is run for both login shells and subshells.

– A shell command or shell script of the user.
142 ABCs of z/OS System Programming Volume 9

5.20 Customizing your shell environment

Figure 5-20 Customizing the user shell environment

User shell environment
When you start the z/OS shell, it uses information in three files to determine your particular
needs or preferences as a user. The files are accessed in this order:

� /etc/profile
� $HOME/.profile
� The file that the ENV variable specifies

Settings established in a file accessed earlier can be overwritten by the settings in a file
accessed later.

/etc/profile
The /etc/profile file provides a default system-wide user environment. The system
programmer may modify the variables in this file to reflect local needs (for example, the time
zone or the language). If you do not have an individual user profile, the values in the
/etc/profile are used during your shell session.

/$HOME/.profile
The $HOME/.profile file (where $HOME is a variable for the home directory for your individual
user ID) is an individual user profile. Any values in the .profile file in your home directory that
differ with those in the /etc/profile file override them during your shell session. z/OS provides
a sample individual user profile. Your administrator can set up such a file for you, or you can
create your own.

When you start the shell, these files are used to

determine your settings:

Order of overrides:

/etc/profile

$HOME/.profile

A file named in ENV environment variable in:

$HOME/.profile which points to a .setup file
Chapter 5. z/OS UNIX shell and utilities 143

5.21 Global variables in /etc/profile

Figure 5-21 Customizing the global /etc/profile variables for all users

Customizing /etc/profile
The /etc/profile file is the system-wide profile for the z/OS shell users. It contains environment
variables and commands used by most shell users.

All shell users will get the environment variables set by this profile. Users can override some
of the variables by setting the variables in their private profiles or in their shell sessions.

Environment variables in /etc/profile
The /etc/profile file contains the environment variables and commands used by most shell
users. An IBM-supplied sample is located in /samples/profile. Copy the sample to the /etc
directory and make any necessary changes.

STEPLIB The use of STEPLIB=none is recommended to improve performance for shell
users. Keep this setting.

TZ The timezone (TZ) is based on the Greenwich Mean Time (GMT), also called
Universal Time Coordinated (UTC). Change it to your local time. The time zone
used in the example is for the US East Coast (five hours west of UTC or GMT). It
also shows the daylight saving time zone that will be used (EDT).

Note: All environment variables are written with capital letters.

Improve shell performance
if [-z "$STEPLIB"] && tty -s;
then
 export STEPLIB=none
 exec sh -L
fi
Set the time zone as appropriate.
TZ=EST5EDT
Set a default command path, including current working dir (CDW)
PATH=/bin:.
Sets the path environment variables
LIBPATH=/lib:/usr/lib:.
MANPATH=/usr/man/%L
NLSPATH=/usr/lib/nls/msg/%L/%N
Sets the language
LANG=C
Sets the name of the system mail file and enables mail notification.
MAIL=/usr/mail/$LOGNAME
Export the values so the system will have access to them.
export TZ PATH LIBPATH MANPATH NLSPATH MAIL LANG
Set the default file creation mask - umask
umask 022
Set the LOGNAME variable readonly so it is not accidentally modified.
readonly LOGNAME
144 ABCs of z/OS System Programming Volume 9

PATH This specifies the default command path where z/OS UNIX will search for the
commands and programs a user is executing. If your installation will have
programs in for example, /usr/bin, specify:

PATH=/bin:/usr/bin

In the PATH variable, a colon (:) separates the list of pathnames. The dot (.)
represents the current working directory for a user. The order listed in the PATH
variable controls the search order.

NLSPATH Specifies the pathname for message catalogs.

LANG Specifies the name of the default locale.

MAIL Specifies the pathname for mail files. Change it if you want to use another
pathname for the mail files. The setting for the MAIL variable indicates that each
user will use a mail file with the same name as their LOGNAME, and it will be
located in the directory specified for the variable. Note that when you use a dollar
sign ($) in front of a variable in a shell script, it means that you want to use the
value assigned to that variable. $LOGNAME will be interpreted as the user ID of
the shell user (see LOGNAME defined in RACF profile).

EXPORT The export command will export a variable to a subshell. All the environment
variables defined will be valid only for the shell session (login shell) a user gets
when the user invokes the shell (TSO OMVS or rlogin). Shell scripts and many
shell commands will actually be executed in a separate shell created by the login
shell. The shell creates child processes to run the scripts or commands. These
subshells will not be aware of the variable settings that were specified in the login
shell unless you export the variable specifications. To ensure that the subshell
runs with the same environment, use the export command to export the
variables.

UMASK The umask command was introduced in our discussion on security. The umask
value of 022 will result in permission bits: rwxr-xr-x.

The contents of the /etc/profile file are actually a shell script. It contains examples of the script
programming language with if-then statements, sets values for environment variables, and
issues some shell commands (export, umask, readonly).

Note: Any changes made in /etc/profile will take effect the next time a user invokes the
shell.
Chapter 5. z/OS UNIX shell and utilities 145

5.22 User-defined settings

Figure 5-22 Setting the user variables by the user

Shell user environment values
Shell users can set their own values for the environment variables using any of the following
methods:

� A $HOME/.profile file. A sample is provided in /samples/.profile/; it can be copied to a shell
user's home directory and modified.

Add the environment variable _BPX_SHAREAS=YES to the user profile. This will cause
all shell commands that run in separate processes to create the processes in the same
address space as the shell.

� The ENV variable in the $HOME/.profile can be set to a file name which is a shell script
that sets environment variables.

� A shell user can use the env command to display the environment variables for their
session, and to change any of these variables. The change will only last for the length of
the session.

The .profile file
The .profile file must be located in a user's home directory. Figure 5-22 shows the contents of
the sample provided by IBM. One of the variables in the .profile is called ENV, and this
variable can be used to point to another file where a user can add environment variables and
shell commands that the user wants to perform when the shell is invoked.

==> env

Shell session /u/korn/.setup

Shell script

/u/korn/.profile

ENV=$HOME/.setup
export ENV

Append your home directory to the current path.
PATH=$PATH:$HOME:

Set the default editor to ed.
EDITOR=ed

Set the prompt to display your login name, and current
directory.
PS1='$LOGNAME':'$PWD':' >'

Export the variable settings so that they are known
to the system.
export PATH EDITOR PS1
146 ABCs of z/OS System Programming Volume 9

Some of the things a user may want to update in the .profile file are:

� ENV: use if the user has a separate shell script with environment variables.

� PATH: Add the user's home directory to the search path:

PATH=$PATH:$HOME:

Note how variables can be used in other variables. System programmers and system
administrators need to have a $HOME/.profile file with the PATH environment set as follows:

PATH=$PATH:/usr/sbin:$HOME:

This allows the system programmers to run authorized utilities and to start daemons found in
/usr/sbin, as follows:

PS1 Change the shell prompt. The default is #.

TZ Change if the user is located in a different time zone than the
system.

_BPX_SHAREAS=YES Add this to the profile to reduce the number of address spaces
used by a shell user.

The env command
If using the env command to set a variable, the setting will only last for the duration of the
user's session. The next time the user invokes the shell, this setting is forgotten. Use the
.profile file or a shell script for variables that should be the same for each session.

The system programmer should use the /etc/profile file for variables that all users should
have set.
Chapter 5. z/OS UNIX shell and utilities 147

5.23 Setting the time zone

Figure 5-23 Setting the time zone variable

Setting the time zone (TZ)
The time zone is an environment variable used by the time service to set the correct time for
z/OS UNIX and for applications running on z/OS UNIX. It is possible to specify a time zone
variable in 4 different files. Table 5-1shows the files and when changes made in these files
become active.

Table 5-1 Activation schedule for time zone variables

Files After z/OS UNIX
restart

After next user
enters the shell

Immediately after
change

/etc/init.options YES NO NO

/etc/rc YES NO NO

/etc/profile YES YES NO

$HOME/.profile YES YES NO

General activation order: First the settings in /etc/init.options and /etc/rc become active
at kernel initialization time. Afterwards, the settings in /etc/profile are read. If a user has a
.profile in his HOME directory that has its own TZ value specified, this setting will be the
active one for this user if he enters the shell.

/etc/init.options
...
-e TZ=EST5EDT

/etc/profile
...
TZ=EST5EDT

/u/korn/.profile
...
TZ=CET1CST

?
11:10:00

time

M.Korn

/etc/rc
...
TZ=EST5EDT
148 ABCs of z/OS System Programming Volume 9

Time zones
The shell and utilities assume that the times stored in the file system and returned by the
operating system are stored using the Greenwich Mean Time (GMT) or Universal Time
Coordinated (UTC) as a universal reference. In the system-wide /etc/csh.login, the TZ
environment variable maps that reference time to the local time specified with the variable.
You can use a different time zone by setting the TZ variable in your .login file.

Setting your time zone
If you want to set your time zone to Eastern Standard Time (EST) and export it, specify:

setenv TZ "EST5EDT"

Where:

� EST is Eastern Standard Time, the local time zone.

� The standard time zone is 5 hours west of the universal reference time.

� EDT is the Eastern Daylight Savings time zone.

Recommendation: It is recommended to have a TZ setting active in /etc/init.options and
in /etc/profile. If there are daemons to start via the /etc/rc file, export the TZ variable before
starting the daemons. If you want the correct time on any replies inside the shell, you will
have to specify the TZ variable at least in the user profiles ($HOME/.profile) if no
specifications were made in the system-wide profile /etc/profile where all users are
affected.
Chapter 5. z/OS UNIX shell and utilities 149

5.24 Customizing the C89/CC compilers

Figure 5-24 Customizing the c89/CC compiler options

Compiler customization
As we mentioned earlier, the /etc/profile file provides a default system-wide user
environment. Any environment variables that are set in /etc/profile affect every shell user
unless they override these settings in their own $HOME/.profile or in a setup script file that is
pointed to by the ENV variable.

For each z/OS release, there is a default compiler for c89, cc, or c++ (cxx) to use. Optionally,
you can choose to use a non-default compiler. This section lists the compiler choices for each
release, including the default compilers; the environment variable settings for each compiler
are identified.

c89/cc/c++ utilities
The c89/cc/c++ utilities use a number of environment variables. The default values are
specified as comments in the /samples/csh.login file that is shipped with each release. The
naming conventions for the environment variables are as follows:

� c89 begin with the prefix _C89
� cc begin with the prefix _CC
� c++ begin with the prefix _CXX

If the C/C++ Class Library DLLS are used in building your executables (the default for the c++
utility), then this will also target your executable for the same level of C/C++ Class Library.

/etc/profile

Start of c89/cc/c++ customization section
==
High-Level Qualifier "prefixes" for data sets used by c89/cc/c++:
Compiler:
 export _C89_CLIB_PREFIX="CBC"
Prelinker and runtime library:
 export _C89_PLIB_PREFIX="CEE"

OS/390 system data sets:
 export _C89_SLIB_PREFIX="SYS1"

Compile and link-edit search paths:
Compiler include file directories:
 export ${_CMP}_INCDIRS="/usr/include /usr/lpp/ioclib/include"
Link-edit archive library directories:
 export ${_CMP}_LIBDIRS="/lib /usr/lib"
Esoteric unit for data sets:
==
Unit for (unnamed) work data sets:
 export ${_CMP}_WORK_UNIT="SYSALLDA"
150 ABCs of z/OS System Programming Volume 9

In the section titled 'c89/cc/c++ customization section', remove the comment for the
following export commands to tell the C/C++ compiler what the high level qualifier of the
C/C++, Language Environment and z/OS target library data sets are. Check the high level
qualifiers on your system to make sure they agree with these default values.

Use ISPF 3.4 and look at your target libraries to check. If they agree, there is no need to
uncomment these lines because they are the default setting.

#export _C89_CLIB_PREFIX="CBC"
#export _C89_PLIB_PREFIX="CEE"
#export _C89_SLIB_PREFIX="SYS1"

If your high level qualifiers do not match, then make the changes here and uncomment the
three export statements. See the Environment Variables section of the c89/cc/c++ command
discussion in z/OS UNIX System Services Command Reference, SA22-7802 for more
information.

If the system is not configured with an esoteric unit SYSDA, or some other esoteric unit is to
be used for VIO temporary unnamed work data sets set by c89, the following environment
variable needs to be set. Specifying a null value for this variable ("") results in c89 using an
installation-defined default for the UNIT. The environment variable is shown being set to the
default value:

#export _C89_WORK_UNIT="SYSDA"

The environment variables used by the cc utility have the same names as the ones used by
c89 except that the prefix is _CC instead of _C89. Likewise, for the c++ (cxx) utility, the prefix
is _CXX instead of _C89. Normally, you do not need to explicitly assign the environment
variables for all three utilities. These eval commands set the variables for the other utilities,
based on those set for c89.

#eval "export $(typeset -x | grep "^_C89_" ...
#eval "export $(typeset -x | grep "^_C89_" ...

Note: SYS1 refers to the high level qualifier of CSSLIB, MACLIB and MODGEN on your
system.
Chapter 5. z/OS UNIX shell and utilities 151

5.25 Code page tables

Figure 5-25 Defining code page tables

Code page tables
A code page for a character set determines the graphic characters produced for each
hexadecimal code. The code page is determined by the programs and national languages
being used.

If the shell is using a locale generated with code pages IBM-1047, an application programmer
needs to be concerned about “variant” characters in the POSIX portable character set whose
encoding may vary from other EBCDIC code pages. For example, the encodings for the
square brackets do not match on code pages IBM-037 and IBM-1047.

For most countries, MVS uses one code page and the z/OS UNIX shell uses a different one.
To complicate the matter, many users have workstations which use an ASCII-based code
page. When moving data between these environments, the data may have to be converted
between the code pages to maintain the same characters. This may result in different
hexadecimal codes depending on the code pages.

Conversion tables in SYS1.LINKLIB
There are code page conversion tables located in SYS1.LINKLIB which can be used to
convert between the z/OS code page and the shell code page for the national languages
supported by the z/OS UNIX shell.

The source for these code page tables can be found in SYS1.SAMPLIB. They can be used as
samples for creating a new table if an installation has special requirements.

BPXFXnnnCode Page
conversion

tables

SYS1.LINKLIB

IBM-037 IBM-8859-1

IBM-1047

MVS Country
extended
code page

z/OS UNIX
shell

code page

ASCII
code page

Other
code pages

Character
set
152 ABCs of z/OS System Programming Volume 9

5.26 Specifying a code page

Figure 5-26 Specifying code pages

Specifying code pages
The OMVS command has a CONVERT option that lets you specify a conversion table for
converting between code pages for the shell accesses by a TSO/E user. The table you want
to specify depends on the code pages you are using in MVS and in the shell. For example, if
you are using code page IBM-037 in MVS and code page IBM-1047 in the shell, specify the
following when you enter the OMVS command:

OMVS CONVERT((BPXFX111))

The BPXFX111 translation table is for z/OS (code page 00037) to z/OS UNIX (code page
1047) translation. This would be used by most shell users in the U.S.

IBM has supplied many code pages for different countries with the product. If you were in
Switzerland you might invoke the shell with the BPXFX450 conversion table. If you leave out
the data set name, the normal z/OS search order is used to find the module.

If you are accessing the shell through the rlogin or telnet interface you do not use the OMVS
command. You must change to the appropriate code page by issuing the chcp command.
This could be issued by the user or be put in a profile for them.

The example in Figure 5-26 shows the code for a script that checks to be certain that OMVS
was not issued, and then issues the chcp with an ASCII conversion table of IBM-850 and an
EBCDIC table of IBM-500. You may also want to change the environment variables that
reflect local formats at the same time.

OMVS CONVERT((BPXFX111))
OMVS CONVERT('SYS1.XLATE(BPXFX450)')

$
$ Issue chcp only if not using TSO/E OMVS
$
if
 test "$_BPX_TERMPATH" != "OMVS"
 then
 chcp -a IBM-850 -e IBM-500
fi

TSO

RLOGIN/TELNET
Chapter 5. z/OS UNIX shell and utilities 153

5.27 Internationalization variables (locales)

Figure 5-27 Internationalization variables

Locales
A locale is the subset of your environment that deals with language and cultural conventions.
It is made up of a number of categories, each of which is associated with an environment
variable and controls a specific aspect of the environment. Figure 5-27 shows the categories
and their spheres of influence.

Internationalization variables
Internationalization enables you to work in a cultural context that is comfortable for you
through locales, character sets, and a number of special environment variables. The process
of adapting an internationalized application or program, particular to a language or cultural
environment, is termed localization.

Categories
To give a locale control over a category, set the corresponding variable to the name of the
locale. In addition to the environment variables associated with the categories, there are two
other variables that are used in conjunction with localization, LANG and LC_ALL. All of these
variables affect the performance of the shell commands. The general effects apply to most
commands, but certain commands such as sort, with its dependence on LC_COLLATE,
require special attention to be paid to one or more of the variables; we discuss such cases in
the localization section of the command.

LANG
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME
LC_SYNTAX
NLSPATH

A locale is the subset of your
environment that deals with
language and cultural
conventions

It is made up of a number of
categories

Each is associated with an
environment variable

Controls a specific aspect of the
environment
154 ABCs of z/OS System Programming Volume 9

The effects of each environment variable are as follows:

LANG Determines the international language value. Utilities and applications
can use the information from the given locale to provide error messages
and instructions in that locale's language. If the LC_ALL variable is not
defined, any undefined variable is treated as though it contained the
value of LANG.

LC_ALL Overrides the value of LANG and the values of any of the other variables
starting with LC_.

LC_COLLATE Identifies the locale that controls the collating (sorting) order of
characters and determines the behavior of ranges, equivalence classes,
and multicharacter collating elements.

LC_CTYPE Identifies the locale that defines character classes (for example, alpha,
digit, blank) and their behavior (for example, the mapping of lowercase
letters to uppercase letters). This locale also determines the
interpretation of sequences of bytes as characters (such as singlebyte
versus doublebyte characters).

LC_MESSAGES Identifies the locale that controls the processing of affirmative and
negative responses. This locale also defines the language and cultural
conventions used when writing messages.

LC_MONETARY Determines the locale that controls monetary-related numeric formatting
(for example, currency symbol, decimal point character, and thousands
separator).

LC_NUMERIC Determines the locale that controls numeric formatting (for example,
decimal point character and thousands separator).

LC_TIME Identifies the locale that determines the format of time and date strings.

LC_SYNTAX Identifies the locale that defines the encodings for the variant characters
in the portable character set.

NLSPATH A localization variable that specifies where the message catalogs are to
be found.

Examples of locales
For example, the following locale specifies that the z/OS shell is to look for all message
catalogs in the directory /system/nlslib, where the catalog name is to be constructed from the
name parameter passed to the z/OS shell with the suffix .cat.

NLSPATH="/system/nlslib/%N.cat"

The following specifies that the z/OS shell should look for the requested message catalog in
name, name.cat, and /nlslib/category/name.cat, where category is the value of the
LC_MESSAGES or LANG category of the current locale:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

Note: Substitution fields consist of a % symbol, followed by a single-letter keyword. These
keywords are currently defined as follows:

%N The value of the name parameter
%L The value of the LC_MESSAGES category, or LANG, depending on how the

catopen() function that opens this catalog is coded.
%l The language element from the LC_MESSAGES category
%t The territory element from the LC_MESSAGES category
%c The codeset element from the LC_MESSAGES category
Chapter 5. z/OS UNIX shell and utilities 155

5.28 Setting the region size

Figure 5-28 Setting the user region size default

Setting region sizes for programs
The region size describes the amount of storage within which a user is allowed to run/execute
programs. This value determines what kinds of programs (depending on their size) and how
many programs are executable at the same time.

Remote user logons
Telnet and rlogin users get their region size from the MAXASSIZE parameter in the
SYS1.PARMLIB with the BPXPRMxx member.

BPXBATCH jobs
If BPXBATCH is used there is a BPXBATCH REGION parameter that describes the region
size; however, started procedures that create z/OS UNIX processes use the REGION
parameter on the EXEC statement.

TSO users logon panel
In principle, TSO users get the region size from the logon panel to their programs. If a user
enters the z/OS UNIX shell by issuing a TSO OMVS command, the parent process doesn't
run in the user's address space. Under control of the Work Load Manager, an address space
will be created that gets the same region size as the TSO/E user itself. IEFUSI is a user exit
where an installation can set the region size and region limit for all programs that run under
this job step. Make sure this exit does not change the region size setting for the z/OS UNIX
process.

TSO OMVS

16 MB

WLM

User Region
above

User Region
below

???

???

UNIX User Address Space

BPXAS

BPXPRMxx(MAXASSIZE) - Telnet, rlogin
Region= - BPXBATCH
Set on logon panel - TSO OMVS

IEFUSI user exit
156 ABCs of z/OS System Programming Volume 9

5.29 Setting up printers for shell users

Figure 5-29 Shell user printer defaults

Setting a printer default
Each z/OS UNIX user has a number of default printers specified in different ways. The
system will select a printer in the following order:

� The printer in the dest option of the lp shell command, or the printf() or fprintf() functions.
� The printer specified in the LPDEST environment variable.
� The printer specified in the PRINTER environment variable.
� The printer in the RACF user profile. It is specified by the DEST parameter of the RACF

ADDUSER or ALTUSER command.

The z/OS Infoprint Server, available beginning with OS/390 V2R8, provides much greater
support for printing than was available in previous systems.

Inform the application programmers of the destinations or symbolic names of printers you
specified in JES initialization statements. The dest option of the lp command uses the same
destinations as the DEST parameter in the OUTPUT JCL statement. If omitted, the system
uses the default printer. The dest option on lp can be:

� LOCAL for any installation printer.
� A destination that is defined in a JES2 DESTID initialization statement.

JES controls the print separators, also called cover pages and banner pages, for SYSOUT
output for all users, including z/OS UNIX users. To place a user's name and address in the
print separator for forked processes, specify the user's name and address in the WORKATTR
segment of the RACF user profile.

==> lp prt1

1. dest option on lp, printf(),

or fprintf()

2. LPDEST environment var.

3. PRINTER environment var.

4. RACF user profile: DEST

Shell session:

Choose printer:

Print file
Chapter 5. z/OS UNIX shell and utilities 157

5.30 Installing books for OHELP

Figure 5-30 Setting the user OHELP command to access the z/OS UNIX books

Access to documentation
The TSO/E OHELP command provides online help for:

� Shell commands

� Callable services

� C functions

� Shell messages

In order to use OHELP, the following must be done:

� BookManager® READ/MVS is required.

� The z/OS UNIX bookshelf must be installed.

� An HFS file must be customized to map the OHELP reference ID with a z/OS UNIX book.
Do this using the following steps:

– Copy the sample file in /samples/ohelp.ENU to /etc/ohelp.ENU.

– Update the file if you need to change the data set names of the online books, or if you
want to add or delete books.

/etc/ohelp.ENU

OHELP * "environment variable"

From your TSO/E session:

1 'IBMBOOKS.SK210701.BPXA5M02.BOOK' UNIX System Services Command Reference

2 'IBMBOOKS.SK210701.BPXB1M01.BOOK' UNIX System Services Callable Services

3 'IBMBOOKS.SK210701.BPXA7M02.BOOK' C/C++ for z/OS Library Reference

4 'IBMBOOKS.SK210701.BPXA8M02.BOOK' UNIX System Services Shell Messages

* 'IBMBOOKS.SK210701.BPXMAN02.BKSHELF' OHELP UNIX System Services Bookshelf

TSO/E command: OHELP - displays bookshelf
158 ABCs of z/OS System Programming Volume 9

5.31 Using the man command

Figure 5-31 Using the man command to access manuals

Access to documentation from the shell
You can use the man command to get help information about a shell command. The man
syntax is:

man command_name

To scroll the information in a man page, press Enter.

To end the display of a man page, type q and press Enter.

To search for a particular string in a system that has a list of one-line command descriptions,
use the -k option:

man -k string

For example, to produce a list of all the shell commands for editing, you could type:

man -k edit

You can use the man command to view manual descriptions of TSO/E commands. To do this,
you must prefix all commands with TSO. For example, to view a description of the MOUNT
command, you would enter:

man tsomount

-k Searches a precomputed database of syntax lines for information on keywords.

The man command gives help information about a
shell command

 man command_name

To produce a list of all the shell commands for editing

 man -k edit

To view descriptions of TSO/E commands such as
mount

 man tsomount
Chapter 5. z/OS UNIX shell and utilities 159

-M -M path searches the directories indicated by path for help files. If -M is not specified,
man uses the path specified in the MANPATH environment variable if set; otherwise
man searches /usr/man/%L. The value of the LANG environment variable is substituted
for %L in this directory and in the directories specified by MANPATH.

-w Displays only the filename of the file containing the help file.

-x Displays what files man is searching to find the help file. -x also displays any errors
man encounters in extracting man pages from online book files.
160 ABCs of z/OS System Programming Volume 9

5.32 Enabling various tools

Figure 5-32 Customizing shell utilities

Shell utilities
Some of the shell utilities must be customized before they can be used:

make The make utility uses a configuration file. Copy the sample in /samples/startup.mk to
/etc/startup.mk.

The make utility helps manage large applications consisting of multiple programs.
When an application programmer updates a program, make will help keep all the
files/programs in synchronization.

lex For the lex utility, copy the sample in /samples/yylex.c to /etc/yylex.c. This file
contains the prototype lex scanner.

lex and yacc are utilities that help an application programmer to write programs. For
example, input to lex and yacc describes how you want the final program to work.
The output from lex and yacc is C source code. lex and yacc are often used to
develop programs that analyze and interpret input, for example a compiler.

yacc For the yacc utility, copy the sample in /samples/yyparse.c to /etc/yyparse.c. This file
contains the C parser template used by yacc.

file For the file utility, copy the sample in /samples/magic to /etc/magic.c. This file
contains a series of templates showing different file types.

The file utility determines the format of each file by inspecting the attributes and (for
an ordinary file) reading an initial part of the file. It compares each file on the

startup.mk

yylex.c

yyparse.c

magic

startup.mk

yylex.c

yyparse.c

magic.c

/samples /etc

make:

lex + yacc:

file:

mail: mailx.rc mailx.rc

COPYCOPY
Chapter 5. z/OS UNIX shell and utilities 161

command line to templates found in a system-maintained magic file to determine
their file type.

If the file is an executable, its addressing mode is determined for output. If the file is
not an executable, file compares each file to templates found in a magic file to
determine their file type.

The file utility then divides files that do not match a template in the magic file into text
files and binary data. Then, by reading an initial segment of the text files and making
an informed guess based on the contents, file further divides text files into various
types such as C programs, assembler programs, files of commands to the shell, and
yacc or lex programs.

mailx For the mailx utility, copy the sample in /samples/mailx.rc to /etc/mailx.rc. This file
contains variable values and definitions common to all shell users.

The mailx utility program allows users to send messages to one another. The mailbox
name is set up in the user's profile. It defaults to /usr/mail/$LOGNAME.
162 ABCs of z/OS System Programming Volume 9

5.33 SVP for z/OS UNIX and tools

Figure 5-33 Customizing the installation verification program

Setup verification program
The Setup Verification Program (SVP) lets you check for troublesome setup errors before
they cause a problem. After you have followed the instructions in z/OS UNIX Systems
Services Planning, SC28-1890, and completed your setup and customization (including the
z/OS shell and utilities), you can run the SVP.

Using the SVP, you can:

� Verify that each user has a UID and OMVS segment defined, and each group has a GID.

� Check for duplicate assignment of UIDs and GIDs.

� Verify that each user has access to and owns a home directory and has read, write, and
search access to it.

� Check the permissions for several directories usually set up at installation.

� Check that files in the /dev directory are defined correctly. Reconcile the number of
pseudo-ttys and file descriptor files with the BPXPRMxx definitions. On z/OS V1R7 and
above, it does minimal checking in the /dev directory because the files are created by the
system as needed.

� Verify that the z/OS UNIX shell will run.

� Verify that the OMVS command will run.

� Check customization for utilities. The program checks or does the following:

– Files that have been copied from /samples to /etc

IVP programs

test

make
changes

z/OS UNIX

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1svp.html

LE - CEEWIVP
TCP/IP - HOMETEST
C/C++ - EQAWLECS

OESVP - Tests UNIX Services environment
Chapter 5. z/OS UNIX shell and utilities 163

– terminfo files

– Settings for some environment variables

– Ability to compile and run a program

– Performs various other checks

After customizing the different tools and changing the environment, you have to test the new
settings with the related Setup Verification Programs (SVP).

� LE environment

To verify that Language Environment was installed properly, run CEEWIVP, which is
found in your SCEESAMP library. Refer to the comments in the job for instructions,
expected condition codes, and expected output.

� IBM Communications Server IP

Verify your host name and address configuration with HOMETEST. This program will test
the system configuration defined by the HOSTNAME, DOMAINORIGIN, and
NSINTERADDR statements in the TCPIP.DATA data set.

� C/C++ with Debug Tool

If you are using the C/C++ debug tools, you have to submit the following jobs in this order:

hlq.SCBCJCL(EQAWLECS)
hlq.SCBCJCL(EQAWLU62)
hlq.SCBCJCL(EQAWIVP2)

� C/C++ compiler

If C/C++ has been enabled, verify that the following C/C++ components are installed
properly:

– C/C++ compilers

Run the jobs HLB4801F and HLB4801G from the ServerPac Installation Dialog.

– C/C++ Host Performance Analyzer

In order to test the C/C++ Host Performance Analyzer you can run the two jobs
HLB4801M and HLB4801N from the ServerPac Installation Dialog, or find the same
JCL in hlq.SCTVJCL with the names CTVFINT and CTVFUNK.

– C/C++ IBM Open Class® Library

To test the Open Class Library, use the jobs HTV4821R, HTV4821S and HTV4821T,
which can be run from the ServerPac Installation dialog or from the hlq.SCLBJCL
library with following names: CLB3JIV1, CLB3JIV2, and CLB3JIV3.

� z/OS UNIX environment and tools

To test the z/OS UNIX environment and tools use the program oesvp, which can be
downloaded from http://www-1.ibm.com/servers/eserver/zseries/zos/unix/bpxa1svp.html
with the name oesvp.exec.bin.
164 ABCs of z/OS System Programming Volume 9

5.34 Setup Verification Program (SVP)

Figure 5-34 Using the Setup Verification Program

Setup Verification Program
The SVP for z/OS UNIX ISPF panels is shown Figure 5-34. During the z/OS shell test, do not
interrupt the process when the indicator RUNNING/INPUT changes; instead, press PF10.

This utility requires ISPF version 4.1 or higher, as well as z/OS V1R7 or higher.

For more information, see ServerPac: Installing Your Order or the ServerPac Program
Directory.

Setup verification program
The Setup Verification Program (SVP) lets you check for troublesome setup errors before
they trip you up. After you have followed the instructions in z/OS UNIX System Services
Planning, GA22-7800, and completed your setup and customization (including the z/OS shell
and utilities), you can run the SVP.

Select a specific check
Select the specific checks you wish to run, as follows:

� Kernel

Displays kernel configuration information. If you believe this information is not how you
intended to set up your system, you should check your BPXPRMxx parmlib member and
startup procedures.
Chapter 5. z/OS UNIX shell and utilities 165

� Sysplex

Displays the names of the active systems using SYSPLEX(YES) and verifies that some of
the special symlinks are set up correctly.

� Users

Verify that each user that has a UID also has the default group assigned a GID.

� Groups

Checks that a GID is assigned to every group.

� User and group setup

Checks for duplicate assignment of UIDs and GIDs.

� User home directories

Verifies that each user has access to and owns his home directory and has read, write,
and search access to that directory. If automount is used for home directories, all file
systems will be mounted.

� Permissions for basic directories

This check surveys the permissions for several directories normally found on the system.

� /dev directory

Verifies that customary files are defined correctly. This also reconciles the number of
pseudo-ttys and file descriptor files with parmlib definitions.

� Shell environment

Verifies that the shell will run.

� OMVS command

Verifies that the OMVS command will run.

� Utility customization

Checks for differences in some files in the /samples directory with the corresponding file in
the /etc directory, that the terminfo files have been created, some environment variables
are appropriately set, a program could be compiled and run, and various other checks.
This verification step can be interactive. If it thinks something should be done, it will ask if
you want it to do it.

Requirements for use of the SVP
To use the SVP you must satisfy the following requirements:

� You must be a superuser (UID=0) with RACF SPECIAL authority, or the equivalent.

� Your system must be at any release of z/OS.

� Your system must be at ISPF version 4.1 or higher.

� You can use any security product; RACF is not required.
166 ABCs of z/OS System Programming Volume 9

Chapter 6. Security customization

This chapter provides an overview of UNIX System Services security. It provides information
on how to customize the security definitions for UNIX System Services. In addition to
introducing the basic concepts of UNIX security, this chapter provides the details on how to:

� Define new UNIX System Services users and groups

� Change existing users and groups for UNIX System Services

� Set up security for the UNIX System Services kernel

� Set up security for UNIX System Services daemons

� Set up security for UNIX System Services products

� Define users and groups to RACF

� Manage superusers

� Define permissions bits and how they are used

� Define RACF profiles for UNIX System Services

� Protect the daemons programs

� Understand server security

� Utilize various auditing capabilities

The security configuration is an important prerequisite to enabling z/OS UNIX System
Services. At least minimal security work is required just to make z/OS UNIX start. After that,
the security configuration becomes increasingly more complex as users are defined and
workload is brought onto the system. This chapter gives you a comprehensive view of the
work required to set up z/OS UNIX in a way that is secure and in line with the needs of typical
business organizations.

6

© Copyright IBM Corp. 2006, 2008. All rights reserved. 167

6.1 RACF OMVS segments

Figure 6-1 Defining RACF OMVS segments

RACF profile OMVS segments
The RACF user profile definition was expanded with a segment called OMVS for z/OS UNIX
support. All users and programs that need access to z/OS UNIX must have a RACF user
profile defined with an OMVS segment which has, as a minimum, a UID specified. A user
without a UID cannot access z/OS UNIX.

RACF user profile
Within this profile is an OMVS segment that defines the user as a z/OS UNIX user. The
OMVS segment has the following three fields:

UID A number from 0 to 2147483647 that identifies a z/OS UNIX user. A z/OS UNIX
user must have a UID defined.

HOME The name of a directory in the file system. This directory is called the home
directory and becomes the current directory when the user accesses z/OS
UNIX. This field is optional.

The home directory is the current directory when a user invokes z/OS UNIX.
During z/OS UNIX processing, this can be changed temporarily by using the cd
(change directory) shell command. The command will not change the value in
the RACF profile. The directory specified as home directory in the RACF profile
must exist (be pre-allocated) before a user can invoke z/OS UNIX. If a home
directory is not specified in RACF, the root (/) directory will be used as default.

Userid
Default
 Group

Connect Groups TSO DFP OMVS
UID Home Program

15 /u/smith /bin/sh
SMITH PROG1 PROG1 PROG2

Groupid
Superior
 Group Connected Users OMVS

GID

25
PROG1 PROGR SMITH BROWN

Groupid
Superior
Group Connected Users

PROG2 PROGR SMITH WHITE

Group profile (no OMVS segment)

Group profile

User profile
168 ABCs of z/OS System Programming Volume 9

PROGRAM The name of a program. This is the program that will be started for the user
when the user begins a z/OS UNIX session. Usually this is the program name
for the z/OS UNIX shell. This field is optional.

RACF group profile
The RACF group also has a segment called OMVS to define z/OS UNIX groups. It contains
only one field:

GID A number from 0 to 2147483647 that identifies a z/OS UNIX group.

Example segment
The example in Figure 6-1 on page 168 shows a user profile for TSO/E user ID SMITH which
is connected to two groups, PROG1 and PROG2. SMITH is defined as a z/OS UNIX user
because he has a UID specified. His home directory is /u/smith and he will get into the shell
when he issues the OMVS command because the name of the shell, /bin/sh, is specified as
the program name.

A program that will access z/OS UNIX and run as a started task (for example, RMFGAT) or a
daemon (for example, the inetd daemon, which is used for remote login (rlogin) to the shell
via TCP/IP) must also be defined to RACF with a user profile and a UID specified. This type
of user does not require a home directory or a program specified in the OMVS segment. The
home directory and program are important for people's user IDs.

The RACF profile for a group is also extended with an OMVS segment. A z/OS UNIX group is
a RACF group with a GID specified in the OMVS segment. The figure shows that group
PROG1 is also a z/OS UNIX group with a GID value of 25. The group PROG2 does not have
an OMVS segment and therefore is not a z/OS UNIX group.
Chapter 6. Security customization 169

6.2 z/OS UNIX UIDs and GIDs

Figure 6-2 z/OS UNIX users UIDs and GIDs

Defining UIDs and GIDs
UNIX systems have a concept of users and groups similar to RACF. A user identifier (or UID)
is a number between 0 and some large number that varies between brands of UNIX. User
numbers do not have to be unique and it is possible (though not recommended) for several
users to share the same UID, and even be logged on at the same time. UNIX sees these
users as being the same entities and they receive the same levels of authorization. A user
with UID=0 is what is called a superuser (“root” on some brands of UNIX). A superuser has
unlimited authority within a UNIX environment. For obvious reasons, UID=0 needs to be
strictly controlled.

Users are all related to a group. Groups allow authority to be controlled in a more economical
way, in that giving access to a group is a lot easier than giving access to a few hundred users
individually. A group identifier (or GID) is a number between 0 and some large number that
varies between brands of UNIX. Any number of users can share the same GID.

The z/OS UNIX implementation of UNIX allows UID and GID numbers up to 2,147,483,647,
but due to restrictions in UNIX design, it is recommended that the maximum number used be
no more than 77,777,777.

Other UNIX platform security
UNIX systems typically store their user/group information in a file called /etc/passwd. This file
does not exist under z/OS UNIX, because RACF (or a like security product) is used instead.

UID = user identifier

Number in range 0 - 2,147,483,647

But.... 0 - 16,777,215 due to pax protocol

0 = Superuser (Root)

GID = group identifier

Number in range 0 - 2,147,483,647

But.... 0 - 16,777,215 due to pax protocol

/etc/passwd
170 ABCs of z/OS System Programming Volume 9

6.3 z/OS UNIX users and groups

Figure 6-3 Defining z/OS UNIX users and groups

Defining z/OS UNIX users and groups
z/OS UNIX users are TSO/E user IDs with a RACF segment called OMVS defined for z/OS
UNIX use. All users that want to use z/OS UNIX services must be defined as z/OS UNIX
users. Similar to users in a UNIX system, z/OS UNIX users are identified by a UID (user
identification). The UID has a numerical value.

There are two types of users:

� User (regular user)

– Identified by a non-zero UID

� Superuser (authorized/privileged user). A superuser can be any of the following:

– A z/OS UNIX user with a UID=0

– A started procedure with a trusted or privileged attribute in the RACF started
procedures table

Superusers
The concept of superuser comes from UNIX. Sometimes it is also referred to as root
authority. A superuser can:

� Pass all z/OS UNIX security checks, so that the superuser can access any file in the
hierarchical file system. A superuser does not get any additional authorities to access
MVS/ESA resources. The authority is limited to the z/OS UNIX component.

SYSADM
GID=10

PROG1
GID=25

PROG2
GID=35

Superusers

Black
UID=0

BPXROOT
UID=0

Smith
UID=0

Brown
UID=15

Jones
UID=35

Greene
UID=40
Chapter 6. Security customization 171

� Manage z/OS UNIX processes and files.

� Have an unlimited number of processes running concurrently. For a started procedure,
this is true only if it has a UID of 0. It is not true for a trusted or privileged process with a
different UID.

� Change identity from one UID to another.

� Use the setrlimit command to increase any of the system limits for a process.

A superuser is usually a system administrator, or it can be a started procedure that is
authorized by the RACF started procedures table or the RACF STARTED class.

z/OS UNIX users belong to one or more groups in the same way that TSO/E users belong to
groups. A z/OS UNIX group is a RACF group with a GID defined. The GID has a numerical
value.

BPXROOT
If the target UID is 0 and a userid is not known, the setuid service sets the MVS userid to
BPXROOT, or to a userid that is specified as a PARMLIB option during installation.
BPXROOT is set up during system initialization as a superuser with a UID of 0. The
BPXROOT userid is not defined to the BPX.DAEMON FACILITY class profile. This special
processing is necessary to prevent a superuser from gaining daemon authority.

Reminder: Multiple users may have the same UID.
172 ABCs of z/OS System Programming Volume 9

6.4 BPXROOT user ID

Figure 6-4 Define a BPXROOT user ID

Defining BPXROOT
Define a user ID called BPXROOT with an OMVS segment. Specify UID=0, a home directory
of / (root), and the program /bin/sh. BPXROOT should not have any special permission to
MVS resources. This user ID is used in rare cases where a daemon process tries to change
the identity of a process to superuser but does not know the MVS identity of the process.
BPXROOT is the default name.

SUPERUSER statement
On the SUPERUSER statement in the BPXPRMxx PARMLIB member, specify the user ID
that the kernel will use when you need a user ID for UID(0).

SUPERUSER(BPXROOT)

NOPASSWORD option
The NOPASSWORD option indicates that BPXROOT is a protected user ID that cannot be
used to enter the system by using a password.

Note: If not specified, the default is BPXROOT. In that situation, do not permit the
BPXROOT user ID to BPX.DAEMON. The BPXROOT user ID is used when a daemon
process invokes setuid() to change the UID to 0 and the user name has not been
previously identified by getpwnam() or by the _passwd() function. This action prevents the
granting of daemon authority to a superuser who is not defined to BPX.DAEMON.

Define a superuser with a user ID of BPXROOT

Allows daemon processes to invoke setuid() for
superusers

NOPASSWORD option indicates that BPXROOT is
a protected user ID

BPXPRMxx parmlib member

SUPERUSER(BPXROOT)

ADDUSER BPXROOT DFLTGRP(OMVSGRP)
OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))
 NOPASSWORD
Chapter 6. Security customization 173

6.5 Superuser with appropriate authority

Figure 6-5 Defining superuser authority

Defining superuser authority
When you are defining users, you might want to define some of them with appropriate
superuser privileges. There are three ways of assigning superuser authority, as follows:

� Assigning a UID of 0, which is the least desirable way
� Using the BPX.SUPERUSER resource in the FACILITY class
� Using the UNIXPRIV class profiles, the preferred way

While some functions require a UID of 0, in most cases you can choose among the three
ways. When choosing among them, try to minimize the number of user IDs (as opposed to
started procedures) with a UID(0) superuser authority. To summarize the choices, UID(0)
gives you access to all UNIX functions and resources, as is true for all UNIX systems.

RACF profiles for superuser authority
However, in z/OS, RACF allows certain users to perform specific privileged functions without
being defined as UID(0).

BPX.SUPERUSER allows you to request that you be given such access, but you do not have
the access unless you make the request.

The UNIXPRIV class allows you to do other privileged functions, such as mounting a file
system. Both these definitions are similar to having UID(0) in that, before RACF grants
access to a system resource or use of it, the system checks these definitions.

3 ways to assign superuser authority

Assigning a UID of 0, which is the least desirable way

Okay for special administrators

Using the BPX.SUPERUSER resource in the RACF

FACILITY class

Using the UNIXPRIV class profiles, the preferred way

First introduced in OS/390 V2R8
174 ABCs of z/OS System Programming Volume 9

6.6 Commands for superusers

Figure 6-6 Superuser commands

Commands only for superusers
Superusers are special users in a z/OS UNIX environment and they are identified by a UID
value of 0. One way of defining superusers is to set the UID to 0 in the user's OMVS segment.
Using this method, the user always runs as a superuser. Multiple users can be defined with a
UID of 0.

Define some system administrators as superusers by adding an OMVS segment to their user
profile. Define the home directory as root (/). Add an OMVS segment to the groups to which
these users are connected.

Superuser commands
There are TSO and shell commands that can only be issued by a superuser or the file owner.
Several of these commands are shown in Figure 6-6.

chown Used to change the owner or group of a file or directory.

chmod Changes the access permissions

mount Used to mount a file system

chgrp Sets the group ID to group for the files and directories

su Starts a new shell and lets you operate in it with the privileges of a superuser or
another user.

SYSADM
GID=10

BLACK
 UID=0

JANE
UID=0

BROWN
UID=0

#

==>chown ...

z/OS UNIX Shell
TSO commands Shell commands

mount
unmount
mknod
osteplib

su
mount
chown
chgrp
chmod
Chapter 6. Security customization 175

6.7 z/OS UNIX security and RACF profiles

Figure 6-7 z/OS UNIX RACF profiles for security

RACF profiles to provide security for z/OS UNIX
A RACF FACILITY class profile example follows:

RDEFINE FACILITY BPX.SUPERUSER UACC(NONE)
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(JANE) ACCESS(READ)

The following are FACILITY class profiles you may want to define for z/OS UNIX:

� BPX.DAEMON

BPX.DAEMON serves two functions in the z/OS UNIX environment:

– Any superuser permitted to this profile has the daemon authority to change MVS
identities via z/OS UNIX services without knowing the target user ID's password. This
identity change can only occur if the target user ID has an OMVS segment defined.

If BPX.DAEMON is not defined, then all superusers (UID=0) have daemon authority. If
you want to limit which superusers have daemon authority, define this profile and
permit only selected superusers to it.

– Any program loaded into an address space that requires daemon level authority must
be defined to program control. If the BPX.DAEMON profile is defined, then z/OS UNIX
will verify that the address space has not loaded any executables that are uncontrolled
before it allows any of the following services that are controlled by z/OS UNIX to
succeed:
• seteuid
• setuid

RDEFINE FACILITY BPX.SUPERUSER UACC(NONE)
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(JANE) ACCESS(READ)

BPX.DAEMON

BPX.DEBUG

BPX.WLMSERVER
BPX.SUPERUSER

BPX.STOR.SWAP

BPX.SMF

BPX.SERVER

BPX.FILEATTR.PROGCTL

BPX.FILEATTR.APF

BPX.DEFAULT.USER

BPX.DAEMON.HFSCTL

BPX.NEXT.USER

BPX.FILEATTR.SHARELIB

BPX.JOBNAME

BPX.SAFFASTPATH

Define superuser authority
176 ABCs of z/OS System Programming Volume 9

• setreuid
• pthread_security_np()
• auth_check_resource_np()
• _login()
• _spawn() with user ID change
• _password()

� BPX.DAEMON.HFSCTL

Controls which users with daemon authority are allowed to load uncontrolled programs
from MVS libraries into their address space.

� BPX.DEBUG

Users with read access to the BPX.DEBUG FACILITY class profile can use ptrace (via
dbx) to debug programs that run with APF authority or with BPX.SERVER authority.

� BPX.DEFAULT.USER

Not all users and groups need to have discrete OMVS segments defined for them. For
example:

– Users who need to use sockets and do not need any other UNIX services. In the past,
users could open sockets without any other special permissions.

– Users who want to run multithreading PL/1 programs. PL1 uses some kernel services,
so the OMVS segments are currently required to get dubbed.

– Users who just want to experiment with the shell and do not have an OMVS segment
defined.

The default OMVS segments will reside in a USER profile and a GROUP profile. The
names of these profiles are selected by the installation, and stored in the application data
field of BPX.DEFAULT.USER.

� BPX.FILEATTR.APF

Controls which users are allowed to set the APF-authorized attribute in an HFS file. This
authority allows the user to create a program that will run APF-authorized. This is similar
to the authority of allowing a programmer to update 'SYS1.LINKLIB' or 'SYS1.LPALIB'.

� BPX.FILEATTR.PROGCTL

Controls which users are allowed to set the program-controlled attribute in an HFS file.
Programs marked with this attribute can execute in server address spaces that run with a
high level of authority.

� BPX.FILEATTR.SHARELIB

Indicates that extra privilege is required when setting the shared library extended attribute
via the chattr() callable service. This prevents the shared library region from being
misused.

� BPX.JOBNAME

Controls which users are allowed to set their own job names by using the
_BPX_JOBNAME environment variable or the inheritance structure on spawn. Users with
READ or higher permissions to this profile can define their own job names.

� BPX.NEXT.USER

Enables automatic assignment of UIDs and GIDs. The APPLDATA of this profile specifies
a starting value, or range of values, from which RACF will derive unused UID and GID
values.

� BPX.SAFFASTPATH

Enables faster security checks for file system and IPC constructs.
Chapter 6. Security customization 177

� BPX.SERVER

Restricts the use of the pthread_security_np() service. A user with at least READ or
WRITE access to the BPX.SERVER FACILITY class profile can use this service. It
creates or deletes the security environment for the caller's thread.

This profile is also used to restrict the use of the BPX1ACK service, which determines
access authority to z/OS resources. Servers with authority to BPX.SERVER must run in a
clean program-controlled environment. z/OS UNIX will verify that the address space has
not loaded any executables that are uncontrolled before it allows any of the following
services that are controlled by z/OS UNIX to succeed:

– seteuid
– setuid
– setreuid
– pthread_security_np()
– auth_check_resource_np()
– _login()
– _spawn() with user ID change
– _password()

� BPX.SMF

Checks if the caller attempting to cut an SMF record is allowed to write an SMF record or
test if an SMF type or subtype is being recorded.

� BPX.SRV.userid

Allows users to change their UID if they have access to BPX.SRV.userid, where
uuuuuuuu is the MVS user ID associated with the target UID. BPX.SRV.userid is a RACF
SURROGAT FACILITY class profile.

� BPX.STOR.SWAP

Controls which users can make address spaces nonswappable. Users permitted with at
least READ access to BPX.STOR.SWAP can invoke the _mlockall() function to make their
address space either nonswappable or swappable.

When an application makes an address space nonswappable, it may cause additional real
storage in the system to be converted to preferred storage. Because preferred storage
cannot be configured offline, using this service can reduce the installation's ability to
reconfigure storage in the future. Any application using this service should warn the
customer about this side effect in their installation documentation.

� BPX.SUPERUSER

Users with access to the BPX.SUPERUSER FACILITY class profile can switch to
superuser authority (effective UID of 0).

� BPX.WLMSERVER

Controls access to the WLM server functions _server_init() and _server_pwu(). A server
application with read permission to this FACILITY class profile can use the server
functions, as well as the WLM C language functions, to create and manage work requests.
178 ABCs of z/OS System Programming Volume 9

6.8 z/OS UNIX security: BPX.SUPERUSER

Figure 6-8 Using BPX.SUPERUSER to define superuser authority

Superuser authority with BPX.SUPERUSER profiles
There is an alternative way of defining superusers. Define system administrators in RACF
with non-zero UIDs, and give them READ access to a RACF FACILITY class called
BPX.SUPERUSER. Users with this authority will be able to temporarily switch to become
superuser when this authority is required for administrative tasks. These users can use any of
the following methods to switch to superuser:

� In the z/OS UNIX shell, use the command su (switch user). This command creates a
subshell where the user will have superuser authority and authorized commands can be
executed. When the subshell session is ended, the user returns to the first shell session
as a regular user.

� Use the ISHELL command to enter the z/OS UNIX ISPF Shell. Select the option to switch
to superuser state. The user will then have superuser authority until the user exits the
ISHELL environment.

� After gaining superuser authority in the ISHELL, the user can do a split screen in ISPF and
enter the OMVS command. The z/OS UNIX shell that is started inherits the superuser
authority set up in the ISHELL.

BLACK
UID=5

JANE
UID=6

BROWN
UID=7

RACF FACILITY Class

BPX.SUPERUSER

BLACK
JANE

BROWN

$

==>su

#

==>chown ...

Regular
User

Superuser

RDEFINE FACILITY BPX.SUPERUSER UACC(NONE)
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(BLACK) ACCESS(READ)

SYSADM
GID=10
Chapter 6. Security customization 179

6.9 z/OS UNIX superuser granularity

Figure 6-9 Adding superuser granularity for access

RACF UNIXPRIV class
A superuser can:

� Pass all security checks, so that the superuser can access any file in the file system.

� Manage processes.

� Have an unlimited number of processes running concurrently. For a started procedure,
this is true only if it has a UID of 0. It is not true for a trusted or privileged process with a
different UID.

� Change identity from one UID to another.

� Use setrlimit to increase any of the system limits for a process.

Assigning superuser authority using the UNIXPRIV class
You may choose to assign the UID of 0 to multiple RACF user IDs. However, you should seek
to minimize the assignment of superuser authority in your installation. You can accomplish
this by setting z/OS UNIX user limits and by managing superuser privileges through
UNIXPRIV profiles.

Superuser security exposure
Can execute all commands

Access all HFS files in the system

Applicable to every superuser

 RACF UNIXPRIV class

Give a user superuser function for specific task
180 ABCs of z/OS System Programming Volume 9

6.10 Resource names: UNIXPRIV

Figure 6-10 Profiles in the RACF UNIXPRIV class

UNIXPRIV RACF profiles
You can define profiles in the UNIXPRIV class to grant RACF authorization for certain z/OS
UNIX privileges. These privileges are automatically granted to all users with z/OS UNIX
superuser authority. By defining profiles in the UNIXPRIV class, you can specifically grant
certain superuser privileges, with a high degree of granularity, to users who do not have
superuser authority. This allows you to minimize the number of assignments of superuser
authority at your installation and reduces your security risk.

Resource names for profiles
Resource names in the UNIXPRIV class are associated with z/OS UNIX privileges. You must
define profiles in the UNIXPRIV class protecting these resources in order to use RACF
authorization to grant z/OS UNIX privileges. The UNIXPRIV class must be active and
SETROPTS RACLIST must be in effect for the UNIXPRIV class. Global access checking is
not used for authorization checking to UNIXPRIV resources. The following profiles with
SUPERUSER.xxxxxxxx are:

� CHOWN.UNRESTRICTED

ACCESS required (NONE). Allows all users to use the chown command to transfer
ownership of their own files.

� FILESYS

ACCESS required (READ). Allows user to read any HFS file, and to read or search any
HFS directory.

UNIXPRIV RESOURCE NAMES - ACCESS

CHOWN.UNRESTRICTED - NONE
SUPERUSER.FILESYS - READ - UPDATE - CONTROL

SUPERUSER.FILESYS.CHOWN - READ
SUPERUSER.FILESYS.MOUNT - READ - UPDATE
SUPERUSER.FILESYS.PFSCTL - READ
SUPERUSER.QUIESCE - READ - UPDATE

SUPERUSER.IPC.RMID - READ
SUPERUSER.PROCESS.GETPSENT - READ

SUPERUSER.PROCESS.KILL - READ

SUPERUSER.PROCESS.PTRACE - READ

SUPERUSER.SETPRIORITY - READ
SUPERUSER.FILESYS.VREGISTER - READ
Chapter 6. Security customization 181

ACCESS required (UPDATE). Allows user to write to any HFS file, and includes privileges
of READ access.

ACCESS required (CONTROL or higher). Allows user to write to any HFS directory, and
includes privileges of UPDATE access.

� FILESYS.CHOWN

ACCESS required (READ). Allows user to use the chown command to change ownership
of any file.

� FILESYS.MOUNT

ACCESS required (READ). Allows user to issue the TSO/E MOUNT command or the
mount shell command with the nosetuid option. Also allows users to unmount a file system
with the TSO/E UNMOUNT command or the unmount shell command mounted with the
nosetuid command. Users permitted to this profile can use the chmount shell command to
change the mount attributes of a specified file system.

ACCESS required (UPDATE). Allows user to issue the TSO/E MOUNT command or the
mount shell command with the setuid option. Also allows user to issue the TSO/E
UNMOUNT command or the unmount shell command with the setuid option. Users
permitted to this profile can issue the chmount shell command on a file system that is
mounted with the setuid option.

� FILESYS.QUIESCE

ACCESS required (READ). Allows users to issue quiesce and unquiesce commands for a
file system mounted with the nosetuid option.

ACCESS required (UPDATE). Allows users to issue quiesce and unquiesce commands
for a file system mounted with the setuid option.

� FILESYS.PFSCTL

ACCESS required (READ). Allows users to use the pfsctl() callable service.

� FILESYS.VREGISTER

ACCESS required (READ). Allows a server to use the vreg() callable service to register
as a VFS file server.

� IPC.RMID

ACCESS required (READ). Allows users to issue the ipcrm command to release IPC
resources.

� PROCESS.GETPSENT

ACCESS required (READ). Allows users to use the w_getpsent callable service to receive
data for any process.

� PROCESS.KILL

ACCESS required (READ). Allows users to use the kill() callable service to send signals
to any process.

� PROCESS.PTRACE

ACCESS required (READ). Allows users to use the ptrace() function through the dbx
debugger to trace any process. Allows users of the ps command to output information on
all processes. This is the default behavior of ps on most UNIX platforms.

� SETPRIORITY

ACCESS required (READ). Allows users to increase their own priority.
182 ABCs of z/OS System Programming Volume 9

6.11 z/OS UNIX UNIXPRIV class profiles

Figure 6-11 Defining superuser authority with the UNIXPRIV class

Defining profiles in the UNIXPRIV class
You can reduce the number of people who have superuser authority at you installation by
defining profiles in the UNIXPRIV class that grant RACF authorization for certain z/OS UNIX
privileges.

Normally, these privileges are automatically defined for all users who are defined with z/OS
UNIX superuser authority. But you can use UNIXPRIV to grant certain superuser privileges,
with a high degree of granularity, to users who do not have superuser authority.

UNIXPRIV class example
For example, if users have READ access to SUPERUSER.FILESYS.MOUNT, they can issue
a mount and unmount command without being a defined superuser with all superuser
capabilities, as follows:

RDEFINE UNIXPRIV SUPERUSER.FILESYS.MOUNT UACC(NONE)
PERMIT SUPERUSER.FILESYS.MOUNT CLASS(UNIXPRIV) ID(SMITH) ACCESS(READ)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Now user SMITH (UID=35) can issue mounts, which is a superuser function. This is the only
superuser function user SMITH can do.

SETROPTS CLASSACT(UNIXPRIV)

RDEFINE UNIXPRIV SUPERUSER.FILESYS.MOUNT
 UACC(NONE)

PERMIT SUPERUSER.FILESYS.MOUNT
 CLASS(UNIXPRIV) ID(SMITH)
 ACCESS(READ)

SETROPTS RACLIST(UNIXPRIV)

RACF Class - UNIXPRIV
 RDEFINE UNIXPRIV resource-name UACC()
Chapter 6. Security customization 183

6.12 Assigning UIDs

Figure 6-12 Assigning UIDs with shared UID prevention

Assigning UIDs
z/OS UNIX allows multiple users to have the same UID. Assigning the same UID to multiple
user IDs allows each user to access all of the resources associated with the other users of
that shared user ID. The shared access includes not only z/OS UNIX resources such as files,
but also includes the possibility that one user could access z/OS resources of the other users
that are normally considered to be outside the scope of z/OS UNIX.

You can assign a z/OS UNIX user identifier (UID) to a RACF user by specifying a UID value
in the OMVS segment of the RACF user profile. This can be an employee serial number or
some other unique number for each user.

When assigning a UID to a user, make sure that the user is connected to at least one group
that has an assigned GID. This group should be either the user's default group or one that the
user specifies during logon or on the batch job. A user with a UID and a current connect
group with a GID can use z/OS UNIX functions and access z/OS UNIX files based on the
assigned UID and GID values. If a UID and a GID are not available as described, the user
cannot use z/OS UNIX functions.

Note: This function was added in z/OS V1R4.

Make UIDs unique, or users end up 'sharing' files

Assign manually - ADDUSER OMVS(UID(37850))

Use employee serial number, if you can - or

SHARED.IDS profile UNIXPRIV class - z/OS V1R4
Acts as a system-wide switch to prevent assignment of
an ID that is already in use

Enable shared UID prevention

RDEFINE UNIXPRIV SHARED.IDS UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

IRR52174I Incorrect UID 12. This value is already in use by BRADY.

IRR52185I The same UID cannot be assigned to more than one user.

ADDUSER MARCY OMVS(UID(12))

ADDUSER (HARRY MARY) OMVS(UID(14))

BRADY
OMVS

UID=12

RACF DB

PATS
OMVS

GID=46
184 ABCs of z/OS System Programming Volume 9

Shared UID prevention option
In order to prevent several users from having the same UID number, a new RACF
SHARED.IDS profile has been introduced in the UNIXPRIV class. This new profile acts as a
system-wide switch to prevent assignment of a UID that is already in use. The use of the
SHARED.IDS profile requires AIM stage 2 or 3. To enable shared UID prevention, it is
necessary to define a new SHARED.IDS profile in the UNIXPRIV class, as follows:

RDEFINE UNIXPRIV SHARED.IDS UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

SHARED.IDS examples
Once the SHARED.IDS profile has been defined and the UNIXPRIV class refreshed, it will
not allow a UID to be assigned if the UID is already in use.

As shown in the Figure 6-12 on page 184, UID 12 is not assigned to user MARCY because in
the RACF database this UID is assigned to user BRADY. Also, users HARRY and MARY can
not be assigned the same UID 14.

The same is true for GIDs; it will not allow a GID to be shared between different groups.

Note: The use of this new functionality does not affect pre-existing shared UIDs. They
remain as shared once you install the new support. If you want to eliminate sharing of the
same UID, you must clean them up separately. The release provides a new IRRICE report
to find the shared UIDs.
Chapter 6. Security customization 185

6.13 Shared UID prevention

Figure 6-13 Using the SHARED keyword to allow duplicate UID assignment

Allowing duplicate user IDs
You may want to assign the same UID to multiple user IDs if these user IDs are used by the
same person or persons. It may also be necessary to assign multiple users a UID of 0
(superuser authority). When doing this, it is important to remember that a superuser is
implicitly a trusted user who has the potential of using UID(0) to access all z/OS resources.

Even if the SHARED.IDS profile is defined, you may still require some UIDs to be shared and
others not to be shared. For example, you may require multiple superusers with a UID(0). It is
possible to do this using the new SHARED keyword in the OMVS segment of the ADDUSER,
ALTUSER, ADDGROUP, and ALTGROUP commands.

To allow an administrator to assign a non-unique UID or GID using the SHARED keyword,
you must grant that administrator at least READ access to the SHARED.IDS profile and be at
the z/OS V1R4 level or above, as follows:

PERMIT SHARED.IDS CLASS(UNIXPRIV) ID(UNIXGUY) ACCESS(READ)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Once user ID UNIXGUY has at least READ access to the SHARED.IDS profile, UNIXGUY
can assign the same UID or GID to multiple users, using the SHARED KEYWORD, as
follows: ADDUSER OMVSKERN OMVS(UID(0) SHARED)

Note: To specify the SHARED operand, you must have the SPECIAL attribute or at least
READ authority to the SHARED.IDS profile in the UNIXPRIV class.

BPXOINIT

OMVS
UID=0

RACF DB

New SHARED keyword
OMVS segment of the ADDUSER, ALTUSER, ADDGROUP,
and ALTGROUP commands

IRR52175I You are not authorized to specify the SHARED keyword.

AU OMVSKERN OMVS(UID(0) SHARED)

AU MYBUDDY OMVS(UID(0) SHARED)

AG (G1 G2 G3) OMVS(GID(9) SHARED) UNIXGUY

HARRY

To specify the SHARED operand, you must have the SPECIAL attribute or
at least READ authority to the SHARED.IDS profile in the UNIXPRIV class

PERMIT SHARED.IDS CLASS(UNIXPRIV) ID(UNIXGUY) ACC(READ)
SETROPTS RACLIST(UNIXPRIV) REFRESH
186 ABCs of z/OS System Programming Volume 9

6.14 Automatic UID and GID assignment

Figure 6-14 Assigning UIDs and GIDs automatically

Specifying automatic assignment of UIDs and GIDs
You can assign a z/OS UNIX user identifier (UID) and group identifier (GID) to a RACF user
by specifying a UID value in the OMVS segment of the RACF user profile or by using the
AUTOUID and AUTOGID keywords.

UIDs and GIDs can be assigned automatically by RACF to new users, making it easier to
manage the process of assigning UIDs and GIDs to users. Previously, this was a manual
process and guaranteed the uniqueness of the UID and GID for every user.

Using a new AUTOUID keyword with the ADDUSER and ALTUSER commands, an unused
UID will be assigned to the new or modified user. Using the AUTOGID keyword on the
ADDGROUP and ALTGROUP commands, a GID will be assigned automatically to the new or
modified group.

Note: When assigning a UID to a user, make sure that the user is connected to at least
one group that has an assigned GID. This group should be either the user's default group
or one that the user specifies during logon or on the batch job. A user with a UID and a
current connect group with a GID can use z/OS UNIX functions and access z/OS UNIX
files based on the assigned UID and GID values. If a UID and a GID are not available as
described, the user cannot use z/OS UNIX functions.

Note: This function was added in z/OS V1R4.

New AUTOUID and AUTOGID keywords

OMVS segment of the ADDUSER and ALTUSER

OMVS segment of the ADDGROUP and ALTGROUP

Derived values are guaranteed to be unique

Automatic assignment by RACF with z/OS V1R4

 IRR52177I User MARY was assigned an OMVS UID value of 4646

IRR52177I Group PAYR was assigned an OMVS GID value of 105

ADDUSER MARY OMVS(AUTOUID)

ADDGROUP PAYR OMVS(AUTOGID)
Chapter 6. Security customization 187

6.15 Automatic assignment requirements

Figure 6-15 Requirements for automatic assignment of UIDs and GIDs

Application identity mapping
Application identity mapping (AIM) must be implemented if you wish to define and use
SHARED.IDS. If the RACF command detects that the SHARED.IDS profile is defined, but the
RACF database is not at least at AIM stage 2, the command fails and message IRR52176I is
issued. Refer to z/OS Security Server RACF System Programmer's Guide, SA22-7681 for
more information on using the IRRIRA00 utility to advance to AIM stage 2.

Automatic assignment requirements
A SHARED.IDS profile allows users to assign UID and GID values that are not unique.

The use of automatic UID/GID requires the following:

� You can convert your RACF database to stage 3 of application identity mapping using the
IRRIRA00 conversion utility. It converts an existing RACF database to application identity
mapping functionality using a four-stage approach. Install AIM stage 2 or 3, otherwise an
IRR52182I message is issued and the automatic assignment attempt fails with the
following message:

IRR52182I Automatic UID assignment requires application identity mapping to
be implemented.

� A SHARED.IDS profile must be defined, otherwise, an IRR52183I message is issued and
the attempt fails with the following message:

IRR52183I Use of automatic UID assignment requires SHARED.IDS to be
implemented.

AIM stage 2 or 3 is required - IRR52182I message

SHARED.IDS must be defined - IRR52183I message

The SHARED.IDS profile is defined as follows:

RDEFINE UNIXPRIV SHARED.IDS UACC(NONE)

SHARED.IDS - Allows assigning UID/GID values that
are unique. It acts as a system-wide switch to prevent
assignment of an ID which is already in use

The BPX.NEXT.USER Facility class profile must be
defined and RACLISTed - IRR52179I message

RDEFINE FACILITY BPX.NEXT.USER APPLDATA(UID/GID)

SETROPTS RACLIST(FACILITY) REFRESH
188 ABCs of z/OS System Programming Volume 9

� The SHARED.IDS must be defined as follows:

RDEFINE UNIXPRIV SHARED.IDS UACC(NONE)

The BPX.NEXT.USER profile
RACF can automatically generate a unique ID value in the OMVS segment upon your
request. This is done by defining a profile called BPX.NEXT.USER in the FACILITY class by
specifying the following:

� The AUTOUID operand of the ADDUSER and ALTUSER commands

� The AUTOGID operand of the ADDGROUP and ALTGROUP commands

� The BPX.NEXT.USER facility class profile must be defined and RACLISTed. Otherwise,
an IRR52179I message will be issued and the attempt fails with the following message:

IRR52179I The BPX.NEXT.USER profile must be defined before you can use
automatic UID assignment.
Chapter 6. Security customization 189

6.16 Automatic assignment examples

Figure 6-16 Examples of assigning UIDs and GIDs automatically

Automatic assignment using APPLDATA
APPLDATA consists of 2 qualifiers separated by a forward slash (/). The qualifier on the left
of the slash character specifies the starting UID value or range of UID values. The qualifier on
the right of the slash character specifies the starting GID value or range of GID values.
Qualifiers can be null or specified as 'NOAUTO' to prevent automatic assignment of UIDs or
GIDs.

The starting value is the value RACF attempts to use in ID assignment, after determining that
the ID is not in use. If it is in use, the value is incremented until an appropriate value is found.

The maximum value valid in the APPLDATA specification is 16,777,215. If this value is
reached or a candidate UID/GID value has been exhausted for the specified range,
subsequent automatic ID assignment attempts fail and message IRR52181I is issued.

Profile examples
In the following example, we have defined the APPLDATA for a range of values from 5 to
70000 for UIDs and from 3 to 30000 for GIDs. USERA and USERB are added using the
automatic assignment of UID. The range of automatic UID assignment starts with 5, so
USERA is assigned to UID(5), which was free. UID(6) and UID(7) were already assigned
before we started our example, so the next free UID is 8. USERB is assigned to UID(8).

RDEFINE FACILITY BPX.NEXT.USER APPLDATA('5-70000/3-30000')

ADDUSER USERA OMVS(AUTOUID)

RDEFINE FACILITY BPX.NEXT.USER APPLDATA('5-70000/3-30000')

 ADDUSER USERA OMVS(AUTOUID)
IRR52177I User USERA was assigned an OMVS UID value of 5.

 ADDUSER USERB OMVS(AUTOUID)
IRR52177I User USERB was assigned an OMVS UID value of 6.

Profile examples

Other Examples of APPLDATA
RDEFINE FACILITY BPX.NEXT.USER APPLDATA('1/0')

RALTER FACILITY BPX.NEXT.USER APPLDATA('2001/201')
RDEFINE FACILITY BPX.NEXT.USER APPLDATA('NOAUTO/3000')
190 ABCs of z/OS System Programming Volume 9

IRR52177I User USERA was assigned an OMVS UID value of 5.

ADDUSER USERB OMVS(AUTOUID)
IRR52177I User USERB was assigned an OMVS UID value of 6.

RACF assigns the UID or GID
RACF extracts the APPLDATA from the BPX.NEXT.USER and parses out the starting value.
It checks whether it is already in use and if so, the value is incremented and checked again
until an unused value is found. Once a free value is found, it assigns the value to the user or
group and replaces the APPLDATA with the new starting value, which is the next potential
value or the end of the range.

In our example, that means that if UID(6) is free after UID(5) is assigned to USERA, RACF
will start checking from UID(7) in the next assignment. But you can change the APPLDATA
and modify the starting value. The APPLDATA can be changed using the following command:

RALTER FACILITY BPX.NEXT.USER APPLDATA('2000/500')

Other examples of APPLDATA
Here are some examples of correct and incorrect APPLDATA specifications:

Good data 1/0
1-50000/1-20000
NOAUTO/100000
/100000
10000-20000/NOAUTO
10000-20000/

Bad data 123B
/
2147483648 /* higher than max UID value */
555/1000-900

If you have an incorrect specification and attempt to use AUTOUID on an ADDUSER
command, the following message is issued:

IRR52187I Incorrect APPLDATA syntax for the BPX.NEXT.USER profile.

Note: Automatic assignment of UIDs and GIDs fails if you specify a list of users to be
defined with the same name or if you specify the SHARED keyword. Also, AUTOUID or AUTOGID
is ignored if UID or GID is also specified.
Chapter 6. Security customization 191

6.17 Automatic assignment with RRSF

Figure 6-17 Automatic assignment with RRSF

RACF remote sharing facility (RRSF)
The RACF remote sharing facility allows RACF to communicate via APPC with other MVS
systems that use RACF, allowing you to maintain remote RACF databases. RRSF extends
the RACF operating environment beyond the traditional single host and shared DASD
environments, to an environment made up of RRSF nodes that are capable of communicating
with one another. This support provides administration of multiple RACF databases from
anywhere in the RRSF network.

Use non-overlapping APPLDATA ranges
In an RRSF configuration, shown in Figure 6-17, use non-overlapping APPLDATA ranges to
avoid UID and GID duplications.

An additional concern is to make RACF automatically suppress propagation of internal
updates. This can be done by specifying the ONLYAT keyword to manage the
BPX.NEXT.USER profile, as follows:

RDEFINE BPX.NEXT.USER APPLDATA('5000-10000/5000-10000') ONLYAT(NODEA.MYID)
RDEFINE BPX.NEXT.USER APPLDATA('10001-20000/10001-20000') ONLYAT(NODEB.MYID)

For more information about automatic assignment in a RRSF configuration, refer to z/OS
Security Server RACF Security Administrator’s Guide, SA22-7683.

NODEA NODEB

BPX.NEXT.USER

5000-10000
 /
5000-10000

RACF DB

ADDUSER HARRY OMVS(AUTOUID) ADDUSER MARY OMVS(AUTOUID)

BPX.NEXT.USER

10001-20000
 /
10001-20000

RACF DB

USER profile updates kept in sync

AU HARRY OMVS(AUTOUID UID(5000))

 AU MARY OMVS(AUTOUID UID(10001))

Use non-overlapping APPLDATA ranges to avoid UID/GID duplication

RDEF BPX.NEXT.USER APPLDATA('500-1000/500-1000') ONLYAT(NODEA.MYID)
RDEF BPX.NEXT.USER APPLDATA('1001-2000/1001-2000') ONLYAT(NODEB.MYID)
192 ABCs of z/OS System Programming Volume 9

6.18 z/OS UNIX security: File security packet

Figure 6-18 File security packet definitions

File security packet (FSP)
Each z/OS UNIX file and directory has a file security packet (FSP) associated with it to control
access. The FSP is created when a file or directory is created. It is stored in the file system for
the life of the file or directory, until the file or directory is deleted, at which time the FSP is also
deleted. The FSP consists of:

� File owner UID
� File owner GID
� File mode

Extended attributes
Another section of the FSP, which is specific to the z/OS UNIX implementation, is called
extended attributes (extattr). It contains flags to mark HFS program files as APF-authorized
and program controlled. The extattr shell command is used to manipulate these bits.

File Mode
The file mode consists of:

SetUID This bit only relates to executable files. If on, it causes the UID of the user
executing the file to be set to the file's UID.

SetGID This bit only relates to executable files. If on, it causes the GID of the user
executing the file to be set to the file's GID.

Sticky Bit This bit only relates to executable files. If on, it causes the file to be retained in
memory for performance reasons. The implementation of this varies between

File
Owner

UID

File
Owner

GID

S
e
t
U
I
D

S
e
t
G
I
D

S
t
i
c
k
y

r w x r w x r w x

Owner Group Other

File Permission Bits

File Mode

Access Permission for File Permission for Directory
Read
(r)

Permission to read or print the
contents.

Permission to read, but not
search, the contents.

Write
(w)

Permission to change, add to,
or delete from the contents.

Permission to change, add, or
delete directory entries.

Execute
(x)

Permission to run the file. This
permission is used for

executable files.
Permission to search the

directory.

extattr
Chapter 6. Security customization 193

platforms. In z/OS UNIX, it means programs are loaded from LPA (or LNKLST
as per normal MVS program search) instead of an HFS file. For a directory, the
sticky bit causes UNIX to permit files in a directory or subdirectories to be
deleted or renamed only by the owner of the file, or by the owner of the directory,
or by a superuser.

Sticky bit for directories
Using the mkdir, MKDIR, or chmod command, you can set the sticky bit on a directory to
control permission to remove or rename files or subdirectories in the directory. When the bit is
set, a user can remove or rename a file or remove a subdirectory only if one of these is true:

� The user owns the file or subdirectory.

� The user owns the directory.

� The user has superuser authority.

If you use the rmdir, rename, rm, or mv utility to work with a file, and you receive a message
that you are attempting an “operation not permitted,” check to see if the sticky bit is set for the
directory the file resides in.

Permission bits
The file mode also has the file permission bits, consisting of:

� Owner read/write/execute permissions

� Group read/write/execute permissions

� Other (or all users) read/write/execute permissions

where:

r Read (r) access to both files and directories

w Write (w) access to both files and directories

x Execute (x) has a different meaning for files and directories, as follows:

 - For an executable file, an access of x means that the user can execute the file.

 - For a directory, an access of x means the user can search the directory.

Both read (r) and execute (x) are required in order to execute a shell script. To access HFS
files, a user needs the following:

� Search (x) permission to all the directories in the pathname of files the user wants to
access.

� Write permission to directories where the user will be creating new files and directories.

� Read and/or write permission, as appropriate, to files for access.

� Execute (x) permission for an executable file.

Note: In z/OS UNIX, these three permissions are not hierarchical. For example, a user
with write permission who does not have read permission, can only write over existing data
or add data to a file, and cannot look at the contents of the file or print the file. Similarly,
write and read permission does not allow a user to execute a file or search a directory.
194 ABCs of z/OS System Programming Volume 9

6.19 Octal values for permission bits

Figure 6-19 Octal values of permission bit settings

Permission bits in octal
z/OS UNIX commands typically allow the definition of permission bit settings using octal
notation. It is a simpler way to describe the permission bit string.

The octal numbers relate to the bit positions as follows:

Dec Bin Map
=== === ===
0 = 000 = ---
1 = 001 = --x
2 = 010 = -w-
3 = 011 = -wx
4 = 100 = r--
5 = 101 = r-x
6 = 110 = rw-
7 = 111 = rwx

where:

Dec Decimal representation of the octal value

Bin Binary representation of the octal value

Map Map of permission bits according to binary positions

 0 --- No access
 1 --x Execute-only
 2 -w- Write-only
 3 -wx Write and execute
 4 r-- Read-only
 5 r-x Read and execute
 6 rw- Read and write
 7 rwx Read, write and execute

Permission Bit Examples:
700 owner(7=rwx) group(0=---) other(0=---)
755 owner(7=rwx) group(5=r-x) other(5=r-x)

XXX
421

To change the permission bits for a file:
The ISPF shell
The chmod and setfacl commands
The chmod() function in a program
Chapter 6. Security customization 195

Permission bit settings
UNIX commands such as chmod accept octal notation when referring to permission bit
settings.

A permission bit setting of 700 is good for a user's private files, allowing the owner full access
while denying access to others.

A permission bit setting of 755 is good for a user to let other people access their files (read
and execute), but not update them.

Changing permission bit settings
To change the permission bits for a file, use one of the following:

� The ISPF shell.

� The chmod command. You can use it to change individual bits without affecting the other
bits. You can also use the setfacl command to change permission bits.

� The chmod() function in a program. The function changes all permission bits to the values
in the mode argument.
196 ABCs of z/OS System Programming Volume 9

6.20 Data set security versus file security

Figure 6-20 MVS data set security versus file system security

MVS security versus z/OS UNIX security
Security processing within z/OS UNIX differs in many ways from standard security processing
in MVS. MVS resources like users and data are protected by RACF profiles stored in the
RACF database. RACF refers to the profiles when deciding which users should be permitted
to protected system resources. Security administration is done with RACF commands or
RACF ISPF panels.

z/OS UNIX users are defined as MVS users and they are administrated by RACF profiles.
The security information for files and directories in a hierarchical file system is stored within
the file system itself in a file security packet (FSP). HFS files and directories are protected by
permission bit information which is kept in the FSP. Administration of file security is
performed by using z/OS UNIX shell commands, or ISHELL menu options.

The user administration is similar for regular MVS users and z/OS UNIX users. Every user
must present a password when logging on to the system. z/OS UNIX uses a UID and GID for
each user and this information is stored in RACF profiles together with the user ID and
password information. The concept of a superuser in z/OS UNIX is similar to a RACF security
administrator.

z/OS UNIX users do not work with data sets, they work with files and directories. z/OS UNIX
users do not have to be aware that their data is located physically in an HFS data set. All they
see is the hierarchical file structure made up of multiple mounted HFS data sets. The FSPs
are maintained by z/OS UNIX commands. RACF data set profiles cannot be used to protect
z/OS UNIX files and directories.

RACF
administrator

MVS Data Set Security: UNIX File Security:

z/OS UNIX
Superuser

Access to all data sets Access to all files

All other
users

All other
users

Access to a data set
if RACF profile permits

Access to a file if
permission bits allow
or ACL allows (z/OS 1.3)
or UNIXPRIV allows
Chapter 6. Security customization 197

6.21 z/OS UNIX user’s security environment

Figure 6-21 A z/OS UNIX user’s file security environment

User’s security environment
Authorization checking for z/OS UNIX files and directories uses the control blocks shown in
Figure 6-21, and RACF makes the following checks:

� The accessor environment element (ACEE) is a control block that contains a description
of the current user's security environment, including the user ID, current connect group,
user attributes, and group authorities. An ACEE is constructed during user identification
and verification by RACF.

� The effective UID and effective GID of the process are used in determining access
decisions. The only exception is that if file access is being tested, rather than requested,
the real UID and GID are used instead of the effective UID and GID. The real and effective
IDs are generally the same for a process, but if a set-uid or set-gid program is executed,
they can be different.

FSP and security flow
Permission bit information is stored in the file security packet (FSP) within each file and
directory. (ACLs may also be stored with the file.) Permission bits allow you to specify read
authority, write authority, or search authority for a directory. They also allow specification of
read, write, or execute authority for a file. Because there are three sets of bits, separate
authorities can be specified for the owner of the file or directory, the owning group, and
everyone else (like RACF's universal access authority, or UACC). The owner is represented
by a UID. The owning group is represented by a GID. Access checking compares the user's
UID and GID to the ones stored in the FSP.

ACEE

 Permission bits
 (ACLs - (optional))

Owning UID
50

Owning GID
100

FSP

Supplemental Groups

Effective UID
77

Effective GID
999

100 200 300

User Security Packet (USP)
198 ABCs of z/OS System Programming Volume 9

Security check
The security check and flow is as follows:

� Security information, such as the owner's UID-GID and the permission bits for a file, is
kept in a 64-byte area called the file security packet (FSP), which is mapped by
IRRPIFSP. The FSP is the security-related section of a file's attributes.

� The FSP is created by a SAF call from the PFS when a file is created. Some of the
information is taken from the current security environment, and some of it is passed as
parameters.

� The PFS stores the FSP with the attributes of the file.

� When an access check is to be done, the PFS calls SAF with the type of check that is
being requested, the audit_structure from the current call, and the file's FSP. SAF passes
these to the security product, which extracts user information from the current security
environment and compares it against the access control that is stored within the FSP. The
audit_structure is used primarily for any auditing that may be necessary.
Chapter 6. Security customization 199

6.22 Access checking flows

Figure 6-22 Access checking flow for access to a file

Security check flow
Figure 6-22 shows the access checking flow from a UNIX program—or the access could be
from a z/OS UNIX shell user—to the security product, as follows:

� The z/OS UNIX kernel calls the file system, and the file system calls the security product.

� The kernel calls the file system iteratively for each directory component of the path name
(one is required in order to locate the next).

� The base file name is retrieved.

� For each directory lookup, the file system calls the security product to make sure the user
has search authority.

� The security product is called to ensure the user has the requested access to the base file.

This is the basic architecture of every UNIX file system.

z/OS UNIX Kernel

Logical File System

C Runtime Library

IRRSKA00

IRRRKA00

zFS File System PFS

1) open "/" directory for search (execute) access
2) open "u" directory for search (execute) access
3) open "harry" directory for search (execute) access
4) open "programx" directory for search (execute access)
5) open "myfile" file for read and write access

zFS

SMFSMF

FSP ACL

SAF

RACF

Unix program
fopen("/u/harry/programx/myfile","rw")
200 ABCs of z/OS System Programming Volume 9

6.23 File authorization checking flow

Figure 6-23 Authorization checking with z/OS UNIX

Authorization checking flow
Authorization checking is done for all directories and files (including special files) in the file
system. z/OS UNIX calls RACF to perform the authorization checking and passes RACF the
FSP (file security packet), and the CRED (security credentials).

Figure 6-23 shows the sequence of authorization checks, as follows:

� A superuser (UID of zero) is allowed access to all resources.

� If the effective UID of the process (the accessor) equals the UID of the file, RACF uses the
owner permissions in the FSP to either allow or deny access.

� If the effective GID of the process equals the GID of the file, RACF uses the group
permissions in the FSP to either allow or deny access. If RACF list-of-groups checking is
active (SETROPTS GRPLIST), RACF will look at the user's connect groups that have a
GID for a group that matches the GID of the file. If it finds a matching GID, RACF will allow
or deny access based on the group permissions specified in the FSP. Note that if a user is
connected to more that 300 z/OS UNIX groups, only the first 300 will be used.

� If the effective UID or GID of the process does not match the file UID or GID, then the
other permission bits will determine access.

eUID=0?
eUID=FSP

owning
UID?

eGID/sGID
= FSP
GID?

OTHER bits
allow

access?

OWNER
bits allow
access?

GROUP
bits allow
access?

yes

no no no no

yes yes

yes
yes

no

UNIXPRIV
allow

access?

yes no

no

Start

yes

ACEE

FSP

or MVS trusted or
privileged user

effective UID
77

effective UID
GID 999

Supplemental Groups
100 200 300

User Security Packet (USP)

owning UID
50

owning GID
100

Permission bits
rwx r-x r-x

Access
granted

Access
denied
Chapter 6. Security customization 201

6.24 POSIX standard and UNIX ACLs

Figure 6-24 The POSIX standard for ACL support

z/OS UNIX support for ACLs
ACLs have existed on various UNIX platforms for many years, but with variations in the
interfaces. ACL support in z/OS V1R3 is based on a POSIX standard that was never
implemented when z/OS UNIX was first introduced as OpenEdition.

In the POSIX standard, two different ACLs are referenced as follows:

� Base ACL entries

These entries are permission bits (owner, group, other). This refers to the FSP. You can
change the permissions using chmod or setfacl. They are not physically part of the ACL,
although you can use setfacl to change them and getfacl to display them.

� Extended ACL entries

These entries are ACL entries for individual users or groups, such as the permission bits
that are stored with the file, not in RACF profiles. Extended ACL entries, like the
permission bits, are stored with the file, not in RACF profiles. Each ACL type (access, file
default, directory default) can contain up to 1024 extended ACL entries. Each extended
ACL entry specifies a qualifier to indicate whether the entry pertains to a user or a group,
the actual UID or GID itself, and the permissions being granted or denied by this entry.
The allowable permissions are read, write, and execute. As with other UNIX commands,
setfacl allows the use of either names or numbers when referring to users and groups.

Note: This function was added in z/OS V1R3.

In the POSIX standard, two different ACLs are

referenced as follows:

Base ACL entries are permission bits (owner,

group, other) - It refers to the FSP

Extended ACL entries are ACL entries for

individual users or groups, such as the permission

bits that are stored with the file, not in RACF

profiles
202 ABCs of z/OS System Programming Volume 9

6.25 Limitations of current permission bits

Figure 6-25 z/OS UNIX limitation with POSIX standard on ACLs

ACLs for greater granularity
Access control lists (ACLs) were introduced in z/OS V1R3 as a way to provide a greater
granularity for access to z/OS UNIX files and directories. ACLs are based on a POSIX
standard that was never approved, and other UNIX implementations.

z/OS V1R3 provides support for ACLs to control access to files and directories for:

� Specific individual user or users (UID)

� Specific group or groups (GID)

To create an ACL for a file, you must have one of the following security access controls:

� Be the file owner

� Be permitted to the BPX.SUPERUSER RACF profile

� Have superuser authority (UID=0)

� Have READ access to the SUPERUSER.FILESYS.CHANGEPERMS profile in the
UNIXPRIV class

Can only specify permissions for file owner (user),
group owner, and everybody else (other)

Cannot permit/restrict access to specific users and
groups - lots of customer requirements for capability

Access Control Lists introduced in z/OS V1R3

To manage files using UNIX setfacl/chmod
commands, or the ISHELL, a user must be either:

UID(0)

The file owner

Have READ access to the UNIXPRIV class profile
SUPERUSER.FILESYS.CHANGEPERMS

Requirements are the same for changing the
permission bits
Chapter 6. Security customization 203

6.26 FSPs and ACLs

Figure 6-26 File security packet and ACL support

ACL types
Use access control lists (ACLs) to control access to files and directories by individual user
(UID) and group (GID). ACLs are used in conjunction with permission bits. They are created,
modified, and deleted using the setfacl shell command. To display them, use the getfacl
shell command. You can also use the ISHELL interface to define and display ACLs.

ACLs are used together with the permission bits in the FSP to control the access to z/OS
UNIX files and directories by individual users (UIDs) and groups (GIDs).

To reduce administrative overhead, three types of ACLs (extended ACLs) are defined, giving
the capability to inherit ACLs to newly created files and directories as follows:

Access ACLs This type of ACL is used to provide protection for a file system
object (specific for a file or directory).

File default ACLs This type is a model ACL that is inherited by files created within the
parent directory. The file default ACL is copied to a newly created
file as its access ACL. It is also copied to a newly created
subdirectory as its file default ACL.

Directory default ACLs This type is a model ACL that is inherited by subdirectories created
within the parent directory. The directory default ACL is copied to a
newly created subdirectory as both its access ACL and directory
default ACL.

File Permission Bits

File
Owner

UID

File
Owner

GID

S
e
t
U
I
D

S
e
t
G
I
D

S
t
i
c
k
y

r w x r w x r w x

Owner Group Other

File Mode

extattr Access
ACL
exists

File
model
ACL
exists

Directory
model
ACL
exists

ACL Flags

There are 3 types of ACLs

Access ACLs

File default model ACLs

Directory default model ACLs
204 ABCs of z/OS System Programming Volume 9

6.27 Access control list table

Figure 6-27 ACL table that contains ACL entries after creation

ACL table structure
An ACL is mapped by the SAF IRRPFACL macro, as shown in Figure 6-27, where the set of
user entries is followed by the set of group entries.

The entries are sorted in ascending order by UID and GID to help optimize the access
checking algorithm. The table consists of a list of entries (with a maximum of 1024) where
every entry has information about the type (user or group), identifier (UID or GID), and
permissions (read, write, and execute) to apply to a file or directory.

Extended ACL entries are ACL entries for individual users or groups. Like the permission bits,
they are stored with the file, not in RACF profiles.

Note: ACLs are supported by HFS, zFS, and TFS. It is possible that other physical file
systems will eventually support z/OS ACLs. Consult your file system documentation to see
if ACLs are supported.

Entry Type Identifier (UID or GID) Permissions

User (X'01') 46 r - x

Header

- length

- number of entries- type

Entries (1 - 1024)

....

....

....

- number of user entries
Chapter 6. Security customization 205

6.28 File authorization check summary

Figure 6-28 Authorization checks made for access to files and directories

RACF checking summary
Authorization checking for z/OS UNIX files and directories is done by RACF, which makes the
following checks:

� The accessor environment element (ACEE) is a control block that contains a description
of the current user's security environment, including user ID, current connect group, user
attributes, and group authorities. An ACEE is constructed during user identification and
verification.

� RESTRICTED.FILESYS.ACCESS

Specifies that RESTRICTED users cannot gain file access by virtue of the “other”
permission bits.

� SUPERUSER.FILESYS.ACLOVERRIDE

If no group bits access is allowed and the FSSEC class is active, and an ACL exists, and
there is an ACL entry for any of the user's supplemental GIDs, then the permission bits of
that ACL entry are checked. If at least one matching ACL entry was found for the GID, or
any of the supplemental GIDs, then processing continues with the ACLOVERRIDE
checking.

� SUPERUSER.FILESYS

If no group ACL matches, then if the UNIXPRIV class is active, the
SUPERUSER.FILESYS access is checked.

RACF uses the following to determine whether the
user is authorized to access the file with the
requested access level:

The user's security environment - (ACEE and USP)

The permission bits - (FSP)

The access ACL - (FSP and ACL table)

The following UNIXPRIV class profiles

SUPERUSER.FILESYS

RESTRICTED.FILESYS.ACCESS

SUPERUSER.FILESYS.ACLOVERRIDE

ACL entries are used only if the RACF FSSEC class is active
SETROPTS CLASSACT(FSSEC)
206 ABCs of z/OS System Programming Volume 9

6.29 Profiles in UNIXPRIV class

Figure 6-29 SUPERUSER.FILESYS profile in UNIXPRIV class

UNIXPRIV class profile for authorization checking
This profile in the UNIXPRIV class was introduced in OS/390 V2R8. The UNIXPRIV class
provided the capability to assign specific superuser functions to a user or group when you
give a user or group either a:

� UID of 0
� BPX.SUPERUSER profile

Either of these gives a user or group access to all UNIX functions and resources. A
BPX.SUPERUSER profile allows you to request that you be given such access, but you do
not have the access unless you make the request. So, instead of giving a user or group
access to all functions a superuser has, the UNIXPRIV class provides profiles that allow
access to specific superuser functions.

The SUPERUSER.FILESYS profile in the UNIXPRIV class has three access levels that allow
access to z/OS UNIX files as follows:

READ Allows a user to read any local file, and to read or search any local
directory.

UPDATE Allows a user to write to any local file, and includes privileges of READ
access.

CONTROL/ALTER Allows a user to write to any local directory, and includes privileges of
UPDATE access.

Grant authorization for certain UNIX privileges

RDEFINE UNIXPRIV SUPERUSER.FILESYS UACC(NONE)
PERMIT SUPERUSER.FILESYS CLASS(UNIXPRIV) ID(user|group) ACC(READ)

SUPERUSER.FILESYS - ACC(.....)

READ - Allows a user to read any local file, and to
read or search any local directory

UPDATE - Allows a user to write to any local file, and
includes privileges of READ access

CONTROL/ALTER - Allows a user to write to any
local directory, and includes privileges of UPDATE
access
Chapter 6. Security customization 207

6.30 Profiles in UNIXPRIV class (2)

Figure 6-30 UNIXPRIV profiles introduced with z/OS V1R3

Profiles for authorization checking
Resource names in the UNIXPRIV class are associated with z/OS UNIX privileges. You must
define profiles in the UNIXPRIV class protecting these resources in order to use RACF
authorization to grant z/OS UNIX privileges. The UNIXPRIV class must be active and
SETROPTS RACLIST must be in effect for the UNIXPRIV class. Global access checking is
not used for authorization checking to UNIXPRIV resources.

RESTRICTED.FILESYS.ACCESS profile
This profile specifies that RESTRICTED users cannot gain file access by virtue of the “other”
permission bits. Checking for this new profile RESTRICTED.FILESYS.ACCESS is done for
RESTRICTED users regardless of whether an ACL exists, so this function can be exploited
whether you plan to use ACLs or not. You can define the profile as follows:

RDEFINE UNIXPRIV RESTRICTED.FILESYS.ACCESS UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

SUPERUSER.FILESYS.ACLOVERRIDE profile
Any user who is not a superuser with UID(0) or the file owner, and who is denied access
through the ACL, can still access a file system resource if the user has sufficient authority to
the SUPERUSER.FILESYS resource in the UNIXPRIV class. Therefore, to prevent this, you
can force RACF to use your ACL authorizations to override a user's SUPERUSER.FILESYS
authority by defining the following profiles:

RDEFINE UNIXPRIV SUPERUSER.FILESYS.ACLOVERRIDE UACC(NONE)

RESTRICTED.FILESYS.ACCESS - This profile in the
UNIXPRIV class controls the access to filesystem
resources for restricted users based on the “other”
permission bits

SUPERUSER.FILESYS.ACLOVERRIDE - This profile
allows RACF to force the use of the ACL authorizations
to override a user’s SUPERUSER.FILESYS profile
authority

SUPERUSER.FILESYS.CHANGEPERMS - This profile
allows users to use the chmod command to change the
permission bits of any file and to use the setfacl
command to manage access control lists for any file

New with z/OS V1R3
208 ABCs of z/OS System Programming Volume 9

SETROPTS RACLIST(UNIXPRIV) RACLIST

SUPERUSER.FILESYS.CHANGEPERMS profile
As an enhancement to superuser granularity, when using the chmod command, a RACF
service (IRRSCF00) has been updated to check the caller's authorization to the resource
SUPERUSER.FILESYS.CHANGEPERMS in the UNIXPRIV class if the caller's user ID is not
either:

� UID(0)
� The owner of the file
� BPX.SUPERUSER

If the user executing the chmod command has at least READ authority to the resource, the
user is authorized to change the file mode in the same manner as a user having UID(0).

This profile allows users to use the chmod command to change the permission bits of any file
and to use the setfacl command to manage access control lists for any file.
Chapter 6. Security customization 209

6.31 RACF RESTRICTED attribute

Figure 6-31 Assigning the RESTRICTED attribute with RACF

Defining restricted users
You can define a restricted user ID by assigning the RESTRICTED attribute through the
ADDUSER or ALTUSER commands, as follows:

ALTUSER RSTDUSR RESTRICTED

User IDs with the RESTRICTED attribute cannot access protected resources they are not
specifically authorized to access. Access authorization for restricted user IDs bypasses global
access checking. In addition, the UACC of a resource and an ID(*) entry on the access list are
not used to enable a restricted user ID to gain access.

However, the RESTRICTED attribute has no effect when a user accesses a z/OS UNIX file
system resource; the file's “other” permission bits can allow access to users who are not
explicitly authorized. To ensure that restricted users do not gain access to z/OS UNIX file
system resources through other bits, you must use the new UNIXPRIV profile, RESTRICTED
FILESYS.ACCESS.

Defined through ADDUSER or ALTUSER

ALTUSER RSTDUSR RESTRICTED

Restricted user IDs cannot access protected
resources they are not specifically authorized to
access

Access authorization for restricted user IDs
bypasses global access checking

In addition, the UACC of a resource and an ID(*)
entry on the access list are not used to enable a
restricted user ID to gain access

The RESTRICTED attribute does not prevent users from
gaining access to z/OS UNIX file system resources
 ----- Access allowed through "other" permissions -----
210 ABCs of z/OS System Programming Volume 9

6.32 z/OS UNIX file access checking

Figure 6-32 Authorization checking after introduction of UNIXPRIV profiles

Authorization checking flow
The effective UID and effective GID of the process are used in determining access decisions.
The only exception is that if file access is being tested, rather than requested, the real UID
and GID are used instead of the effective UID and GID. The real and effective IDs are
generally the same for a process, but if a set-uid or set-gid program is executed, they can be
different.

Check UID
If the user is not system and is not a superuser, the permission bits and ACL (if one exists,
and if the FSSEC class is active) for the file are checked to see if the access requested is
allowed.

� If the selected UID matches the owner UID of the file, the owner permission bits are
checked.

� If the UIDs don't match, the user ACL entries are checked. If the selected UID matches an
ACL entry, the ACL entry bits are checked.

Check GID
If a matching ACL entry was not found for the user, the group bits and the group ACL entries
are checked. The selected GID and supplemental GIDs are checked against the file owner
GID and the group ACL entries until a match is found that grants the requested access, or
until all the GIDs have been checked.

START

RESTRICT.FS.A is an abbreviation for the new
profile named RESTRICTED.FILESYS.ACCESS
SU.FS = SUPERUSER.FILESYS

yes

yes

no

Access Access
grantedgranted

Access Access
denieddenied

UID=0?

EXECUTE
access

requested?

Any
EXECUTE

bit on ?

yes

no

eUID=FSP
owner UID?

eUID=ACL
entry?

eGID/sGID=
FSP or ACL

entry?

no no no no RESTRICTED
user?

yes

yes yes yes no

OWNER bits
allow

access?

yes ACL bits
allow

access?

yes bits
allow

access?

yes

yes

no

yes SU.FS allow
access?

no

no

yes

SU.FS
ACLOVERRIDE

defined?

no

no

yes SU.FS
ACLOVERRIDE

access?

yes

no

no

group ACL
entry match?

OTHER bits
allow

access?

no

yes

no

RESTRICT. FS.A
access?

RESTRICT. FS.A
defined?

Abbreviations in chart

(A)

(AA)

(B)

(BB)

For ACL checking FSSEC class must be active

no

(C)

(D)

(4)

yes

(2) (2)

(3)

(1)

(4)

(4)
Chapter 6. Security customization 211

� If the GID matches the file owner GID, the file's “group” permission bits are checked. If the
group bits allow the requested access, then access is granted.

� If any of the user's supplemental GIDs match the file owner GID, the file's group
permission bits are checked. If the group bits allow the requested access, then access is
granted.

Check for ACLs
If no group bits access is allowed and the FSSEC class is active, and an ACL exists, and
there is an ACL entry for any of the user's supplemental GIDs, then the permission bits of that
ACL entry are checked. If at least one matching ACL entry was found for the GID, or any of
the supplemental GIDs, then processing continues with the ACLOVERRIDE checking.

If no group ACL matches, then if the UNIXPRIV class is active, the SUPERUSER.FILESYS
access is checked.

Check SUPERUSER.FILESYS.ACLOVERRIDE
SUPERUSER.FILESYS.ACLOVERRIDE is checked only when a user's access was denied
by a matching ACL entry based on the user's UID or one of the user's GIDs. If the user's
access was denied by the file's permission bits, SUPERUSER.FILESYS is checked.

See “Access checking with ACLs (1)” on page 215 and “Access checking with ACLs (2)” on
page 216.

Check RESTRICTED.FILESYS.ACCESS
If no match was found, the other permission bits are checked, unless the user has the
RESTRICTED attribute, the UNIXPRIV class is active, the resource named
RESTRICTED.FILESYS.ACCESS is protected, and the user does not have at least READ
access.

See “RESTRICTED user profile” on page 213 and “Restricted user access checking” on
page 214.
212 ABCs of z/OS System Programming Volume 9

6.33 RESTRICTED user profile

Figure 6-33 How the RESTRICTED user profile works

Checking RESTRICTED user profile
Users with the RESTRICTED attribute cannot access protected resources they are not
specifically authorized to access. However, the RESTRICTED attribute has no effect when a
user accesses a z/OS UNIX file system resource; therefore, if you do not define the
RESTRICTED.FILESYS.ACCESS profile, then the file's “other” permission bits can allow
access to users who are not explicitly authorized.

To ensure that restricted users do not gain access to z/OS UNIX file system resources
through other bits, you must define the RACF profiles as follows:

RDEFINE UNIXPRIV RESTRICTED.FILESYS.ACCESS UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Note: Do not attempt to deny access to certain restricted users by defining this resource
with UACC(READ) and then permitting those users with access of NONE. The UACC of a
resource cannot be used to allow access when the user is restricted.

Profile - RESTRICTED.FILESYS.ACCESS

If not defined, then the 'other' bits are treated like
UACC and ID(*) for RESTRICTED users during
RACF profile checking (3 on access flow)

If defined, RESTRICTED users cannot be granted
file access via the 'other' bits and file access is
denied

RDEFINE UNIXPRIV RESTRICTED.FILESYS.ACCESS UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

(BB on access flow)
Chapter 6. Security customization 213

6.34 Restricted user access checking

Figure 6-34 How the RESTRICTED user profile is used on the authority checking

Checking RESTRICTED user profile
If needed, grant exceptions to certain restricted users to allow them to gain access based on
the file's other bits. Add those users, or one of their groups, to the access list with READ
authority.

This does not grant the user access to any files. It just allows the other bits to be used in
access decisions for this user.

Note: SUPERUSER.FILESYS still applies to RESTRICTED users regardless of the
existence of the RESTRICTED.FILESYS.ACCESS profile.

(D on access flow)

(B on access flow)

For exception cases, permit the RESTRICTED user (or
one of its groups) to RESTRICTED.FILESYS.ACCESS
(1 on access flow)

PERMIT RESTRICTED.FILESYS.ACCESS CLASS(UNIXPRIV)
ID(RSTDUSR) ACCESS(READ)

SETROPTS RACLIST(UNIXPRIV) REFRESH

This does not grant the user access to any files - It just
allows the 'other' bits to be used in access decisions for
this user (C on access flow)

SUPERUSER.FILESYS still applies to RESTRICTED
users regardless (2 on access flow) of the existence of
RESTRICTED.FILESYS.ACCESS
214 ABCs of z/OS System Programming Volume 9

6.35 Access checking with ACLs (1)

Figure 6-35 Access checking with the ACLOVERRIDE profile

SUPERUSER.FILESYS.ACLOVERRIDE profile
Any user who is not a superuser with UID(0) or the file owner, and who is denied access
through the ACL, can still access a file system resource if the user has sufficient authority to
the SUPERUSER.FILESYS resource in the UNIXPRIV class. Therefore, to prevent this, you
can force RACF to use your ACL authorizations to override a user’s SUPERUSER.FILESYS
authority by defining the following profiles:

RDEFINE UNIXPRIV SUPERUSER.FILESYS.ACLOVERRIDE UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) RACLIST

Figure 6-32 on page 211 shows the algorithm used by RACF in order to do authorization
checking that now includes checking for profiles in the UNIXPRIV class for
SUPER.FILESYS.ACLOVERRIDE, as shown at (AA).

Note: This describes the relationship between the existing SUPERUSER.FILESYS profile
and the new SUPERUSER.FILESYS.ACLOVERRIDE profile. Either profile could get
checked for a file; it depends upon the presence of an ACL for the file, and the contents of
the ACL for granting access.

Profile - SUPERUSER.FILESYS.ACLOVERRIDE

Any user - not a superuser with UID(0) or file owner
- and is denied access through the ACL can still
access a file system resource if having sufficient
authority to SUPERUSER.FILESYS resource in
UNIXPRIV class (4 on access flow)

Therefore, to prevent this, you can force RACF to
use your ACL authorizations to override a user's
SUPERUSER.FILESYS authority by defining:

RDEFINE UNIXPRIV SUPERUSER.FILESYS.ACLOVERRIDE UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

(AA on access flow)
Chapter 6. Security customization 215

6.36 Access checking with ACLs (2)

Figure 6-36 Access authority checking with the ACLOVERRIDE profile

Access checking with ACLs
For exception cases, permit the user or group to SUPERUSER.FILESYS.ACLOVERRIDE
with whatever access level would have been required for SUPERUSER.FILESYS as follows:

PERMIT SUPERUSER.FILESYS.ACLOVERRIDE CLASS(UNIXPRIV) ID(ADMIN) ACCESS(READ)
SETROPTS RACLIST(UNIXPRIV) REFRESH

SUPERUSER.FILESYS authority is still checked when an ACL does not exist for the file. This
should be done for administrators for whom you want total file access authority. That is, you
do not want anyone to deny them access to a given file or directory by defining an ACL entry
for them with limited, or no permission bit access.

This check is made at check (A) in the flow shown in the Figure 6-32 on page 211.

SUPERUSER.FILESYS.ACLOVERRIDE is checked only when a user's access was denied
by a matching ACL entry based on the user's UID or one of the user's GIDs. If the user's
access was denied by the file's permission bits, SUPERUSER.FILESYS is checked.

Important: The intent of these new profiles is to allow ACLs to behave as much as
possible like RACF profile access lists. The new profiles are provided to avoid changing
the default behavior since that could introduce compatibility issues with previous releases.

For exception cases, permit the user or group to
SUPERUSER.FILESYS.ACLOVERRIDE with
whatever access level would have been required
for SUPERUSER.FILESYS (A on access flow)

PERMIT SUPERUSER.FILESYS.ACLOVERRIDE CLASS(UNIXPRIV)
ID(ADMIN) ACCESS(READ)

SETROPTS RACLIST(UNIXPRIV) REFRESH

 SUPERUSER.FILESYS authority will still be required
when an ACL does not exist for the file

(grants access)

(4 on access flow)
216 ABCs of z/OS System Programming Volume 9

6.37 Create ACLs

Figure 6-37 Types of ACLs that can be created

Creating ACLs for files and directories
ACLs have existed on various UNIX platforms for many years, but with variations in the
interfaces. ACL support in z/OSV1R3 is based on a POSIX standard (that was never
approved) and other UNIX implementations. In the POSIX standard, two different ACLs are
referenced as follows:

� Base ACL entries are permission bits (owner, group, other). It refers to the FSP.

� Extended ACL entries are ACL entries for individual users or groups, such as the
permission bits that are stored with the file, not in RACF profiles.

Access control lists are introduced in z/OS V1R3 as a way to provide a greater granularity for
access to z/OS UNIX files and directories. z/OS V1R3 provides support for ACLs to control
access to files and directories by individual user (UID) and group (GID). ACLs are now
created and checked by RACF. ACLs are created, modified, and deleted by using either of
the following:

� setfacl shell command
� ISHELL interface

ACL inheritance
With the introduction of ACL support, when new files and directories are created in a file
system, ACL inheritance is the process of automatically associating an ACL with a newly
created object without requiring administrative action. ACL inheritance associates an ACL
with the newly created file, myfile, without requiring administrative action. However, it is not

Use OMVS shell command - setfacl

Use ISHELL panels

3 types of ACLs

Access ACL - Directory default ACL - File default ACL

ACL inheritance

Can establish default (or 'model') ACLs on a directory
or a file

They will get automatically applied to new files or
directories created within the directory

Separate default ACL used for files and (sub)
directories

Default ACLs can reduce administrative overhead
Chapter 6. Security customization 217

always necessary to apply ACLs on every file or directory within a subtree. If you have a
requirement to grant access to an entire subtree (for example, a subtree specific to a given
application), then access can be established at the top directory. If a given user or group does
not have search access to the top directory, then no files within the subtree will be accessible,
regardless of the permission bit settings or ACL contents associated with these files. The
user or group will still need permission to the files within the directory subtree where
appropriate. If this is already granted by the “group” or “other” bits, then no ACLs are
necessary below the top directory.

Default or model ACLs
The phrases “default ACL” and “model ACL” are used interchangeably throughout z/OS UNIX
documentation. Other systems that support ACLs have default ACLs that are essentially the
same as the directory default ACLs in z/OS UNIX. According to the X/Open UNIX 95
specification, additional access control mechanisms may only restrict the access permissions
that are defined by the file permission bits. They cannot grant additional access permissions.
Because z/OS ACLs can grant and restrict access, the use of ACLs is not UNIX 95-compliant.

To create an ACL for a file, you must have one of the following security access controls:

� Be the file owner

� BPX.SUPERUSER

� Have superuser authority (UID=0)

� Have READ access to the SUPERUSER.FILESYS.CHANGEPERMS profile in the
UNIXPRIV class

To activate the use of ACLs in z/OS UNIX file authority checks, the following RACF command
needs to be run to activate the new RACF class FSSEC:

SETROPTS CLASSACT(FSSEC)

Note: When defining ACLs, it is recommended to place ACLs on directories, rather than on
each file in a directory.

Note: The RACF UNIXPRIV class was introduced in OS/390 V2R8. It allows you to define
profiles in the UNIXPRIV class to grant RACF authorization for certain z/OS UNIX
privileges. By defining profiles in the UNIXPRIV class, you can grant specific superuser
privileges to users who do not have superuser authority (UID=0). This allows you to
minimize the number of assignments of superuser authority at your installation and
reduces your security risk.
218 ABCs of z/OS System Programming Volume 9

6.38 ACL types

Figure 6-38 Types of ACLs that can be created

Types of ACLs
To reduce administrative overhead, three types of ACLs (extended ACLs) are defined in
order to have the capability to inherit ACLs to newly created files and directories, as follows:

Access ACLs This type of ACL is used to provide protection for a file system
object (specific for a file or directory).

File default ACLs This type is a model ACL that is inherited by files created within
the parent directory. The file default ACL is copied to a newly
created file as its access ACL. It is also copied to a newly created
subdirectory as its file default ACL.

Directory default ACLs This type is a model ACL that is inherited by subdirectories
created within the parent directory. The directory default ACL is
copied to a newly created subdirectory as both its access ACL
and directory default ACL.

Access ACLs This type of ACL is used to provide
protection for a file system object (specific for a file or
directory)

File default ACLs This type is a model ACL that is
inherited by files created within the parent directory.
The file default ACL is copied to a newly created file
as its access ACL. It is also copied to a newly created
subdirectory as its file default ACL

Directory default ACLs This type is a model ACL
that is inherited by subdirectories created within the
parent directory. The directory default ACL is copied
to a newly created subdirectory as both its access
ACL and directory default ACL
Chapter 6. Security customization 219

6.39 OMVS shell commands for ACLs

Figure 6-39 OMVS shell commands to create and display ACLs

z/OS UNIX commands to create and display ACLs
The new shell commands, setfacl and getfacl are used to create, modify, and display ACL
entries specified by the path.

Use ACLs to control access to files and directories by individual user and group. ACLs are
used in conjunction with permission bits. They are created, modified, and deleted using the
setfacl shell command. To display them, use the getfacl shell command. You can also use
the ISHELL interface to define and display ACLs.

Among the options you can specify for setfacl are the following:

� -s option: Replaces the contents of an ACL with the entries specified on the command
line. It requires that the base permissions be specified. The base permissions are
specified similarly to extended ACL entries, except that there is no user or group name
qualifier.

� -m option: Modifies ACL entries, or adds them if they do not exist.

� -D option: Specifies that the access ACL is to be deleted. When a file is deleted, its ACL is
automatically deleted; there is no extra administrative effort required.

Recommendation: Use the -m option instead of the -s option when creating ACLs.
Creating ACLs using the ISHELL is probably preferred. See “Using the ISHELL panel” on
page 227 through “Access ACL after creation” on page 235.

setfacl - The setfacl command sets, modifies,
and deletes an ACL definition for a file or directory.
setfacl has the following syntax:

setfacl [–ahqv] -s entries [path ...]

setfacl [–ahqv] -S file [path ...]

setfacl [–ahqv] -D type [...][path ...]

setfacl [–ahqv] -m|M|x|X EntryOrFile [...][path ...]

getfacl - The getfacl command obtains and
displays an ACL entry for a requested file or
directory. It has the following syntax:

getfacl [–acdfhmos][-e user] file
220 ABCs of z/OS System Programming Volume 9

6.40 Create ACLs for a specific directory

Figure 6-40 Creating ACLs for a specific directory HARRY

Example of creating ACLs
The next few figures show how to create the three ACLs shown in Figure 6-40 that give user
JANE access to directory HARRY and any directories and files defined under directory
HARRY.

You can use an access ACL on a directory to grant search access only to those users and
groups who should have file access. The access ACL of the directory might have been
automatically created as the result of a directory default ACL on its parent. Make sure that the
“other” and perhaps the “group” search permission bit is off for the parent directory.

To minimize the impact to performance, keep ACLs as small as possible, and permit groups
to files instead of individual users. The pathlength of the access check will increase with the
size of an ACL, but will be smaller than the associated checking would be for a RACF profile
with the same number of entries in its access list.

access
ACL

directory
default
ACL

file
default
ACLjane tom harry

ubin etc dev tmp ...

/

For user jane
Chapter 6. Security customization 221

6.41 Create an access ACL

Figure 6-41 Create an access ACL for directory HARRY

Creating an access ACL
When you are setting the access ACL, the ACL entries must consist of three required base
ACL entries that correspond to the file permission bits. The ACL entries must also consist of
zero or more extended ACL entries, which will allow a greater level of granularity when
controlling access. The permissions for base entries must be in absolute form. As shown in
Figure 6-41, issuing the ls -al command, the + sign following the permission bits for
directory HARRY indicates that an ACL exists for that directory.

Using the -m option
With the setfacl command, you use the -m option to create an ACL. The base ACL
(permission bits) are indicated by omitting user or group qualifiers.

This command creates an access ACL that gives user ID JANE rwx access to directory
HARRY:

ROGERS @ SC65:/u>setfacl -m “u:jane:rwx” harry

Create an access ACL - using setfacl -m option

For directory harry - create an access ACL that gives
user ID JANE rwx access to directory harry

setfacl -m "u:jane:rwx" harry

ROGERS @ SC65:/u>ls -al
total 152
dr-xr-xr-x 11 HAIMO NOGROUP 0 Aug 2 10:45 .
drwxr-xr-x 48 HAIMO SYS1 24576 Jul 25 14:44 ..
drwx------+ 2 HARRY SYS1 8192 Aug 2 10:44 harry
drwx------ 2 JANE SYS1 8192 Aug 2 10:44 jane
drwxr-xr-x 2 HAIMO SYS1 8192 Jun 28 12:23 ldapsrv
drwx------ 2 HAIMO SYS1 8192 Aug 1 11:02 rogers
drwxr-xr-x 2 HAIMO SYS1 8192 Nov 15 2001 syslogd
drwx------ 3 HAIMO SYS1 8192 May 26 11:03 user1
222 ABCs of z/OS System Programming Volume 9

6.42 Display the access ACL

Figure 6-42 Displaying the created ACL using the getfacl command

Displaying the defined ACL
The getfacl command displays the comment header, base ACL entries, and extended ACL
entries, if there are any, for each file that is specified. It also resolves symbolic links. You can
specify whether to display access, file default, or directory default. You can also change the
default display format. The output can be used as input to setfacl.

-a option for getfacl
This option displays the access ACL entries. This is the default if -a, -d, or -f is not specified.
Figure 6-42 displays the ACL entry just created for directory HARRY.

Display the access ACL - using getfacl

-a Displays the access ACL entries

ROGERS @ SC65:/u>getfacl -a harry
#file: harry/
#owner: HARRY
#group: SYS1
user::rwx <=== The owner's permission bit setting
group::--- <=== The group's permission bit setting
other::--- <=== Permission bit setting if neither user nor group
user:JANE:rwx
Chapter 6. Security customization 223

6.43 Create a directory default ACL

Figure 6-43 Creating a directory default ACL for directory HARRY

Creating a directory default ACL
Directory default ACLs are model ACLs that are inherited by subdirectories created within the
parent directory. The directory inherits the model ACL as its directory default ACL, and as its
access ACL when a new directory is created under directory HARRY.

To facilitate management of ACLs, you can define a default ACL in a directory; it will then be
automatically inherited by an object, as follows:

� The directory default ACL is copied to a newly created subdirectory as both its access
ACL and directory default ACL. You can modify or delete inherited ACLs later.

For directory HARRY, the following command creates a directory default ACL that gives user
JANE rwx access in a directory default ACL for directory HARRY:

ROGERS @ SC65:/u>setfacl -m "d:u:jane:rwx" harry

Display the access ACL - using getfacl

-a Displays the access ACL entries

ROGERS @ SC65:/u>getfacl -a harry
#file: harry/
#owner: HARRY
#group: SYS1
user::rwx <=== The owner's permission bit setting
group::--- <=== The group's permission bit setting
other::--- <=== Permission bit setting if neither user nor group
user:JANE:rwx
224 ABCs of z/OS System Programming Volume 9

6.44 Create a file default ACL

Figure 6-44 Create a file default ACL for directory HARRY

Creating a file default ACL
File default ACLs are model ACLs that are inherited by files created within the parent
directory. The file inherits the model ACL as its access ACL. Directories also inherit the file
default ACL as their file default ACL.

To facilitate management of ACLs, you can define a default ACL in a directory; it will then be
automatically inherited by an object, as follows:

� The file default ACL is copied to a newly created file as its access ACL. It is also copied to
a newly created subdirectory as its file default ACL.

For directory HARRY, the following command creates a file default ACL that gives user JANE
r-- access in a file default ACL for directory HARRY:

ROGERS @ SC65:/u>setfacl -m "f:u:jane:r--" harry

Create a file default ACL

A model ACL that is inherited by files created within
the parent directory

The file inherits the model ACL as its access ACL

 Directories also inherit the file default ACL as their file
default ACL

setfacl -m "f:u:jane:r--" harry

ROGERS @ SC65:/u>getfacl -f harry
#file: harry/
#owner: HARRY
#group: SYS1
fdefault:user:JANE:r--
Chapter 6. Security customization 225

6.45 Creating all ACL types

Figure 6-45 Creating all three ACLs and specifying the permission settings

Creating all ACLs using the -s option
The -s option replaces the contents of an ACL with the entries specified on the command
line. It requires that the base permissions be specified. The base permissions are specified
similarly to extended ACL entries, except that there is no user or group name qualifier.

If you want to create all three ACLs for the directory, you can issue just one command for
ACLs, and by using -s, you can specify the current permission bit settings as follows:

setfacl -s "u::rwx,g::---,o::---,u:jane:rwx,d:u:jane:rwx,f:u:jane:r--" harry

To display the ACLs just created by the setfacl command, issue the following command:

getfacl -adf harry

setfacl -s "u::rwx,g::---,o::---,u:jane:rwx,d:u:jane:rwx,f:u:jane:r--" harry

ROGERS @ SC65:/u>getfacl -adf harry
#file: harry/
#owner: HARRY
#group: SYS1
user::rwx
group::---
other::---
user:JANE:rwx
fdefault:user:JANE:r--
default:user:JANE:rwx
226 ABCs of z/OS System Programming Volume 9

6.46 Using the ISHELL panel

Figure 6-46 Using the ISHELL panel to create ACLs

Create an ACL using the ISHELL
With the ISPF shell (ISHELL), a user or system programmer can use ISPF dialogs instead of
shell commands to perform many tasks, especially those related to file systems and files. An
ordinary user can use the ISPF shell to work with:

� Directories
� Regular files
� FIFO special files
� Symbolic links, including external links

You can also run shell commands, REXX programs, and C programs from the ISPF shell.
The ISPF shell can direct stdout and stderr only to an HFS file, not to your terminal.
Chapter 6. Security customization 227

Note: Features to improve the ISHELL functionality were added on z/OS V1R3. The
ISHELL is a user interface that allows users to work with menus rather than sometimes
cryptic commands. In z/OS V1R3, many new features that have been requested over the
years to improve ISHELL functionality and panel navigation are implemented.

These new features are a significant upgrade to the ISHELL, and many of them are part of
the Directory List option, which lists files in a particular directory. Other enhancements
include sorting and highlighting support, as well as easy ways to access information. The
effective user ID(EUID) is displayed on the panel so you can know the authority you have
at any particular moment. In the figure, EUID=0 indicates that the current UID that is
accessing the ISHELL is a superuser.
228 ABCs of z/OS System Programming Volume 9

6.47 Create an access ACL using ISHELL

Figure 6-47 Creating an access ACL using the ISHELL

Create an access ACL using the ISHELL
Figure 6-47 shows the Directory List that is displayed once you have entered the ISHELL,
typed /u on the command line, and pressed Enter.

Placing an “a” action code for directory HARRY results in the File Attribute panel being
displayed. This is the first step to create ACLs.

In the following sections we describe how to create an ACL that gives user JANE access to
directory HARRY.

a

Use "a" as an action character to access the File attributes
Create an ACL for user jane to access directory harry
Chapter 6. Security customization 229

6.48 File attributes panel for /u/harry

Figure 6-48 Display File Attribute panel showing no ACL exists

Working in the ISHELL
If you scroll forward twice, you can see if a Directory Default ACL or File Default ACL is
defined, as shown in Figure 6-49. These two fields (Directory Default and File Default ACL)
only apply to directory files.

Current Access control list shows a 0
To create an ACL, place cursor under Edit and press Enter
230 ABCs of z/OS System Programming Volume 9

6.49 File attributes panel showing ACLs

Figure 6-49 Display file attributes panel showing ACLs

Panel to display ACLs
Figure 6-49 shows the Directory default ACL and the File default ACL for the pathname
/u/harry.

For directory /u/harry, the Directory default ACL and File default ACL fields both show zeros,
indicating that no directory or file ACL exists.
Chapter 6. Security customization 231

6.50 Select option to create an access ACL

Figure 6-50 Select Option 8 to create the access ACL

Select option for ACL creation
Specify either option 8, 9, or 10, then press Enter; you now have access to modify, add, or
delete the ACL entries for the access ACL, directory default ACL, and the file default ACL,
respectively.
232 ABCs of z/OS System Programming Volume 9

6.51 Create an access ACL

Figure 6-51 Creating the access ACL for directory HARRY

Window to create the ACL
Figure 6-51 shows the panel used to create an ACL for a user ID to give access to a file or
directory. In this example, you are going to give user JANE access to directory HARRY. To do
this, place a 2 on the Option line and press Enter.

Type a 2 on the Option line to create ACL - press Enter
Chapter 6. Security customization 233

6.52 Add an access ACL

Figure 6-52 The Add an ACL Entry window is used to create the ACL

Window to choose permission bits for the ACL access
Use the panel shown in Figure 6-52 to specify the permission bit settings that you require to
give user JANE access to directory HARRY. Give user JANE rwx (read, write and execute)
access to directory HARRY, as shown in the Pathname field in the figure. the panel in
Figure 6-53 shows the newly created ACL after you press Enter.

Place a / next to each permission required
Enter name of user ID - press Enter
234 ABCs of z/OS System Programming Volume 9

6.53 Access ACL after creation

Figure 6-53 Display of access ACL after creation

Display of access ACL using the ISHELL
The ACL list is ordered with the group ACLs before the user ACLs. Initially the group and user
ACLs are ordered by name. This order can be changed with the command sort id or sort
name. This list will only show UIDs and GIDs that have associated names. The setfacl shell
utility must be used to manage entries with UIDs and GIDs that are not defined on this
system.

The panel shows the newly created access ACL that gives user JANE rwx access to directory
/u/harry.

You can use D in the selection field (S) to delete the ACL entry.

The END command (F3) will exit the ACL list and save any changes. The SAVE command
can also be used to save changes but will not exit the ACL list.
Chapter 6. Security customization 235

6.54 ACL inheritance: New directory/new file

Figure 6-54 ACL inheritance

ACL inheritance
The directory structure is changed, as shown in Figure 6-54, by issuing the following
command:

mkdir /u/harry/programx

The new directory, programx, inherits an access ACL from the directory default ACL of
directory HARRY, and inherits the directory default ACL and file default ACL from directory
HARRY.

ACL inheritance, as shown in the figure, associates an ACL with the newly created file, myfile,
without requiring administrative action. However, it is not always necessary to apply ACLs on
every file or directory within a subtree. If you have a requirement to grant access to an entire
subtree (for example, a subtree specific to a given application), then access can be
established at the top directory. If a given user or group does not have search access to the
top directory, then no files within the subtree will be accessible, regardless of the permission
bit settings or ACL contents associated with these files. The user or group will still need
permission to the files within the directory subtree where appropriate. If this is already granted
by the “group” or “other” bits, then no ACLs are necessary below the top directory.

Note: When defining ACLs, it is recommended to place ACLs on directories, rather than on
each file in a directory.

access
ACL

directory
default
ACL

file
default
ACL

access
ACL

directory
default
ACL

file
default
ACL

access
ACL

oedit
/u/harry/programx/myfile

- myfile

programx

/

jane tom harry

ubin etc dev tmp ...

mkdir /u/harry/programx
236 ABCs of z/OS System Programming Volume 9

6.55 Multilevel security with z/OS V1R5

Figure 6-55 Using multilevel security beginning with z/OS V1R5

Multilevel security (MLS)
Traditionally, access to z/OS UNIX resources is based on POSIX permissions. Beginning
with z/OS V1R5, if the SECLABEL class active, additional security is provided by
authorization checks that are performed for security labels, in addition to POSIX permissions.
Security labels are used to maintain multiple levels of security within a system. By assigning a
security label to a resource, the security administrator can prevent the movement of data from
one level of security to another within the z/OS UNIX environment.

When the SECLABEL class is active, security labels can be set on z/OS UNIX resources.

zFS root
zFS and HFS can both participate in shared sysplexes. However, only zFS supports security
labels. Therefore, in a multilevel-secure environment, you must use zFS file systems instead
of HFS file systems. See z/OS Planning for Multilevel Security, GA22-7509 for more
information on multilevel security and migrating your HFS version root to a zFS version root
with security labels.

When an HFS file system or zFS aggregate is created, the file system root will be assigned
the security label that is specified in the RACF data set profile that covers the data set name.
If a security label is not specified or if a data set profile does not exist, then a security label will
not be assigned to the file system root.

Support is added allowing SECLABELs to be
associated with file system resources and users to
provide greater restrictiveness than is possible with
POSIX permissions alone

ALL systems must be z/OS V1R5 or above

Requires use of zFS for ROOT and /dev resources

Requires use of zFS for all file systems mounted for
readwrite access
Chapter 6. Security customization 237

6.56 Multilevel security (MLS)

Figure 6-56 Understanding multilevel security

Classifying data
Security classification of users and data allows installations to impose additional access
controls on sensitive resources. Each user and each resource can have a security
classification in its profile. You can choose among the following:

� A security level (SECLEVEL) is an installation-defined name that corresponds to a
numerical security level (the higher the number, the higher the security level).

� A security category (CATEGORY) is an installation-defined name that corresponds to a
department or an area within an organization in which the users have similar security
requirements.

� A security label (SECLABEL) is an installation-defined name that corresponds to a
security level and zero or more security categories.

Multilevel-secure environment
The security policy that you implement in a multilevel-secure environment has as its key
feature a system of access controls that not only prevents individuals from accessing
information at a classification for which they are not authorized, but also prevents individuals
from declassifying information. The system must protect resources of different levels of
sensitivity.

Multilevel security is a security policy that allows:

Classification of data and users based on:

Hierarchical security levels combined with

Non-hierarchical security categories

Multilevel-secure security policy has two primary
goals, as follows:

First, the controls must prevent unauthorized
individuals from accessing information at a higher
classification than their authorization

Second, the controls must prevent individuals from
declassifying information
238 ABCs of z/OS System Programming Volume 9

6.57 MLS support for z/OS UNIX

Figure 6-57 MLS support in z/OS UNIX

SECLABELS for z/OS UNIX processes and sockets
This function has been modified to allow SECLABELs to be defined as follows:

� For workstations (allowing for both reading and writing)

� To support the z/OS UNIX environment where a user may enter the system from a remote
IP address using an application such as rlogin

� To associate SECLABELs to IP addresses

SECLABELS for z/OS UNIX files and directories
RACF assigns a user’s SECLABEL to a new file or directory when it is created. The
SECLABEL cannot be changed. Use the z/OS UNIX command chlabel to create the
SECLABEL. The SECLABEL can be changed by copying the file to a directory with a different
SECLABEL. Because subdirectories have the same SECLABEL as the parent directory, files
in a directory will have the same SECLABEL as the directory.

SECLABELS for z/OS UNIX interprocess communication (IPC)
When creating an IPC security packet (ISP), if the SECLABEL class is active, RACF will copy
the process SECLABEL (if one exists) into the ISP. Later, when checking access to the IPC
for a subsequent connection, RACF will reject the request if the current process does not
have a SECLABEL or the SECLABEL does not match. Once a SECLABEL has been
assigned to an IPC object, there is no way to change it.

SECLABELs for z/OS UNIX processes and sockets

SECLABELs for z/OS UNIX files and directories

SECLABELs for z/OS UNIX interprocess
communications (IPC)

zFS supports security labels for MLS

Externals for MLS are contained in other
elements/components

(RACF, shell, z/OS UNIX APIs, etc.)

zFS supports low level functions for MLS
Chapter 6. Security customization 239

Access checking for IPC objects will be treated as EQUALMAC checking, meaning that
SECLABELs must be equivalent, unless the resource’s SECLABEL is SYSMULTI, or the
accessor’s SECLABEL is SYSMULTI.

zFS support for SECLABELs
The zSeries file system (zFS) supports security labels. A zFS file system is contained in a
VSAM linear data set. The security label of the root within each zFS file system data set is
determined at the time the file system aggregate (container) is allocated, from the security
label of the profile in the DATASET class that covers the aggregate. If the SECLABEL class is
active when allocating the aggregate, all file systems subsequently created within that
aggregate contain a root with the security label that is specified in the profile for that
aggregate. If no profile exists for the aggregate, or if it exists but does not specify a security
label, and if the MLFSOBJ option is not active, the root for any file systems within that
aggregate has no security label. If the MLFSOBJ option is active, requiring security labels on
all file system objects, the user's security label is assigned to the root of the file system.

zFS stores security labels in the FSP in the metadata. zFS calls RACF for security label
processing and also can do some checking on its own.

MLS support
z/OS V1R5 support includes support for MLS with the following components:

� RACF

� UNIX System Services

� zFS

� TCP/IP

� JES2 (not JES3)

� SDSF

� DFSMS - MLS SECLABELs in ACS Routines

� DB2 V8 - Security labels on rows in tables
240 ABCs of z/OS System Programming Volume 9

6.58 Mandatory access control (MAC)

Figure 6-58 Mandatory access control (MAC) checking

MAC checking
Mandatory access control is based on the theory of dominance, and is achieved through the
use of security labels.

Dominance
One security label dominates a second security label when the following two conditions are
true:

� The security level that defines the first security label is greater than or equal to the security
level that defines the second security label.

� The set of security categories that defines the first security label includes the set of
security categories that defines the second security label.

MAC checking overview
A mandatory access check compares the security labels of the subject and object and grants
the subject access to the object as follows:

� A subject can read an object if the subject's security label dominates the object's security
label.

� A subject can write to an object if the object's security label dominates the subject's
security label. A subject cannot write to an object whose security label the subject's
security label dominates, unless the security labels are equivalent; we say that the subject
is not allowed to write down.

A MAC check compares the security labels of the
subject and object and grants the subject access to
the object

A subject can read an object if the subject's security
label dominates the object's security label

A subject can write to an object if the object's security
label dominates the subject's security label

A subject cannot write to an object whose security
label the subject's security label dominates, unless the
security labels are equivalent - not allowed to write
down

A subject can both read and write an object only if the
subject's and object's security labels are equivalent
Chapter 6. Security customization 241

� A subject can both read and write an object only if the subject's and object's security
labels are equivalent.

To ensure that a user does not declassify data, a subject can read from and write to (alter)
only an object with an equivalent security label; however, a subject can copy information from
an object having a security label that does not dominate the security label of the subject to an
object having the subject's current security label. Or, for objects that support write-only
processing, such as z/OS UNIX files, to an object with a security label that dominates the
subject's security label.
242 ABCs of z/OS System Programming Volume 9

6.59 Discretionary access control (DAC)

Figure 6-59 Discretionary access control (DAC) checking

Discretionary access control checking
Discretionary access control is the principle of restricting access to objects based on the
identity of the subject (the user or the group to which the user belongs). Discretionary access
control is implemented using access control lists. A resource profile contains an access
control list that identifies the users who can access the resource and the authority (such as
read or update) each user is allowed in referencing the resource. The security administrator
defines a profile for each object (a resource or group of resources), and updates the access
control list for the profile. This type of control is discretionary in the sense that subjects can
manipulate it, because the owner of a resource, in addition to the security administrator, can
identify who can access the resource and with what authority.

Once the user passes the mandatory access check, a discretionary check follows. The
discretionary access check ensures that the user is identified as having a “need to know” for
the requested resource. The discretionary access check uses other access control
information, such as the access control list in the profile protecting a resource, or z/OS UNIX
access control (permissions, the access control list, and the UNIXPRIV class).

Once the user passes a MAC check, a discretionary
check follows

A DAC check ensures that the user is identified as
having a "need to know" for the requested resource

DAC uses other access control information, such as:

Access control list in the profile protecting a resource

z/OS UNIX access control (permissions, the access
control list, and the UNIXPRIV class)

MAC check occurs first, then DAC
Or DAC only, if the SECLABEL class is not active
Chapter 6. Security customization 243

6.60 SECLABELs and MAC

Figure 6-60 SECLABELs with categories and MAC checking

SECLABELs with categories and MAC checking
A security label establishes an association between a RACF security level and a set of zero
or more RACF security categories. For example, the system shown in Figure 6-60 might have
three security levels: unclassified, sensitive, and secret; and three security categories: Project
A, Project B, and Project C. Then, PURPLE could be a security label name indicating Secret
for Project A, Project B, and Project C. COLUMBIA could be a security label name meaning
Sensitive for Project A and Project B; UNION could be a security label name indicating
unclassified for Project C.

Defining SECLABELs
The security administrator defines two profiles in the RACF SECDATA resource class that
define the security levels and security categories for the system:

� The SECLEVEL profile contains a member for each hierarchical security level in the
system.

� The CATEGORY profile contains a member for each non-hierarchical category in the
system.

SECLEVEL The hierarchical security level defines the degree of sensitivity of the data.
“SECRET,” “SENSITIVE,” and “UNCLASSIFIED” are examples of levels
you could define. You might define “SECRET” to be a security level of 30,
“SENSITIVE” to be a level of 20, and “UNCLASSIFIED” to be a level of 10.
The security administrator can define up to 254 security levels.

PURPLE could be a SECLABEL name indicating
SECLEVEL secret for categories PROJECTA,
PROJECTB, and PROJECTC
GREEN could be a SECLABEL name indicating
SECLEVEL sensitive for categories PROJECTA and
PROJECTB
RED could be a SECLABEL name indicating
SECLEVEL unclassified for category PROJECTC

SETROPTS CLASSACT(SECLABEL) RACLIST(SECLABEL)

SECLABEL SECLEVEL

PROJECTA, PROJECTB, PROJECTC
GREEN

RED UNCLASSIFIED

SENSITIVE
SECRETPURPLE

PROJECTA, PROJECTB

PROJECTC

CATEGORY (Not required)
244 ABCs of z/OS System Programming Volume 9

CATEGORY The non-hierarchical categories further qualify the access capability. The
security administrator can define zero or more categories that correspond
to some grouping arrangement in the installation. “PROJECTA,”
“PROJECTB,” and “PROJECTC” could be categories defined.

Security labels After defining the SECLEVEL and CATEGORY profiles, the security
administrator defines a profile in the SECLABEL resource class for each
security label. Each security label name must be unique. Each SECLABEL
profile specifies the particular combination of a SECLEVEL member and
zero or more members of the CATEGORY profile that applies to the
security label. You do not need to define a security label for every possible
combination of level and category.

SECLABEL dominance with categories
One security label dominates a second security label when the following two conditions are
true:

� The security level that defines the first security label is greater than or equal to the security
level that defines the second security label.

� The set of security categories that define the first security label includes the set of security
categories that defines the second security label.

Two security labels are said to be disjoint or incompatible if neither dominates the other
because they have incompatible sets of categories. For example, if SECLABEL GREEN has
categories PROJECTA and PROJECTB, and SECLABEL RED has categories PROJECTC,
neither contains all the categories of the other, so neither dominates the other and they are
disjoint.
Chapter 6. Security customization 245

6.61 Special SECLABELs and definitions

Figure 6-61 Special SECLABELs and their definitions

System SECLABELs
At IPL time, RACF dynamically creates system SECLABELs that cannot be defined,
modified, or deleted by any user, but can be assigned to users and resources. The following
SECLABELs are defined:

SYSHIGH SYSHIGH is created at the highest security level defined to RACF and
includes all defined categories. Resources with SYSHIGH can be accessed
only by users with SYSHIGH; users with SYSHIGH have access to all other
SECLABELs. If a higher level or additional categories are defined, SYSHIGH
automatically assumes the new values when the SECLABEL class is
refreshed.

SYSLOW SYSLOW is created at the lowest security level defined to RACF and
includes no categories. Resources with SYSLOW can be accessed by users
with any valid SECLABEL; users with SYSLOW can access only resources
that are SYSLOW. If a lower level is defined, SYSLOW automatically
assumes the new value when the SECLABEL class is refreshed.

SYSNONE SYSNONE is assigned to resources that have no security-relevant data.
MAC verification considers SYSNONE to be equivalent to any user’s
SECLABEL, automatically allowing access. Assigning SYSNONE to a user
has the same effect as assigning SYSLOW to the user.

SYSMULTI The SYSMULTI SECLABEL is new with z/OS V1R5. The SYSMULTI security
label is equivalent to any other security label.

SYSHIGH - SYSLOW - SYSNONE

SYSMULTI - (New with MLS in z/OS V1R5)

Defining SECLABELs

RDEFINE SECLABEL security-label
SECLEVEL(seclevel-name)
ADDCATEGORY(category-1 category-2 ...)

PERMIT security-label CLASS(SECLABEL)
ACCESS(READ) ID(user-id-1 user-id-2 ...)

SETROPTS CLASSACT(SECLABEL)
RACLIST(SECLABEL)

or
SETROPTS RACLIST(SECLABEL) REFRESH
246 ABCs of z/OS System Programming Volume 9

6.62 SYSMULTI SECLABEL

Figure 6-62 SYSMULTI SECLABEL

SYSMULTI SECLABEL
SYSMULTI can be assigned in cases where any classification of data could be processed. It
compares as equivalent to any other defined SECLABEL for MAC decisions.

It is intended for the following types of functions:

� Daemons and servers that can accept connections from users running at different
classification levels (SECLABELs) and properly mediate data access

� UNIX directories (often, not always, root in a file system) that can have subdirectories of
different SECLABELs

It generally should not be assigned to real users, nor to a server that is not designed to
handle multiple SECLABELs.

Assigning SYSMULTI to directories
If a directory has been assigned a security label, then new files and directories created within
that directory will inherit a security label as follows:

� If the parent directory is assigned a security label of SYSMULTI, the new file or directory
will be assigned the security label of the user. If the user has no security label, then one is
assigned to the new object.

� If the parent directory is assigned a security label other than SYSMULTI, the new file or
directory is assigned the same security label as the parent directory.

SYSMULTI

Compares as "equivalent" to any other defined
SECLABEL for MAC decisions

Intended for daemons and servers that can accept
connections from users running at different
classification levels (SECLABELs) and properly
mediate data access

UNIX directories (often, not always, root in a file
system) that can have subdirectories of different
SECLABELs
Chapter 6. Security customization 247

6.63 z/OS UNIX and SECLABELs

Figure 6-63 Defining SECLABELs with z/OS UNIX

Defining SECLABELs
The chlabel shell command allows a security administrator to assign a security label to a file
system object that does not have one.

If a z/OS UNIX file, directory, or symbolic link was created in a zFS file system without being
assigned a security label (for example, if the SECLABEL class was not active when the file,
directory, or symbolic link was created), the security administrator can assign a security label
to it using the chlabel shell command.

chlabel command
chlabel sets the multilevel security label of the files and directories specified by pathname.
Setting the seclabel is only allowed if the user has RACF SPECIAL authority, and no seclabel
currently exists on the resource. Once a seclabel is set, it cannot be changed.

Note: zFS file systems support the chlabel utility, which allows the setting of an initial
security label on a file or directory. Use this utility to set security labels on allocated zFS
files and directories after they have been created.

chlabel command

This new shell command chlabel can be used to set
security labels for UNIX files and directories

Requires RACF SPECIAL authorization

Recommended do this command before MLS
activated

Once SECLABEL has been set, it cannot be changed

 chlabel [–cqR] [–h|–L] seclabel pathname

By specifying the -R parameter, labels are set
“recursively” on file subdirectories

Note: Only the zFS file systems supports the setting of SECLABELs
248 ABCs of z/OS System Programming Volume 9

6.64 Understanding UMASK

Figure 6-64 Understanding the UMASK

Defining the UMASK
When a file is created, it is assigned initial access permissions. If you want to control the
permissions that a program can set when it creates a file or directory, you can set a file mode
creation mask using the umask command.

The user can set this file mode creation mask for one shell session by entering the umask
command interactively, or you can make the umask command part of your login. When you set
the mask, you are setting a limit on allowable permissions: You are implicitly specifying which
permissions are not to be set, even though the calling program may allow those permissions.
When a file or directory is created, the permissions set by the program are adjusted by the
umask value: the final permissions set a the program's permissions minus what the umask
values restrict.

To use the umask command for a single session, enter:

umask mode

To create a mask that sets read-write-execute permission on for the owner of the file and off
for everyone else, enter:

umask 077

Set the default file creation mask: umask 022
Default mask is: 022 000 010 010

New file created with permission bits: 777

rwx rwx rwx
111 111 111
000 010 010
111 101 101

File

UMASK

File permission bits (with UMASK): 755
Chapter 6. Security customization 249

6.65 Displaying the UMASK

Figure 6-65 Displaying the UMASK

Displaying the UMASK
The umask sets the file-creation permission-code mask of the invoking process to the given
mode.

The mode may be specified in symbolic (rwx) or octal format. The symbolic form specifies
what permissions are allowed. The octal form specifies what permissions are disallowed.

The file-creation permission-code mask (often called the umask) modifies the default (initial)
permissions for any file created by the process. The umask specifies the permissions which
are not to be allowed.

If the bit is turned off in the umask, a process can set it on when it creates a file. If you specify:

umask a=rx

you have allowed files to be created with read and execute access for all users. If you were to
look at the mask, it would be 222. The write bit is set, because write is not allowed. If you
want to permit created files to have read, write, and execute access, then set umask to 000. If
you call umask without a mode argument, umask displays the current umask.

ROGERS @ SC47:/etc>umask
0022
ROGERS @ SC47:/etc>umask -S
u=rwx,g=rx,o=rx
ROGERS @ SC47:/etc>umask u=rwx,go=r
ROGERS @ SC47:/etc>umask
0033
ROGERS @ SC47:/etc>
 ===>

Symbolic and Octal UMASK notation
250 ABCs of z/OS System Programming Volume 9

6.66 Default permissions and UMASK

Figure 6-66 Default permissions and the UMASK

Default permissions
The system assigns default permission bits for files and directories at creation time. The
settings depend on the type of command or facility that is used, and in some cases, on the
type of file that is created.

A user can change the default setting when a file is created by using the umask shell
command. The values set by the umask command will last for the length of the user's session,
or the command can be part of the user's login so that the user always has the same default
permissions.

PATHDISP indicates how MVS should handle the file when the job step ends normally or
abnormally. This performs the same function as the DISP parameter for a data set.

umask
In /etc/profile, umask sets the default file creation mask. Using a umask of 022 causes a file
created with mode 777 to have permissions of 755. The creator cannot set the group write or
other write bits on in the file mode field, because the mask sets them off.

==> umask 022 Changes defaults for a user

Command Default Permission

mkdir

MKDIR

JCL, no PATHOPTS

OEDIT

vi editor

ed editor

Redirection (>)

cp

OCOPY

OPUT/OPUTX

rwx r-x r-x

rwx r-x r-x

--- --- ---

rwx --- ---

rw- r-- r--

rw- r-- r--

rw- r-- r--

output = input

--- --- ---
rw- --- --- (text)
rwx --- --- (binary)

rwx rwx rwx

rwx r-x r-x

--- --- ---

rwx --- ---

rw- rw- rw-

rw- rw- rw-

rw- rw- rw-

output = input

--- --- ---
rw- --- --- (text)
rwx --- --- (binary)

Final settings after umask
Chapter 6. Security customization 251

Changing the default permission settings
The umask service changes the process's file creation mask. This mask controls file
permission bits that are set whenever the process creates a file. File permission bits that are
turned on in the file creation mask are turned off in the file permission bits of files that are
created by the process. For example, if a call to the open service, BPX1OPN, specifies a
“mode” argument with file permission bits, the process's file creation mask affects that
argument. Bits that are on in the mask are turned off in the mode argument, and therefore in
the mode of the created file.

If you use the MKDIR TSO/E command to create a directory, the permission bits will be
different than if you use the shell command mkdir to do the same thing.

Each user can influence these defaults for his or her shell session by using the umask
command. umask sets the file-creation permission-code mask of the invoking process to the
given mode. You can specify the mode in any of the formats recognized by chmod.

As stated previously, the file-creation permission-code mask determines the default
permissions for any file created by the process. For example, a file created by the vi
command has the permissions specified by the umask unless the vi command specifies
explicit permissions itself.

Redirecting command output to a file
Commands entered at the command line typically use the three standard files (STDIN,
STDOUT, and STDERR), but you can redirect the output for a command to a file you name. If
you redirect output to a file that does not already exist, the system creates the file
automatically.
252 ABCs of z/OS System Programming Volume 9

6.67 Example of creating a new file

Figure 6-67 Example of creating a new file

Creating a new file
In this example the user JANE (UID 73) is creating a new file. A file could be created in
various ways. It could be copied from another file, it could be created with an editor, it could
be moved, it could be created using JCL, and so on.

Security for a file is specified in the file security packet (FSP) which is a part of the attributes
of the file. Each file has an FSP. The FSP is created when the file is created and is deleted
when the file is deleted.

The contents of the FSP are determined as follows:

� The owning UID of the new file is taken from the effective UID (EUID) of the process that
creates the file.

� The owning GID of the new file is taken from the owning GID of the directory for the new
file.

� The file permission bits are set by the process that creates the file. The setting of the
permission bits can be different, depending on the method used to create the file.

Effect of the UMASK
In this example, the user has set a umask to specify what the permissions should be for all
files that the user creates. To do this, the user JANE issued the following shell command:

umask u=rwx,go=r

Directory: projectb

File: prog1

bill
JANE

UID GID owner group other

UID GID owner group other

42 595 rwx rwx r-x

data

Process
UID=73, GID=595

umask u=rwx,go=r

vi editor
/u/bill/projectb/prog1

(umask u=033)

73 595 rw- r-- r--
Chapter 6. Security customization 253

This will give the owner of the file r, w, and x access, while group and others will get r access.

Settings for the new file
As illustrated in Figure 6-67, when the new file is created:

� The UID of the file is set to 73.

� The GID is set to 595.

� The file permission bits are set according to the umask as follows:

– The file owner has rw, which mean read and write access.

– Users in the group with a GID of 595 have r--, which means read access.

– All other users (also known as world) have r--, which means read access.

In order to create a new file, the user must have write access to the directory for the new file.
254 ABCs of z/OS System Programming Volume 9

6.68 Can user JOE access the file

Figure 6-68 Can a user access the newly created file

User access to the new file
In this example, another user who has a UID of 65 wants read access to the file
/u/bill/projectb/prog1.

This user is not a superuser and is not a privileged or trusted started procedure.

The UID of the process, 65, does not match the file UID.

The GID of the process does match the file GID, and therefore the group permissions apply.
The user wants read access and the permissions are r--, so the user is allowed access.

If the effective GID of the process did not match the file GID, RACF would have looked at the
user's list of groups (assuming that RACF list of groups is active) for a group that has a GID
that is the same as the file GID.

In order to access a file, the user must also have read and search permission to all directories
in the path.

Directory: projectb

File: prog1

bill
JOE

UID GID owner group other

UID GID owner group other

42 595 rwx rwx r-x

data

Process
UID=65, GID=595

OBROWSE
/u/bill/projectb/prog1

for read
73 595 rw- r-- r--
Chapter 6. Security customization 255

6.69 Can user ANN copy the file

Figure 6-69 Can a user copy the newly created file

Access to copy the new file
In this example, a user called ANN with a UID=88 wants to copy the file that user JANE
created. The user is not a superuser, and is not a privileged or trusted started proc. This user
is not the owner of the file and none of this user's groups have a GID that match the GID of
the file.

In this case, access will be determined by the permissions for other users. Since the
permission for other users is read access (r--), the user is allowed to copy the file.

User ANN does not have a umask set and the file permissions will be determined by the
defaults for the cp command which was the method used for the copy. The new file will get
the following attributes:

� The UID will be set to the UID of the person who copied the file. This will be 88.

� The GID will be GID of the directory where the file will be placed, which is 225.

� The file permission bits will be copied from the file prog1 since this is the default for the cp
command.

Directory: projectb

File: prog1

bill
ANN

UID GID owner group other

UID GID owner group other

42 595 rwx rwx r-x

data

Process
UID=88, GID=225

COPY
/u/bill/projectb/prog1

73 595 rw- r-- r--UID GID owner group other

data

88 225 rw- r-- r--

Directory: /u/dept5/work
UID GID owner group other

50 225 rwx rwx r-x

File: prog1

cp com
m

and
256 ABCs of z/OS System Programming Volume 9

6.70 Setting file permissions

Figure 6-70 Commands to set permission bits

Commands to change permission bits
A file's mode mask includes the file permission bits, the SetUID bit, the SetGID bit, and the
sticky bit. The file security packet (FSP) has the setuid, setgid, and sticky bits.

The chmod command
The initial permission bit for the file prog1 is shown in the box at the top right. The chmod
command is used to make a change to the file mode mask of a file or directory, as follows:

rwx --- ------

--- ---

rw- r-- r--

rwx

rwx

rwx

rwx rwx

s--

u g o

a

chmod u-x,g+r,o+r prog1 , or
chmod u=rw,go=r prog1

chmod a=rwx prog1 , or
chmod rwx prog1

chmod go-rwx prog1 , or
chmod u=rwx prog1

chmod u+s prog1

Permission bits for file prog1:

Symbolic Notation

File Permission Bits

File
Owner

UID

File
Owner

GID

S
e
t
U
I
D

S
e
t
G
I
D

S
t
i
c
k
y

r w x r w x r w x

Owner Group Other

File Mode

extattr Access
ACL
exists

File
model
ACL
exists

Directory
model
ACL
exists

ACL Flags
Chapter 6. Security customization 257

� The z/OS UNIX shell command chmod u-x,g+r,o+r deletes execute (x) from the owner (u
for user) permissions, adds read (r) to the group (g) permissions, and adds read (r) to the
other (o) permissions.

� The same effect can be achieved with chmod u=rw,go=r which sets the owner (u) mask to
read/write (rw), and sets the group and other (go) mask to read (r). When the equal sign is
used, it turns on the bits specified and turns off all other bits.

� The command chmod a=rwx sets on the read, write, and execute bits for all (a) users,
which includes the owner, group, and other.

� An equivalent command is chmod rwx in which the a (all users) is implied.

� In the command chmod go-rwx, rwx is turned off for group and other.

� An alternative form chmod u=rwx sets rwx on for the owner (u) mask, and turns off all other
bits.

� The command chmod u+s shows how to turn on the SetUID bit. The s stands for set, and
the u stands for UID. If we wanted to turn on the SetGID bit, we would use chmod g+s.
Turning on the sticky bit would be achieved using chmod +t.

We cannot use RACF commands or panels to set the permissions. We use the z/OS UNIX
shell commands. This is the same as AIX and UNIX. An alternative to the chmod command is
to use the ISHELL menus. They may be more user-friendly for people who are not familiar
with UNIX, and they provide help information.

Note: chmod can only be used by the file owner or a superuser.
258 ABCs of z/OS System Programming Volume 9

6.71 Setting file permissions

Figure 6-71 Commands to set the permission bits

Command to sets bits using octal notation
Octal notation can be used on the chmod command instead of the symbolic notation. With
octal notation, each set of three bits is represented in a single octal digit. For example, a
permission of rwx would be represented as the octal digit 7 which is the sum of the 4 for read
(r), the 2 for write (w), and 1 for execute/search (x), as follows:

� In the command chmod 644 the octal 6 sets read and write (4+2) for the file owner, and
sets read (4) for group and other users.

� The command chmod 777 sets on read/write/execute (4+2+1) for the owner, group, and
other users.

� The command chmod 700 sets on the read, write, and execute bits (4+2+1) for the owner,
and gives no access to group and other users.

� In the last command chmod 4700 we see how to set the set UID, set GID, and sticky bits.
This is done by using four octal digits, where the first digit represents the set UID, set GID,
and sticky bits. Here, SetUID is the left-most bit (4), SetGID is the middle bit (2), and the
sticky bit is the right-most bit (1).

Note: To specify permissions for a file or directory, you use at least a three digit octal
number, omitting the digit in the first position. When you specify three digits instead of four,
the first digit describes owner permissions, the second digit describes group permissions,
and the third digit describes permissions for all others.

rwx --- ------

--- ---

--- ---

rw- r-- r--

rwx

rwx

rwx

rwx rwx

s--

chmod 644 prog1

chmod 777 prog1

chmod 700 prog1

Permission bits for file prog1:
421 421 421 421

Octal Notation

chmod 4700 prog1
Chapter 6. Security customization 259

6.72 List file and directory information

Figure 6-72 Listing the file and directory permission settings

Command to list permission bit settings
The ls command can be used to list important information about files and directories. If the ls
command is used for a directory, it will display this information for all the files in the directory
as shown in Figure 6-72.

Although there are 25 different options for the ls command, we only show the output for one
option, -l, which stands for long. The file type in position 1 in the output indicates the type of
file that is displayed on this line:

- Regular file

d Directory

b Block special file (not supported for z/OS UNIX)

c Character special file (for example, device)

l Symbolic link

e External link

p FIFO special file (also known as a named pipe)

s Socket file type

Positions 2 through 10 represent the file permissions for the owner, group, and other users.

File
type

File
permissions

Links

Owner
userid

Owner
groupid

File
size

Date
and
time

Name

ROGERS @ SC65:/u/rogers>ls -l /usr/man/C
total 136
drwxr-xr-x 2 HAIMO OMVSGRP 8192 May 29 2002 IBM
drwxr-xr-x 3 HAIMO OMVSGRP 8192 Jun 10 2002 cat1
drwxrwxr-x 3 HAIMO OMVSGRP 8192 May 29 2002 cat8
drwxr-xr-x 3 HAIMO OMVSGRP 8192 May 29 2002 man1
-rw-rw-r-- 2 HAIMO OMVSGRP 33887 May 29 2002 whatis

260 ABCs of z/OS System Programming Volume 9

6.73 Introducing daemons

Figure 6-73 Introducing z/OS UNIX daemons

Introducing z/OS UNIX daemons
A daemon process is a process that runs in the background environment and is not
associated with any particular terminal or user. Daemons run authorized (superuser authority)
and can issue authorized functions like the following to change the identity of a user's
process:

� setuid()
� seteuid()
� setreuid
� pthread_security_np()
� auth_check_resource_np()
� _login()
� _spawn() with user ID change
� _password()

Daemon authority
Daemon authority is required only when a program does a setuid(), seteuid(), setreuid(), or
spawn() user ID to change the current UID without first having issued a __passwd() call to the

Note: The spawn() service is allowed to create a new image under a specific user ID that
is different from that of the invoker. When an invoker with appropriate privileges specifies a
username on the _BPX_USERID environment variable or in the inheritance structure
(INHEUSERID), the resulting image runs under the associated MVS user identity.

LISTEN

fork,
spawn

User = OMVSKERN
UID = 0

Work
Request
UID = 25

User = BOB
UID = 25

Child Process
in WLM AS

Change UID
setuid(25)

Execute
work

Exit
User = BOB

Start
Chapter 6. Security customization 261

target user ID. In order to change the MVS identity without knowing the target user ID's
password, the caller of these services must be a superuser. Additionally, if a BPX.DAEMON
FACILITY class profile is defined and the FACILITY class is active, the caller must be
permitted to use this profile. If a program comes from a controlled library and knows the target
UID's password, it can change the UID without having daemon authority.

You can run daemons with regular UNIX security or with z/OS UNIX security. A z/OS UNIX
daemon could also be described as a classical server process. Initially, the daemon process
is started by an external command or event. Once started, the daemon listens for work
requests from clients. When a request is received, the daemon will note the UID of the
requester, and then fork a child process to carry out the request. Before executing the
request, the daemon uses a special SYSCALL setuid to reset the security environment to
match that of the requester.

For administrators, controlling daemons requires some extra considerations:

� How and when is a daemon process started (or restarted if it fails)?

� Daemons often need initialization options customized to installation requirements.

� Daemons have the ability to issue setuid(). Access to this type of power needs to be
controlled, by controlling which programs can be daemons.

� A special user security profile BPXROOT must be created in order to support some
daemon operations.

Daemon authority for the kernel
Give daemon authority to the kernel. Most daemons that inherit their identities from the kernel
address space are started from /etc/rc. To authorize the OMVSKERN user ID for the daemon
FACILITY class profile, issue:

PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSKERN) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Add user BPXROOT
In order for daemon processes to be able to invoke setuid() for superusers, define a
superuser with a user ID of BPXROOT on all systems. To define the BPXROOT user ID,
issue:

ADDUSER BPXROOT DFLTGRP(OMVSGRP) OMVS(UID(0) HOME('/')
 PROGRAM('/bin/sh') PASSWORD(A4B3C3D1)

Exactly how requests are passed to a daemon depends on the type of daemon. For
TCP/IP-based daemons like the telnet or rlogin daemons, the user request will be passed
over a socket connection from the IP network. For the cron daemon, the request is passed via
a parameter area and a cross memory post to the daemon.

Note: The important point about the setuid instruction is that, in a z/OS environment, it will
reset the whole security profile of the forked address space. The UID will be set to the
requester's UID and the current RACF user ID information (the ACEE) will be changed to
BOB to complement the UID. The requester's task therefore runs with access to both the
UNIX and z/OS resources (data sets) owned by BOB.
262 ABCs of z/OS System Programming Volume 9

6.74 z/OS UNIX daemons

Figure 6-74 The z/OS UNIX daemons

z/OS UNIX daemons
A daemon is a long-lived process that runs unattended to perform continuous or periodic
system-wide functions, such as network control. Some daemons are triggered automatically
to perform their task; others operate periodically. Daemons typically encountered on z/OS
UNIX systems include:

cron The batch scheduler, cron is a clock daemon that runs commands at specified
dates and times. You can specify regularly scheduled commands by using the
crontab command. Jobs that are to be run only once can be submitted using
the at or batch commands. cron runs commands with priorities and limits set by
a queuedefs file.

ftpd The file transfer daemon supplied with z/OS Communications Server.

inetd The Internet daemon. The inetd daemon provides service management for a
network. It starts the rlogind program or otelnetd program whenever there is
either a remote login request or a remote telnet login from a workstation.

lm The CS login monitor. The login monitor is a daemon that starts the login
process in the shell for logins initiated by Communications Server (CS). CS
nodes then forward service requests to the login monitor, which listens for the
requests on a port number assigned to the lm service.

rlogind The remote login daemon. The rlogind program is the server for the remote
login command rlogin. It validates the remote login request and verifies the
password of the target user. It starts a z/OS UNIX shell for the user and

cron

ftpd

inetd

lm

rlogind

uucico

timed

Orouted

lpd

httpd

syslogd

otelnetd

orexec

uucpd

uuxqt
Chapter 6. Security customization 263

handles translation between ASCII and EBCDIC code pages as data flows
between the workstation and the shell.

syslogd The syslog daemon supplied with z/OS Communications Server. Syslog
daemon (syslogd) is a server process that has to be started as one of the first
processes in your z/OS UNIX environment. Other servers and stack
components use syslogd for logging purposes and can also send trace
information to syslogd.

otelnetd The remote logon daemon supplied with z/OS Communications Server.

orexecd The remote execution protocol daemon supplied with z/OS Communications
Server. The Remote Execution Protocol Daemon (REXECD) is the server for
the REXEC routine. REXECD provides remote execution facilities with
authentication based on user names and passwords.

uucpd The UNIX-to-UNIX copy program daemon. The uucpd daemon is used to
communicate with any UNIX system that is running a version of the
UNIX-to-UNIX copy program. UUCP functions are used to automatically
transfer files and requests for command execution from one UUCP system to
another, usually in batch mode at particular times. Other daemons associated
with uucp include:

uucico Processes uucp and uux file transfer requests.

uuxqt Runs commands from other systems.

Orouted The Orouted daemon is supplied with z/OS Communications Server. The route
daemon is a server that implements the Routing Information Protocol (RIP)
(RFC 1058). It provides an alternative to the static TCP/IP gateway definitions.

lpd The line printer daemon supplied with z/OS Communications Server. The line
printer daemon enables printers from any TCP/IP host that is attached to the
MVS spooling system.

timed The time daemon supplied with z/OS Communications Server. The time
daemon provides clients with UTC time. Network stations without a time chip
obtain clocks from this daemon.

httpd The http daemon supplied with WebSphere.
264 ABCs of z/OS System Programming Volume 9

6.75 UNIX-level security for daemons

Figure 6-75 UNIX-level security for daemons

UNIX-level security for daemons
You can run daemons with UNIX-level security or with z/OS UNIX security. If the
BPX.DAEMON (or BPX.SERVER) facility class is not defined, your system has UNIX-level
security. In this case, the system is less secure. This level of security is for installations where
superuser authority has been granted to system programmers. These individuals already
have permission to access critical data sets such as PARMLIB, PROCLIB, and LINKLIB.
These system programmers have total authority over a system.

Daemons are processes that perform services for other users. In order to do this, a daemon
must be able to change its identity temporarily to the identity of the user it will perform work
for. The functions setuid() and seteuid() are authorized functions which will change the
identity of a z/OS UNIX user or program.

The daemon program clones itself using a fork() SYSCALL. The cloned child copy issues
the setuid() request to initialize the security environment for the requester. The child issues
exec() to pass control to the real request program to be executed. Superuser authority is
required to use these functions which requires authority of UID=0. All daemon programs must
execute as superusers, and all superusers are allowed to use the setuid() and seteuid()
functions to change the identity of a process to any other UID. Their z/OS identity will be
changed to the one corresponding to the UID value; in the example, the cron daemon
changes its identity to UID=25, which is the z/OS user ID BOB.

Note: If the target UID=0, and the target user ID is not known, the kernel sets default user
ID=BPXROOT.

cron
Batch daemon

OMVSCRON
UID=0

BOB
UID=25

BOB's user
environment MVS

Data Set
zFS File

cronOMVSCRON
UID=0

setuid(25)

exec cp1

cp1
(copy files)

"fork"

Child Address Space

Superuser?
Y

N

setuid
fails!

"Run program
cp1 for BOB"
Chapter 6. Security customization 265

6.76 z/OS UNIX security: BPX.DAEMON

Figure 6-76 z/OS UNIX security with daemons

BPX.DAEMON profiles
If the DAEMON (or BPX.SERVER) FACILITY class is defined, your system has z/OS UNIX
security. Your system can exercise more control over your superusers.

This level of security is for customers with very strict security requirements who need to have
some superusers maintaining the file system but want to have greater control over the z/OS
resources that these users can access. Although BPX.DAEMON provides some additional
control over the capabilities of a superuser, a superuser should still be regarded as a
privileged user because of the full range of privileges the superuser is granted.

The additional control that BPX.DAEMON provides involves the use of kernel services such
as setuid() that change a caller's z/OS user identity. With BPX.DAEMON defined, a
superuser process can successfully run these services if the following are true:

� The caller's user identity has been permitted to the BPX.DAEMON FACILITY class profile.

� All programs running in the address space have been loaded from a library controlled by a
security product. A library identified to RACF Program Control is an example. Individual
files in the HFS can be identified as controlled programs.

Kernel services that change a caller's z/OS user identity require the target z/OS user identity
to have an OMVS segment defined. If you want to maintain this extra level of control at your
installation, you will have to choose which daemons to permit to the BPX.DAEMON FACILITY
class. You will also have to choose the users to whom you give the OMVS security profile
segments.

Provides more control over superusers

Provides a higher level of security

Daemon's identity must be permitted to FACILITY
class

RDEFINE FACILITY BPX.DAEMON UACC(NONE)

PERMIT BPX.DAEMON CLASS(FACILITY)
ID(userid) ACC(READ)

All programs running in the address space

Must be loaded from a library controlled by a security
product
266 ABCs of z/OS System Programming Volume 9

6.77 RACF program control

Figure 6-77 Defining RACF program control

RACF program control for daemons
The purpose of protecting load modules is to provide installations with the ability to control
who can execute what programs and to treat those programs as assets.

You protect individual load modules (programs) by creating a profile for the program in the
PROGRAM general resource class. A program protected profile in the PROGRAM class is
called a controlled program.

The name of the profile can be complete, in which case the profile protects only one program,
or the name of the profile can end with an asterisk (*), in which case the profile can protect
more than one program. For example, a profile named ABC* protects all programs that begin
with ABC, unless a more specific profile exists. In this way you can find which programs are
causing the environment (such as PADS checking) to not work.

The profile for a controlled program must also include the name of the program library that
contains the program and the volume serial number of the volume containing the program
library. The profile can also contain a standard access list of users and groups and their
associated access authorities.

Any program loaded into an A/S with daemon
authority

Must be a controlled program

Define programs to Program Control

z/OS daemons reside in the HFS and are controlled

User defined daemons

Specific daemon program names or *

RDEFINE PROGRAM * UACC(READ) ADDMEM +
 ('SYS1.LINKLIB'/'******'/NOPADCHK +
 'CEE.SCEERUN'/RLTPAK/NOPADCHK +
 'SYS1.SEZALOAD'//NOPADCHK)
SETROPTS WHEN(PROGRAM) REFRESH
Chapter 6. Security customization 267

Program access to data sets
Program access to data sets (PADS) allows an authorized user or group of users to access
specified data sets with the user's authority to execute a certain program. That is, some users
can access specified data sets at a specified access level only while executing a certain
program (and the program access is restricted to controlled programs).

To set up program access to data sets, create a conditional access list for the data set profile
protecting the data sets. To do this, specify WHEN(PROGRAM(program-name)) with the ID and
ACCESS operands on the PERMIT command. Specifying the WHEN(PROGRAM) operand requires
that the user or group specified must be running the specified program to receive the
specified access.

PADCHK and NOPADCHK operands
Choosing between the PADCHK and NOPADCHK operands: With the ADDMEM operand of the
RDEFINE and RALTER commands, you can also specify PADCHK or NOPADCHK as follows:

NOPADCHK NOPADCHK means that RACF does not perform the program-accessed data
checks for the program. The program is loaded and has access to any
currently opened program-accessed data sets, even though the user
ID/program combination is not in the conditional access list. NOPADCHK allows
an installation to define entire libraries of modules (such as the PL/I transient
routines or ISPF) as controlled programs without having to give each of these
modules explicit access to many program-accessed data sets. Use NOPADCHK
if you trust the programs to access only data they should.

PADCHK PADCHK (the default) means that RACF checks for program-accessed data
sets that are already open before executing the program. If there are any
open program-accessed data sets, RACF ensures, before it allows this
program to be loaded, that this user ID/program combination is in the
conditional access list of each data set.
268 ABCs of z/OS System Programming Volume 9

6.78 z/OS UNIX-level security for daemons

Figure 6-78 z/OS UNIX security with daemons

Example using the cron daemon
cron is a clock daemon that runs commands at specified dates and times.

Figure 6-78 shows the cron daemon running a shell script for the user ID BOB (UID=25). The
script will copy HFS files to an MVS data set. Before cron can run the script, it will fork a new
process and set the identity of this process to UID=25 and the MVS identity to BOB. This will
ensure that the script can be run successfully with BOB's shell environment and BOB's
access to his MVS data sets. When the job is done, the cron child process will end, and cron
will not have any access to BOB's MVS data sets.

To obtain a higher level of security in a z/OS system with daemons, the RACF FACILITY
class called BPX.DAEMON can be used to control the use of the setuid/seteuid functions.
Only the superusers permitted to the BPX.DAEMON class will be allowed to use the
setuid/seteuid functions. In addition, there is a program control requirement.

When setuid() SYSCALL is issued, the caller (daemon) program, and all other programs
currently loaded in the address space, must have been loaded from a z/OS data set with the
RACF Program Control activated, meaning they must be controlled programs. As it is the
cloned child daemon program that issues the request, it will inherit the contents of its address
space from the parent daemon via fork.

This solution enables an installation to have some superusers which have authority to
perform system maintenance (for example, to manage the hierarchical file system), while
other special superusers (daemon user IDs) are allowed to change the identity of a process.

HFS File

BOB
UID=25

cronOMVSCRON
UID=0

setuid(25)

exec cp1

cp1
(copy files)

Child Address
 Space

Superuser?

Y

N

Defined to
BPX.DAEMON

Program
Control?

Y

Y

setuid
fails!

N

N

OMVSCRON
OMVSKERN

BPX.DAEMON

........

fork() from
cron daemon

ROGERS @ SC43:/etc>ls -E /usr/sbin/cron
-rwxr--r-- -p- /usr/sbin/cron
ROGERS @ SC43:/etc>

MVS
Data Set
Chapter 6. Security customization 269

6.79 Start options for daemons

Figure 6-79 Start options for daemons

Start options for daemons
In a z/OS system, there are several ways of starting and restarting daemons. The method
used depends on the level of control the installation has chosen for daemons. The daemon
programs are installed in /usr/sbin. Daemons can be started using the following methods:

� To be started automatically when kernel is started, place the start options in the HFS file
called /etc/rc. The initialization of z/OS UNIX includes running the commands in /etc/rc.
The _BPX_JOBNAME environment variable assigns a job name to the daemon.

� As a cataloged procedure using the BPXBATCH program to invoke the daemon program.

If daemons need to be stopped, the kill command is typically used. Some daemons may
have their own specific method of shutdown.

You should have appropriate procedures and directions in place to restart these daemons in
case of failure. Started procedures are one way to do this; other methods may be more
attractive depending on your automation strategy.

_BPX_JOBNAME='INETD' /usr/sbin/inetd /etc/inetd.conf &

//INETD PROC
//INETD EXEC PGM=BPXBATCH,REGION=30M,TIME=NOLIMIT,
// PARM='PGM /usr/sbin/inetd /etc/inetd.conf'
//* STDIN and STDOUT are both defaulted to /dev/null
//STDERR DD PATH='/etc/log',PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)

MVS
Started
Task

/etc/rc
or

any shell script
270 ABCs of z/OS System Programming Volume 9

6.80 Define daemon security

Figure 6-80 Defining daemon security

Defining daemon security
The following steps describe how to define security for a daemon:

1. Define a user ID for the daemon which is a superuser with UID=0, for example
OMVSCRON:

ADDUSER OMVSCRON DFLTGRP(OMVSGRP) OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))

2. Define the BPX.DAEMON FACILITY class in RACF:

RDEFINE FACILITY BPX.DAEMON UACC(NONE)

Activate the class if this is the first RACF FACILITY class:

SETROPTS CLASSACT(FACILITY) GENERIC(FACILITY) AUDIT(FACILITY)
SETROPTS RACLIST(FACILITY)

3. Permit the daemon user ID to the BPX.DAEMON class:

PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSCRON) ACCESS(READ)

4. Protect the program libraries that need to be protected from unauthorized updates. The
ADDSD command creates data set profiles for the data sets. You should protect against
unauthorized updates so that nobody can replace a daemon program with a fake daemon
program. If these profiles are already defined, this step can be skipped.

ADDSD 'SYS1.LINKLIB' UACC(READ)
ADDSD 'SYS1.SCEERUN' UACC(READ)
ADDSD 'SYS1.SEZALOAD' UACC(READ)

1. Define daemon user ID as superuser

2. Define BPX.DAEMON in the facility class

3. Permit daemon user ID to BPX.DAEMON class

4. Protect program libraries

5. Activate RACF program control

ADDUSER OMVSCRON DFLTGRP(OMVSGRP) OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))

RDEFINE FACILITY BPX.DAEMON UACC(NONE)

PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSCRON) ACCESS(READ)

SETROPTS WHEN(PROGRAM) REFRESH
SETROPTS FACILITY(RACLIST) REFRESH

RDEFINE PROGRAM * ADDMEM('SYS1.LINKLIB'//NOPADCHK) UACC(READ)
Chapter 6. Security customization 271

Mark the data sets as controlled libraries:

RDEFINE PROGRAM * ADDMEM('SYS1.LINKLIB'//NOPADCHK +
 'SYS1.SCEERUN'//NOPADCHK +
 'SYS1.SEZALOAD'//NOPADCHK +

Or, mark the daemon program as controlled instead of the whole library:

RDEFINE PROGRAM CRON ADDMEM('SYS1.LINKLIB'//NOPADCHK)
UACC(READ) AUDIT(ALL)

5. Activate RACF program control:

Place the PROGRAM profile in storage:

SETROPTS WHEN(PROGRAM) REFRESH

Starting daemon programs
In many cases, a daemon program is started from the kernel and will inherit the kernel user
ID, OMVSKERN. This example shows that it can have a separate user ID as long as the user
ID is defined as a superuser. This superuser must be defined with a UID=0 in RACF, which
means that this user cannot become a superuser by using the su command.

The name BPX.DAEMON must be used. No substitutions for this name are allowed.
UACC(NONE) is recommended. If this is the first RACF FACILITY class defined in RACF, the
SETROPTS command must be used to activate the class.

You can choose to protect a whole program library or individual load modules (members) in a
library. The daemon program must reside in a program-controlled MVS partitioned data set,
or in an HFS file with the extended attribute turned on via the extattr +p command. Both the
program library for the daemons (for example, SYS1.LINKLIB) and the C run-time library
must be protected.

An installation has a choice of either protecting all programs in a program library or individual
programs. To protect all members in a data set, specify PROGRAM *.

When specifying program control for a program, you can choose to specify UACC(READ) or
UACC(NONE). UACC(READ) should be sufficient to protect the daemon program.

Note: This user ID should not have a TSO/E segment defined; only the OMVS segment is
needed.

Note: Libraries in the LNKLIST concatenation are opened during IPL, and the programs in
them are available to anyone unless the program name is defined as a controlled program.
272 ABCs of z/OS System Programming Volume 9

6.81 Auditing options for z/OS UNIX

Figure 6-81 Auditing options for z/OS UNIX

z/OS UNIX auditing options
Every file and directory has security information, which consists of:

� File access permissions

� UID and GID of the file

� Audit options that the file owner can control

� Audit options that the security auditor can control

The security auditor uses reports formatted from RACF system management facilities (SMF)
records to check successful and failing accesses to z/OS UNIX resources. An SMF record
can be written at each point where the system makes security decisions.

Six classes are used to control auditing of z/OS UNIX security events. These classes have no
profiles. They do not have to be active to control auditing.

The security administrator or the file owners can also specify auditing at the file level in the file
system.

RACF provides utilities for unloading SMF data (IRRADU00) and data from the RACF
database (IRRDBU00), which can be used as input in audit reports.

Users

RACF

HFS
z/OS UNIX

User

Audit reports

Files and directories:
Audit options file owner can control
Audit options security auditor can control

(FSP)

SMF
records
Chapter 6. Security customization 273

6.82 File-based auditing

Figure 6-82 Auditing command for file access and the FSP

File-based auditing options
Auditing for file access is specified in the file security packet (FSP) with the chaudit
command. Only a file owner or a security auditor can specify if auditing is turned on or off,
and when audit records should be written for a directory or a file. There are two separate sets
of auditing flags:

� Auditing set by the file owner (and superuser)

� Auditing set by the RACF AUDITOR

Audit records are written based on the combined owner and auditor settings. Auditing is set
for read, write, and execute (search for directories) for the following kinds of accesses:

� Successful accesses

� Failures, that is, access violations

� All, which is both successes and failures

� None

Assigning audit options
When a file or a directory is created, default audit options are assigned. Different defaults are
set for users and auditors. The same audit option is used no matter what kind of access is
attempted (read, write, or execute). If auditing is not specified for a file, the defaults are:

� For owner auditing - audit failed accesses

File Permission Bits

File Mode

Superuser Owner or
Superuser

Owner or
Superuser

Auditor

chauditchmodchown extattr

(Special)

(FSP)

File
Owner

UID

File
Owner

GID

S
e
t
U
I
D

S
e
t
G
I
D

S
t
i
c
k
y

r w x r w x r w x

Owner Group Other
extattr

File
Owner

 RACF
Auditor ACLs
274 ABCs of z/OS System Programming Volume 9

� For RACF AUDITOR auditing - no auditing

When a file is created, these are the default audit options:

� User audit options: for all access types, audit_access_failed
� Auditor audit options: for all access types, don't_audit

Changing audit options
To change the audit options, you must use chaudit, a z/OS UNIX shell command, or the
ISHELL menus. There are restrictions on who can change these options.

� For user audit options, you must be the owner of the file.
� For auditor audit options, you must have the RACF AUDITOR attribute. You can then

change the auditor audit options for any file in the file system.

The default file-level audit options control the auditing of directory and file accesses. These
defaults will only be used for a particular class (DIRSRCH, DIRACC, or FSOBJ) if
SETROPTS LOGOPTIONS(DEFAULT(class)) has been issued for that class.

The syntax of the chaudit command is similar to the syntax of the chmod command, which
you use to set the security of the file. Use r,w,x to specify whether you want to audit reads,
writes, and/or execute accesses.
Chapter 6. Security customization 275

6.83 Audit z/OS UNIX events

Figure 6-83 RACF classes used for auditing

RACF classes for auditing
RACF provides the following classes for auditing z/OS UNIX events:

DIRSRCH Controls auditing of directory searches.

DIRACC Controls auditing of access checks for read/write access to directories.

FSOBJ Controls auditing of all access checks for file system objects except directory
searches via SETROPTS LOGOPTIONS and controls auditing of creation
and deletion of file system objects via SETROPTS AUDIT.

FSSEC Controls auditing of changes to the security data (FSP) for file system
objects.

PROCESS Controls auditing of changes to the UIDs and GIDs of processes and
changing of the thread limit via the SETROPTS LOGOPTIONS, and controls
auditing of dubbing, undubbing, and server registration of processes via
SETROPTS AUDIT.

PROCAT Controls auditing of functions that look at data from or affect other processes.

IPCOBJ Specifies auditing options for IPC accesses and access checks for objects
and changes to UIDs, GIDs, and modes. For access control and for z/OS
UNIX user identifier (UID), z/OS UNIX group identifier (GID), and mode
changes, use SETROPTS LOGOPTIONS. For object create and delete, use
SETROPTS AUDIT.

SETROPTS
LOGOPTIONS

or
SETROPTS

AUDIT

Controlled by:

RACF classes for auditing:

DIRSRCH

DIRACC

FSOBJ

FSSEC

PROCESS

PROCACT

Directory accesses

Directory searches

All file and directory
 accesses

Change of FSP

Change of process
UID/GID

Functions that look at
data from other processes

IPCOBJ Specifies auditing options for
IPC accesses

SETROPTS LOGOPTIONS(FAILURES(DIRSRCH,DIRACC))
SETROPTS AUDIT(FSOBJ,PROCESS,IPCOBJ)
276 ABCs of z/OS System Programming Volume 9

Controlling auditing with commands
Auditing can be controlled by using the commands SETROPTS LOGOPTIONS, and
SETROPTS AUDIT, as follows:

� SETROPTS LOGOPTIONS(auditing_level(class_name)) audits access attempts to the
resources in the specified class according to the auditing level specified and can be used
for all classes.

� SETROPTS AUDIT(class_name) specifies the names of the classes that RACF should
audit. The AUDIT option can be used for the classes FSOBJ, IPCOBJ, and PROCESS.

� SETROPTS LOGOPTIONS(DEFAULT) indicates you want no class auditing and only
file-level auditing (use chaudit to specify).

Audit records are always written when:

� A user who is not defined as a z/OS UNIX user tries to dub a process.

� A user who is not a superuser tries to mount or unmount a file system.

� A user tries to change a home directory.

� A user tries to remove a file, hard link, or directory.

� A user tries to rename a file, hard link, symbolic link, or directory.

� A user creates a hard link.

The auditing levels for LOGOPTIONS are:

ALWAYS All access attempts to resources protected by the class are audited.

NEVER No access attempts to resources protected by the class are audited (all
auditing is suppressed).

SUCCESSES All successful access attempts to resources protected by the class are
audited.

FAILURES All failed access attempts to resources protected by the class are audited.

DEFAULT Auditing is controlled by the auditing bits in the FSP for z/OS UNIX files and
directories.

Note: There is no option to turn off these audit records.
Chapter 6. Security customization 277

6.84 Chaudit command

Figure 6-84 chaudit command to set auditing options

Chaudit command
The chaudit command changes the audit attributes of the specified files or directories. Audit
attributes determine whether or not accesses to a file are audited by the system authorization
facility (SAF) interface.

Command examples
The top part of Figure 6-84 shows examples of the chaudit command usage by the file owner
(or superuser). The default audit settings are shown in the upper right-hand corner of the
figure, then the command is applied as follows:

� chaudit w+s prog1 adds (+) auditing for successful accesses (s) for write accesses (w).

� chaudit rwx=sf prog1 specifies that all (a) accesses, that is both successes (s) and
failures (f), are to be audited for reads, writes, and executes.

� chaudit r-s,x-sf prog1 says to stop (-) auditing successes (s) for read (r), and stop (-)
auditing both successes (s) and failures (f) for execute (x) access. The same effect can
be achieved with the command chaudit r=f,x= prog1.

Note: chaudit can be used only by the file owner or a superuser for non-auditor-requested
audit attributes. It takes a user with auditor authority to change the auditor-requested audit
attributes.

f f f - - -

- - -

- - -

- - -

- - - f f f

f f f

f f f

f f f

f a f

a a a

f a -

f a f

- a -

f f f

chaudit w+s prog1

chaudit rwx=sf prog1

chaudit r-s,x-sf prog1

default

defaultRACF auditor auditing:

chaudit -a r-f,x-f prog1

chaudit -a rwx=f prog1

chaudit -a r+f,w+sf,x+f prog1

Files owner auditing:
278 ABCs of z/OS System Programming Volume 9

Command examples
Examples of the chaudit command usage by the RACF Auditor are shown in the lower part of
Figure 6-84. The default audit settings shown first, then the command is applied as follows:

� chaudit -a r+f,w+s,x+f prog1 adds auditing of successes (s) and failures (f) for write
access, and specifies to write an audit record whenever an access failure (f) occurs for
read or execute accesses.

� chaudit -a r-f,x-f prog1 turns off (-) auditing for failures (f) for read and execute
accesses.

� chaudit -a rwx=f prog1 turns on auditing for unsuccessful (f) read, write, and execute
accesses.

Note that the auditor includes the option -a when issuing the chaudit command, and that the
auditor can only set the audit flags in the auditor's section of the FSP.

The audit condition part of a symbolic mode is any combination of the following:

s Audit on successful access if the audit attribute is on.

f Audit on failed access if the audit attribute is on.

The following command changes the file prog1 so that all successful and unsuccessful file
accesses are audited:

chaudit rwx=sf prog1
Chapter 6. Security customization 279

6.85 List audit information for files

Figure 6-85 Listing auditing options for specified files

Command to list audit information for files and directories
The ls command with the -W option is used to display the auditing that is in effect for a file. In
this example, since we have done the ls for a directory, all the files in the directory are
displayed.

The auditing options are displayed to the right of the file permissions. The left three
characters are for owner-set auditing, and the right three characters are for auditor-set
auditing.

There are four possible characters for each of these columns:

� No auditing (-)

� Successful accesses (s)

� Access failures (f)

� All accesses (a)

File
auditing

ROGERS @ SC65:/u/rogers>ls -W /usr/man/C
total 136
drwxr-xr-x fff--- 2 HAIMO OMVSGRP 8192 May 29 2002 IBM
drwxr-xr-x fff--- 3 HAIMO OMVSGRP 8192 Jun 10 2002 cat1
drwxrwxr-x fff--- 3 HAIMO OMVSGRP 8192 May 29 2002 cat8
drwxr-xr-x fff--- 3 HAIMO OMVSGRP 8192 May 29 2002 man1
-rw-rw-r-- fff--- 2 HAIMO OMVSGRP 33887 May 29 2002 whatis
280 ABCs of z/OS System Programming Volume 9

6.86 Auditing reports

Figure 6-86 Creating auditing reports

Audit reports
In a z/OS UNIX environment which uses RACF as its access control program, the security
auditor has two main tasks to perform:

� Verify that the RACF profiles have the proper contents (OMVS segments in the user and
group profiles, and logging options in particular).

� Use the security logs to follow up on detected violations, and to detect abnormal behavior
by authorized users.

The audit information can be quite extensive and is found in the RACF database, the RACF
security log, and in SMF records. RACF provides two utilities for unloading security data and
placing the output in a sequential data set:

� The RACF database unload utility, IRRDBU00 can be used to unload a user's OMVS
segment.

� The RACF SMF data unload utility, IRRADU00 can be used to unload the relevant audit
records.

The output from these utilities can be used in several ways: viewed directly, used as input for
installation-written programs, and manipulated with sort/merge utilities. It can also be
uploaded to a database manager (for example, DB2) to process complex inquiries and create
installation-tailored reports. SYS1.SAMPLIB contains examples of how to create DB2 tables,
and load RACF data produced from the RACF unload utilities, into the DB2 tables. It also has
database query examples.

RACF SMF data
unload utility

RACF data base
unload utility

SMF
records

DB2 tables

Direct viewing

Tivoli Decision
Support (TDS)

User
applications

A
u
d
i
t

r
e
p
o
r
t
sRACF

data base

Sequential
data set
Chapter 6. Security customization 281

6.87 Maintain z/OS UNIX-level security

Figure 6-87 Checking products for z/OS UNIX-level security

Checking programs for security
To maintain the security available from the system, take these steps:

� Check any purchased program to make sure that it will not lower the system security level.
If you cannot be sure of a program, do not put it on the system.

� Determine the auditing requirements for the installation. Control auditing data with the
RACF SETROPTS command and the chaudit shell command.

� Set up rules for:

– Sharing data in files

– Specifying permission bits when creating files or using the chmod shell command or
chmod() function

� Protect all HFS data sets with a RACF profile that specifies UACC(NONE). Only
administrators with responsibility for creating, restoring, or dumping HFS data sets should
be permitted to this profile.

To maintain security, require z/OS UNIX users to set the permission bits for their own files to
deny access to any user but the file owner.

Each user is responsible for protecting their own data. However, data that other users need to
access must have the appropriate permission bits set for group or other.

Check purchased applications

Determine auditing requirements for installation

Set up rules for:

Sharing data in files

Specifying permission bits

Protect all HFS data sets with UACC(NONE)
282 ABCs of z/OS System Programming Volume 9

6.88 Setting up z/OS UNIX (1)

Figure 6-88 Tasks needed to set up z/OS UNIX

Setting up security check list
There is no predefined numbering scheme for z/OS UNIX GIDs. Therefore, you must decide
what is suitable for your system when allocating GIDs.

Once a scheme has been chosen, you need to set up some groups. It is recommended that
you set up at least two new groups: one for z/OS UNIX and another for TTY. The
recommended group name for z/OS UNIX is OMVSGRP, but this can be changed to
something else if it is not suitable on your system. The other group, TTY is recommended to
be called that name—otherwise changes will be required in BPXPRMxx to support the
different name.

You will need to add OMVS segments to some existing groups. For example, you (as the
person doing the OMVS configuration work) will need a group OMVS segment (GID). Then
you need to consider who else will need to use z/OS UNIX and ensure that they, too, have
OMVS segments.

Some software detects that z/OS UNIX is active, and if so will want to use it. Two examples
are TCP/IP and RMFGAT.

Determine GID numbering strategy

Define new groups

TTY

OMVSGRP

Add OMVS segments to existing groups

You

Any potential z/OS UNIX users
Chapter 6. Security customization 283

6.89 Setting up z/OS UNIX (2)

Figure 6-89 Tasks needed to set up z/OS UNIX

Setting up security check list
There is no predefined numbering scheme for z/OS UNIX UIDs other than UID=0 means
Superuser. Therefore, you must decide what is suitable for your system when allocating
UIDs.

Once a scheme has been chosen, you need to set up some user IDs. It is recommended that
you set up at least two new user IDs: OMVSKERN and BPXROOT. The OMVSKERN user ID
is used for the OMVS and BPXOINIT address spaces. The BPXROOT user ID is used when
a daemon sets UID=0, but the user ID is not known. These recommended user ID names can
be changed to something else if they are not suitable on your system.

You will need to add OMVS segments to some existing user IDs. For example, you (as the
person doing the OMVS configuration work) will need a user ID OMVS segment
(UID/HOME/PROGRAM). Then you need to consider who else will need to use z/OS UNIX
and ensure that they, too, have OMVS segments.

Some software detects that z/OS UNIX is active, and if so will want to use it. Two examples
are TCP/IP and RMFGAT.

Determine UID numbering strategy

Define new users

OMVSKERN

BPXROOT

Add OMVS segments to existing users

You

Any potential z/OS UNIX users
284 ABCs of z/OS System Programming Volume 9

6.90 Setting up z/OS UNIX (3)

Figure 6-90 Tasks needed to set up z/OS UNIX

Setting up security check list
To activate z/OS UNIX, z/OS UNIX itself needs to have some identification (user ID/group)
assigned to it. This is done either by the RACF started procedures table (ICHRIN03) or the
STARTED class profiles.

Both the OMVS and BPXOINIT cataloged (or started) procedures (or started tasks - STCs)
need to be defined. Only the OMVS procedure should be defined with the TRUSTED attribute.

When programs issue fork or spawn, the BPXAS PROC found in SYS1.PROCLIB is used to
provide a new address space. For a fork, the system copies one process, called the parent
process, into a new process, called the child process. Then it places the child process in a
new address space. The forked address space is provided by workload manager (WLM),
which uses the BPXAS PROC to create the address spaces.

Define cataloged procedure (STC) controls

OMVS

BPXOINIT

BPXAS
Chapter 6. Security customization 285

6.91 Setting up z/OS UNIX (4)

Figure 6-91 Tasks needed to set up z/OS UNIX

Setting up a security check list
All programs loaded into an address space that requires daemon authority need to be marked
as controlled (for example, user programs that are loaded and any run-time library modules
that are loaded). All modules loaded from LPA are considered to be controlled. The
BPX.DAEMON requires z/OS UNIX load libraries to be program-controlled. The data sets
listed in Figure 6-91 are the main ones required to be program-controlled when setting up
z/OS UNIX. These data sets are:

� LINKLIB - z/OS (including z/OS UNIX)

� SCEERUN - Language Environment

� SEZALOAD - TCP/IP

Daemons shipped by z/OS reside in the HFS and are marked program-controlled, so you do
not need to define them. For example, suppose you have a daemon named server1. The file
/bin/server1 would have the sticky bit on. Member SERVER1 would reside in SYS1.LINKLIB
and be defined as program-controlled:

RDEFINE PROGRAM SERVER1 ADDMEM('SYS1.LINKLIB'/'******'/NOPADCHK) + UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

Note: '******' (six asterisks surrounded by single quotes) specifies the current SYSRES
volume.

Any program loaded into an A/S with daemon
authority

Must be a controlled program

Define programs to Program Control

z/OS daemons reside in the HFS and are controlled

User defined daemons

Specific daemon program names or *

RDEFINE PROGRAM * UACC(READ) ADDMEM +
 ('SYS1.LINKLIB'/'******'/NOPADCHK +
 'CEE.SCEERUN'/RLTPAK/NOPADCHK +
 'SYS1.SEZALOAD'//NOPADCHK)
SETROPTS WHEN(PROGRAM) REFRESH
286 ABCs of z/OS System Programming Volume 9

6.92 Setting up z/OS UNIX (5)

Figure 6-92 Tasks needed to set up z/OS UNIX

Setting up security check list
Of the BPX.* FACILITY class profiles, it is strongly recommended that at least BPX.DAEMON
and BPX.SUPERUSER be implemented. BPX.DAEMON restricts access to the following
services:

� seteuid (BPX1SEU service)
� setuid (BPX1SUI service)
� setreuid (BPX1SRU service)
� spawn (BPX1SPN service with a change in user ID requested.
� pthread_security_np()
� auth_check_resource_np()
� _login()
� _password()

BPX.SUPERUSER allows users with access to the BPX.SUPERUSER FACILITY class
profile to switch to superuser authority (effective UID of 0).

You can define profiles in the UNIXPRIV class to grant RACF authorization for certain z/OS
UNIX privileges. These privileges are automatically granted to all users with z/OS UNIX
superuser authority. By defining profiles in the UNIXPRIV class, you can specifically grant
certain superuser privileges with a high degree of granularity to users who do not have
superuser authority. This allows you to minimize the number of assignments of superuser
authority at your installation and reduces your security risk.

Define BPX.DAEMON

Define BPX.SUPERUSER or UNIXPRIV (R8)

Define other BPX.* profiles if required
Chapter 6. Security customization 287

6.93 RACF definitions for zFS

Figure 6-93 RACF definitions for zFS

zFS RACF definitions
To define DFS to RACF you must create the following definitions with these exact names.
Even if you use none of the functions of DFS, you can use the following DFS definitions for
zFS:

� Define DFSGRP as a group.

� Define DFS as a user.

� Define ZFS as a started task.

For RACF, use the following commands:

ADDGROUP DFSGRP SUPGROUP(SYS1) OMVS(GID(2))
ADDUSER DFS OMVS(HOME(/opt/dfslocal/home/dfscntl) UID(0))
 DFLTGRP(DFSGRP) AUTHORITY(CREATE) UACC(NONE)
RDEFINE STARTED ZFS.** STDATA(USER(DFS) GROUP(DFSGRP) TRUSTED(YES))
SETROPTS RACLIST(STARTED) REFRESH

Note: A user ID other than DFS can be used to run the ZFS started task if it is defined with
the same RACF characteristics as shown for the DFS user ID.

RACF definitions required for Distributed File Service

SMB and DFS support

Not required to use zFS

Additional definitions for zFS

RDEFINE STARTED ZFS.** STDATA(USER(DFS))

SETROPTS RACLIST(STARTED) REFRESH

ADDGROUP DFSGRP SUPGROUP(SYS1) OMVS(GID(2))
ADDUSER DFS OMVS(HOME(/opt/dfslocal/home/dfscntl)
UID(0))
 DFLTGRP(DFSGRP) AUTHORITY(CREATE) UACC(NONE)
RDEFINE STARTED DFS.** STDATA(USER(DFS))
RDEFINE STARTED DFSCM.** STDATA(USER(DFS))
RDEFINE STARTED ZFS.** STDATA(USER(DFS)GROUP(DFSGRP
TRUSTED(YES))
 SETROPTS RACLIST(STARTED)
 SETROPTS RACLIST(STARTED) REFRESH
288 ABCs of z/OS System Programming Volume 9

6.94 UNIXPRIV class with z/OS V1R3 and zFS

Figure 6-94 UNIXPRIV class changes for zFS

Authorization for administrators for zFS commands
zFS with z/OS V1R3 supports the SUPERUSER.FILESYS.PFSCTL profile of the UNIXPRIV
class. This makes it possible for a zFS administrator to have just READ authority to this
UNIXPRIV profile resource, SUPERUSER.FILESYS.PFSCTL, rather than requiring a UID of
0 for zfsadm commands that modify zFS file systems or aggregates. The same is true for the
other zFS commands and utilities, so zFS administrators do not need a UID of 0.

To allow the zFS administrator to mount and unmount file systems, permit update access to
another profile, SUPERUSER.FILESYS.MOUNT, in class UNIXPRIV.

UNIXPRIV authorization is invoked by creating the needed resources in the UNIXPRIV class
and then giving users READ authority to it, as follows:

Note: UPDATE access is needed if the user needs to mount, chmount, or unmount file sys-
tems with the setuid option; otherwise, READ access is sufficient.

SETROPTS CLASSACT(UNIXPRIV)
SETROPTS RACLIST(UNIXPRIV)
RDEFINE UNIXPRIV SUPERUSER.FILESYS.PFSCTL UACC(NONE)
PERMIT SUPERUSER.FILESYS.PFSCTL CLASS(UNIXPRIV) ID(ROGERS) ACCESS(READ)
RDEFINE UNIXPRIV SUPERUSER.FILESYS.MOUNT UACC(NONE)
PERMIT SUPERUSER.FILESYS.MOUNT CLASS(UNIXPRIV) ID(ROGERS) ACCESS(UPDATE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Some zfsadm commands require superuser authority

This is true also for other zFS commands and utilities

zFS with z/OS V1R3 supports:

 SUPERUSER.FILESYS.PFSCTL profile - UNIXPRIV

Allows a zFS administrator to have just READ
authority to this UNIXPRIV profile resource

Commands that modify zFS file systems or aggregates

 uid 0 not required with this access

RDEFINE UNIXPRIV SUPERUSER.FILESYS.PFSCTL UACC(NONE)
PERMIT SUPERUSER.FILESYS.PFSCTL CLASS(UNIXPRIV) ID(ROGERS) ACCESS(READ)
RDEFINE UNIXPRIV SUPERUSER.FILESYS.MOUNT UACC(NONE)
PERMIT SUPERUSER.FILESYS.MOUNT CLASS(UNIXPRIV) ID(ROGERS) ACCESS(UPDATE)
Chapter 6. Security customization 289

6.95 List current user IDs with the ISHELL

Figure 6-95 List the currently defined z/OS UNIX users

List z/OS UNIX users
A system programmer can use the ISPF shell to perform tasks such as listing the current
users defined in the OMVS segment. This requires superuser authority.

You can use the ISHELL to do the following:

� List files in a directory
� Create, delete, or rename directories, files, and special files
� Browse files
� Edit files
� Copy files
� Display file attributes
� Search files for text strings
� Compare files or directories
� Run executable files
� Display the attributes and contents of a symbolic link (symlink)
� Mount and unmount a hierarchical file system (HFS)
� Create a hierarchical file system (HFS)
� Set up character special files
� Set up standard directories for a root file system
� Set up existing users and groups for z/OS UNIX System Services access

 --
 User List Row 622 to 645 of 927
 Command ===> __

 User ID UID Group Home Directory Initial Program
 PUBLIC 998 SYS1 / /bin/sh
 PUBUSER -1 ________ ____________________ ____________________
 RACF -1 ________ ____________________ ____________________
 RACHEL -1 ________ ____________________ ____________________
 RALPHB 477 SYS1 /u/ralphb /bin/sh
 RALPHR -1 ________ ____________________ ____________________
 RAMA 87674 SYS1 / /bin/sh
 RANIERI 0 SYS1 / /bin/sh
 RAYNO -1 ________ ____________________ ____________________
 RBORGES -1 ________ ____________________ ____________________
 RCHIANG -1 ________ ____________________ ____________________
 RCONWAY 0 SYS1 /etc /bin/sh
 RC63 0 SYS1 /u/rc63 /bin/sh
 RC64 0 SYS1 / /bin/sh
 RC65 0 SYS1 / /bin/sh
 REYO 10052 SYS1 / /bin/sh

ISHELL - Setup - (2). User list
290 ABCs of z/OS System Programming Volume 9

6.96 The BPXBATCH utility

Figure 6-96 Using the BPXBATCH utility

The BPXBATCH utility
BPXBATCH is an MVS utility that you can use to run shell commands or shell scripts and to
run executable files through the MVS batch environment. You can invoke BPXBATCH as
follows:

� In JCL - Use one of the following:

EXEC PGM=BPXBATCH,PARM='SH program-name'
EXEC PGM=BPXBATCH,PARM='PGM program-name'

� From the TSO/E READY prompt

� From TSO CLISTs and REXX execs - Use one of the following:

BPXBATCH SH program-name
BPXBATCH PGM program-name

� From a program

BPXBATCH has logic to detect when it is run from JCL. If the BPXBATCH program is running
as the only program on the job step task level, it sets up stdin, stdout, and stderr and execs
the requested program. If BPXBATCH is not running as the only program at the job step task
level, the requested program will run as the second step of a JES batch address space from
JCL in batch. If run from any other environment, the requested program will run in a WLM
initiator in the OMVS subsys category.

BPXBATCH is an MVS utility that you can use to
run shell commands or shell scripts

Can run executable files through the MVS batch
environment

Invoke BPXBATCH as follows:

In JCL

From the TSO/E READY prompt

From TSO CLISTs and REXX execs

From a program
Chapter 6. Security customization 291

6.97 The BPXBATCH job

Figure 6-97 Sample JCL for a BPXBATCH job

Using BPXBATCH
When you are using BPXBATCH to run a program, you typically pass the program a file that
sets the environment variables. If you do not pass an environment variable file when running
a program with BPXBATCH or if the HOME and LOGNAME variables are not set in the
environment variable file, those two variables are set from your logon RACF profile.
LOGNAME is set to the user name and HOME is set to the initial working directory from the
RACF profile.

With BPXBATCH, you can allocate the MVS standard files stdin, stdout, and stderr as HFS
files for passing input. If you do allocate these files, they must be HFS files. You can also
allocate MVS data sets or HFS text files containing environment variables (stdenv). If you do
not allocate them, stdin, stdout, stderr, and stdenv default to /dev/null. Allocate the standard
files using the data definition PATH keyword options, or standard data definition options for
MVS data sets.

The BPXBATCH default for stderr is the same file defined for stdout. For example, if you
define stdout to be /tmp/output1 and do not define stderr, then both printf() and perror() output
is directed to /tmp/output1.

For BPXBATCH, you can define stdin, stdout, and stderr using one of the following:

� The TSO/E ALLOCATE command, using the ddnames STDIN, STDOUT, and STDERR

� A JCL DD statement with the PATH operand, using the ddnames STDIN, STDOUT, and
STDERR

//OMVSPGM JOB USER=userid
//OMVSEXEC EXEC PGM=BPXBATCH,PARM='pgm /cprog a1 a2'
//STDOUT DD PATH='/dir1/dir2/std.output',
// PATHOPTS=(OWRONLY,OCREATE),
// PATHMODE=(SIRWXV),
// PATHDISP=KEEP
//STDERR DD PATH='/dir1/dir2/std.error',
// PATHOPTS=(OWRONLY,OCREATE),
// PATHMODE=(SIRWXV),
// PATHDISP=KEEP
/*

292 ABCs of z/OS System Programming Volume 9

� Redirection, which, in a shell, is a method of associating files with the input or output of
commands.

STDIN and STDOUT
STDIN is an input stream from which data is retrieved. Standard input is normally associated
with the keyboard, but if redirection or piping is used, the standard input can be a file or the
output from a command.

STDOUT is the output stream to which data is directed. Standard output is normally
associated with the console, but if redirection or piping is used, the standard output can be a
file or the input to a command. See also standard error.
Chapter 6. Security customization 293

6.98 BPXBATCH and shell commands
‘

Figure 6-98 Using shell commands in BPXBATCH JCL

The BPXBATCH utility
BPXBATCH makes it easy for you to run shell scripts, REXX execs, and executable files that
reside in hierarchical file system (HFS) files through the MVS job control language (JCL). If
you do most of your work from TSO/E, using BPXBATCH saves you the trouble of going into
the shell to run your scripts and executable files. The format of BPXBATCH for JCL and
TSO/E is as follows:

The format of BPXBATCH for JCL and TSO/E is as follows:

JCL: EXEC PGM=BPXBATCH,PARM='SH | PGM program_name'

TSO/E: BPXBATCH SH | PGM program_name

In addition, BPXBATCH can be used in a REXX exec to call a shell script as shown in the
following example:

"BPXBATCH SH "shellcmd

 IF RC ^= 0 Then
 DO
 Say ' OSHELL RC = ' RC

You can allocate STDIN, STDOUT, and STDERR as files, using the PATH operand, and
redirect the messages to HFS files.

//GGIBPXBA JOB (55,500,,999),'MVS ',CLASS=A,
// MSGCLASS=R,REGION=0K,NOTIFY=&SYSUID
//EXECBPX EXEC PGM=BPXBATCH,REGION=8M,
// PARM='SH ls /usr/lib'
//*STDIN DD PATH='/stdin-file-pathname',
//* PATHOPTS=(ORDONLY)
//STDOUT DD PATH='/u/ggi/bin/mystd.out',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDERR DD PATH='/u/ggi/bin/mystd.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDENV DD *
TZ=EST5EDT
LANG=C
PATH=/bin:/usr/lpp/java/J1.4/bin:.

//*STDENV DD PATH='/etc/setting.envvars',
//* PATHOPTS=ORDONLY
294 ABCs of z/OS System Programming Volume 9

The command to execute the shell script or program is located in the PARM='...' section. You
can either specify the PARM='...' or the //STDIN DD statements. The default when PARM='...'
is not specified is SH.

SH Specifies that the shell designated in your TSO/E user ID's security product profile is
to be started and is to run shell commands or scripts provided from STDIN or the
specified program_name.

PGM Specifies that the specified program_name is to be run as a called program from a
shell environment.

For environment settings, use the //STDENV DD statement. This can be specified as JCLIN
or as a path pointing to an HFS file.

The STDERR file
The STDERR file is the output stream to which error messages or diagnostic messages are
sent. See also standard input, standard output.

The STDENV file
The BPXBATCH utility also uses the STDENV file to allow you to pass environment variables
to the program that is being invoked. This can be useful when not using the shell, such as
when using the PGM parameter.
Chapter 6. Security customization 295

296 ABCs of z/OS System Programming Volume 9

Chapter 7. zFS file systems

This chapter describes the structure of zFS hierarchical file systems and how to customize it
to your requirements. In addition to providing an introduction to zFS concepts, it provides
details on how to:

� Manage and create a zFS hierarchical file system

� Use zFS commands to display information

� Perform space management for a zFS hierarchical file system

7

© Copyright IBM Corp. 2006, 2008. All rights reserved. 297

7.1 zSeries File System (zFS)

Figure 7-1 zFS replacing HFS

zFS file systems
zFS is complementary to HFS. zFS can be used for all levels of the z/OS UNIX System
Services hierarchy (including the root file system) when all members are at the z/OS V1R7
level. Because zFS has higher performance characteristics than HFS and is now considered
the strategic file system, HFS may no longer be supported in future releases and you will
have to migrate the remaining HFS file systems to zFS.

HFS support
Support for the HFS file system has been stabilized and you are encouraged to migrate to the
zFS file system for better performance, but IBM has not announced removal of support for the
HFS file system.

zFS functionality
The zSeries File System (zFS) is the strategic UNIX System Services file system for z/OS.
IBM has enhanced zFS function in z/OS V1R7 so that you can use zFS file systems at all
levels within the file hierarchy.

The migration to zFS file systems needs to be well planned since it will take significant effort
to migrate all data from HFS file systems to zFS file systems.

Unavailability of the data for read/write access must be planned for, as well as the space for
two file systems that are about the same size.

zFS is the strategic UNIX Systems Services file
system for z/OS

The Hierarchical File System (HFS) functionality has
been stabilized

HFS is expected to continue shipping as part of the
operating system and will be supported in
accordance with the terms of a customer's applicable
support agreement

IBM intends to continue enhancing zFS functionality,
including RAS and performance capabilities, in future
z/OS releases

All requirements for UNIX file services are expected to
be addressed in the context of zFS only
298 ABCs of z/OS System Programming Volume 9

7.2 zFS aggregates

Figure 7-2 zFS aggregates

zFS aggregates
A zFS aggregate is a data set that contains zFS file systems. The aggregate is a VSAM
Linear Data Set (VSAM LDS) and is a container that can contain one or more zFS file
systems. An aggregate can only have one VSAM LDS, but it can contain an unlimited number
of file systems. The name of the aggregate is the same as the VSAM LDS name. Sufficient
space must be available on the volume or volumes, as multiple volumes may be specified on
the DEFINE of the VSAM LDS. DFSMS decides when to allocate on these volumes during
any extension of a primary allocation. VSAM LDSs greater than 4 GB may be specified by
using the extended format and extended addressability capability in the data class of the data
set.

Types of aggregates
After the aggregate is created, formatting of the aggregate is necessary before any file
systems can exist in it. A zFS file system is a named entity that resides in a zFS aggregate.
While the term file system is not a new term, a zFS file system resides in a zFS aggregate,
which is different from an HFS file system. zFS aggregates come in two types:

� Compatibility mode aggregates
� Multi-file system aggregates

Note: In a future release, IBM plans to withdraw support for zFS multi-file system
aggregates. When this support is withdrawn, only zFS compatibility mode aggregates will
be supported. With z/OS V1R8, they cannot be mounted in a shared file system mode.

An aggregate is a VSAM linear data set (LDS)

An aggregate can contain one or more zFS file systems

Two types of aggregates:

HFS compatibility mode - contains 1 zFS file system

Multi-file system - contains 1 or more zFS file systems

Space sharing between file systems in same aggregate

With z/OS V1R8, multi-file aggregates are not supported
in a shared file system environment
Chapter 7. zFS file systems 299

7.3 zFS compatibility mode aggregate

Figure 7-3 zFS compatibility mode aggregate

zFS compatibility aggregate
A compatibility mode aggregate can contain only one zFS file system, making this type of
aggregate more like an HFS file system. This is flagged in the aggregate when it is created.
The name of the file system is the same as the name of the aggregate, which is the same as
the VSAM LDS cluster name.

The file system size (called a quota) in a compatibility mode aggregate is set to the size of the
aggregate. Compatibility mode aggregates are more like an HFS data set, except that they
are VSAM linear data sets instead of HFS data sets.

We recommend that you start using compatibility mode aggregates first, since they are more
like the familiar HFS data sets.

ZFSVOLZFSVOL

zFS file system

zFS compatibility mode
aggregate

OMVS.PAY.ZFS

VSAM LDS name=Aggregate name=File system name=OMVS.PAY.ZFS

F

/

F
F F

F

300 ABCs of z/OS System Programming Volume 9

7.4 Multi-file system aggregate

Figure 7-4 zFS multi-file system aggregate

zFS multi-file mode aggregate
A multi-file system aggregate allows the administrator to define multiple zFS file systems in a
single aggregate. This type of aggregate can contain one or more zFS file systems. This
allows space that becomes available when files are deleted in one file system to be made
available to other file systems in the same aggregate data set or space sharing.

Space sharing
Space sharing means that if you have multiple file systems in a single data set, and files are
removed from one of the file systems—which frees DASD space—another file system can
use that space when new files are created. This new type of file system is called a multi-file
system aggregate.

The multi-file system aggregate has its own name. This name is assigned when the
aggregate is created. It is always the same as the VSAM LDS cluster name. Each zFS file
system in the aggregate has its own file system name. This name is assigned when the
particular file system in the aggregate is created. Each zFS file system also has a predefined
maximum size, called the quota.

Note: In a future release, IBM plans to withdraw support for zFS multi-file system
aggregates. When this support is withdrawn, only zFS compatibility mode aggregates will
be supported.

zFS file systems
VSAM LDS name=Aggregate name=OMVS.MUL02.ZFS

ZFSFS01
ZFSFS02
ZFSFS03

ZFSVL1ZFSVL1

ZFSFS01 ZFSFS02

ZFSFS03

OMVS.MUL02.ZFS

F

/

F
F F

F

F

/

F
F F

F

F

/

F
F F

F

ELIMINATED in z/OS V1R8 in file sharing mode

File system names
Chapter 7. zFS file systems 301

7.5 BPXPRMxx definitions for zFS

Figure 7-5 zFS definitions in PARMLIB and PROCLIB

Defining zFS as a PFS
Physical file systems are sometimes initialized in an address space called a colony address
space. You can think of these address spaces as extensions of the kernel address space.
The NFS Client and DFS Client physical file systems must be set up in a colony address
space because they need to use socket sessions to talk to their remote servers, and this
cannot be done from the kernel. Whether or not a PFS runs in a colony address space is
controlled by the ASNAME parameter of the FILESYSTYPE statement for the PFS in the
BPXPRMxx member of the SYS1.PARMLIB concatenation.

zFS is the newest colony address space and is defined as follows:

FILESYSTYPE TYPE(ZFS)
 ENTRYPOINT(IOEFSCM)
 ASNAME(ZFS)

zFS procedure
To set up a physical file system in a colony address space, create a cataloged procedure in
SYS1.PROCLIB.

Note: The name of the procedure must match the name specified on an ASNAME operand
on the FILESYSTYPE statement in BPXPRMxx that starts physical file systems in this
colony address space.

FILESYSTYPE TYPE(ZFS)
 ENTRYPOINT(IOEFSCM)
 ASNAME(ZFS)

//ZFS PROC REGSIZE=0M
//ZFSGO EXEC PGM=BPXVCLNY,REGION=®SIZE,TIME=1440
//*STEPLIB DD DISP=SHR,DSN=IOE.SIOELMOD
//IOEZPRM DD DSN=IOE.PARMLIB(IOEFSPRM),DISP=SHR
// PEND

BPXPRMxx FILESYSTYPE statement

Defines zFS as a physical file system (PFS)

ZFS PROC
302 ABCs of z/OS System Programming Volume 9

7.6 zFS colony address space

Figure 7-6 zFS colony address space

zFS colony address space
zFS runs in a UNIX System Services (USS) colony address space. A colony address space is
an address space that is separate from the USS address space. HFS runs inside the USS
address space and zFS runs in its own address space, as shown in Figure 7-6.

The colony address space runs outside of JES control and does not have to be stopped if
JES has to be stopped, which facilitates planned shutdowns of individual systems in a
sysplex that has shared file systems.

Other z/OS UNIX colony address spaces
The NFS Client, TFS, and zFS physical file systems support running outside of JES. The
following information may help you to decide whether to move these z/OS UNIX colonies
outside of JES. The DFS Client PFS does not support being started outside of JES.

Started procedures
z/OS UNIX colony address spaces are started procedures. If you do not want to run them
under JES, you will need to change any DD SYSOUT= data sets that are specified in these
procedures. These must be changed because SYSOUT data sets are only supported under
JES. There are three ways you can change these data sets.

TFSNFS
Client

Logical File
System

Physical
File

Systems
HFS

TFSPROC

NFSCLNT

ZFS

SYS1.PROCLIB

I/O
syscall

FILESYSTYPE TYPE(ZFS)
ENTRYPOINT(IOEFSCM)
ASNAME(ZFS)

FILESYSTYPE TYPE(TFS)
ENTRYPOINT(BPXTFS)
ASNAME(TFSPROC)

Procedure name
in SYS1.PROCLIB

BPXPRMxx

ZFS

OMVS Kernel
Chapter 7. zFS file systems 303

7.7 HFS data sets and zFS data sets

Figure 7-7 HFS data sets and zFS data sets

HFS data sets
A z/OS UNIX hierarchical file system is contained in a data set type called HFS. An HFS data
set can reside on an SMS-managed volume or a non SMS-managed volume. HFS data sets
can reside with other z/OS data sets on SMS-managed volumes and non SMS-managed
volumes. Multiple systems can share an HFS data set if it is mounted in read-only mode.

An HFS data set can have up to 123 extents, and the maximum size of the data set is one
physical volume. For a 3390-Model 3, the maximum size is 2.838 GB. HFS data sets only be
accessed by z/OS UNIX.

zFS data sets
The z/OS Distributed File Service (DFS) zSeries File System (zFS) is a z/OS UNIX file
system that can be used in addition to, or to replace an HFS file system. zFS provides
significant performance gains in accessing files approaching 8K in size that are frequently
accessed and updated. The access performance of smaller files is equivalent to that of HFS.

zFS file systems contain files and directories that can be accessed with the z/OS hierarchical
file system application programming interfaces on the z/OS operating system.

HFSVOL

F F
F

F F

 /

ZFSVOL

F F
F F F

 /

Using zFS, you can

Run applications just like HFS

Use zFS in addition to HFS or replace HFS
304 ABCs of z/OS System Programming Volume 9

7.8 zFS utilities and commands

Figure 7-8 zFS utilities and commands

IOEAGFMT utility
The IOEAGFMT utility is used to format an existing VSAM LDS as a zFS aggregate. All zFS
aggregates must be formatted before use (including HFS compatibility mode aggregates).
The utility can be run even if the ZFS PFS is not active on the system.

IOEAGSLV utility
This utility scans an aggregate and reports inconsistencies. Aggregates can be verified,
recovered (that is, the log is replayed), or salvaged (that is, the aggregate is repaired). This
utility is known as the Salvager.

zFS provides a recovery mechanism that uses a zFS file system log to verify or correct the
structure of an aggregate. This recovery is invoked by an operator command, ioeagslv.

IOEZADM utility
This utility program is specified in batch JCL and allows the zFS zfsadm command to be
issued, for example:

//USERIDA JOB ,'zfsadm attach',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//AGGRINFO EXEC PGM=IOEZADM,REGION=0M,
// PARM=('attach -aggregate OMVS.PRV.AGGR001.LDS0001')
//

IOEAGFMT - utility program to format an aggregate

IOEAGSLV - utility program to scan an aggregate and
report inconsistencies

IOEZADM - utility program that allows:

zfsadm commands to be issued using JCL

Running from within a TSO/E environment

 zfsadm - z/OS UNIX shell command

Installation of zFS consideration for zfsadm commands

ln -s /usr/lpp/dfs/global/bin/zfsadm /bin/zfsadm
Chapter 7. zFS file systems 305

The zfsadm command
This command is an administrative command that can be used from the UNIX shell to
customize and display the zFS environment.

zFS installation consideration
Verify that during your z/OS Distributed File Service installation a symbolic link was created
for access to the zfsadm commands. If for some reason this was not done, issue the following
command to create a symbolic link in the /bin directory:

#> ln -s /usr/lpp/dfs/global/bin/zfsadm /bin/zfsadm

Note: Although zfsadm and IOEZADM are physically different modules, they contain
identical code. Whenever we reference zfsadm as a zFS administration command in this
book, we mean both zfsadm and IOEZADM. Therefore, IOEZADM can be used as a
TSO/E command; it performs the same functions as the zfsadm command.
306 ABCs of z/OS System Programming Volume 9

7.9 zfsadm command

Figure 7-9 The zfsadm command and its subcommands

zfsadm command
The zfsadm commands have the same general structure:

command {-option1 argument...| -option2 {argument1 | argument2}..}
[-optional_information]

A command consists of the command suite (zfsadm in the figure and a subcommand such as
detach). The command suite and the command name must be separated by a space. The
command suite specifies the group of related commands.

zFS provides utility programs and z/OS UNIX commands to assist in the customization of the
aggregates and file systems. These utilities and commands are to be used by system
administrators.

The zfsadm command and the IOEZADM utility program can be used to manage file systems
and aggregates. The zfsadm command can be run as a UNIX shell command from:

� A z/OS UNIX System Services shell (OMVS) or a (z/OS UNIX) telnet session
� A batch job using the BPXBATCH utility program
� TSO foreground or in batch mode using z/OS UNIX APIs (SYSCALL commands, Callable

Services)

zFS file systems can be created using JCL, or by using the zfsadm command. Figure 7-9
shows the zfsadm command with its subcommands.

zfsadm attach Attach an aggregate
zfsadm apropos Display first line of help entry
zfsadm detach Detach an aggregate
zfsadm grow Grow an aggregate
zfsadm aggrinfo Obtain information on an attached aggregate
zfsadm clone Clone a filesystem
zfsadm clonesys Clone multiple filesystems
zfsadm create Create a filesystem
zfsadm delete Delete a filesystem
zfsadm define Create a VSAM linear data set aggregate
zfsadm format Format an aggregate
zfsadm help Get help on commands
zfsadm lsaggr List all currently attached aggregates
zfsadm lsfs List all file systems on an aggregate or all
zfsadm lsquota List filesystem information
zfsadm quiesce Quiesce an aggregate and all file systems
zfsadm rename Rename a file system
zfsadm setquota Set the quota for a file system
zfsadm unquiesce Make the aggregate and all file systems available
zfsadm config Change value of zFS configuration (IOEFSPRM) in memory
zfsadm configquery Query the current value of zFS configuration option
zfsadm query Query or reset the performance counters

**

* New with z/OS V1R3
+ New with z/OS V1R4
@ New with z/OS V1R6

+
+
@

Chapter 7. zFS file systems 307

7.10 Allocate Linear VSAM data set

Figure 7-10 How to allocate a linear VSAM data set

Creating a zFS aggregate
A zFS aggregate is created by defining a VSAM linear data set (LDS) and then formatting that
VSAM LDS as an aggregate. This is done once for each zFS aggregate. You cannot assign
more than one VSAM LDS per aggregate. An aggregate can contain one or more zFS file
systems. A zFS file system is equivalent to an HFS file system.

Using JCL
The VSAM LDS is allocated with the VSAM utility program IDCAMS, as shown in Figure 7-10.
The JCL shows the allocation of both types of aggregates.

Using the zfsadm command
The zfsadm define command defines a VSAM LDS. The VSAM LDS is available to be
formatted as a zFS aggregate. The command creates a DEFINE CLUSTER command string
for a VSAM LDS with SHAREOPTIONS(2) and passes it to the IDCAMS utility. If a failure
occurs, the zfsadm define command may display additional messages from IDCAMS
indicating the reason for the failure.

Note: The issuer of the zfsadm define command requires sufficient authority to create the
VSAM LDS.

//RFRZAL JOB (999,POK),'R F',CLASS=A,MSGCLASS=U,NOTIFY=&SYSUID,
// REGION=0M
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//DISK DD DISP=OLD,UNIT=3390,VOL=SER=ZFSVOL
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME (OMVS.CMP01.ZFS) VOL(ZFSVOL) -
 LINEAR CYL(200 0) SHAREOPTIONS(2))

zfsadm command (z/OS V1R3) - zfsadm define

$> zfsadm define -a OMVS.CMP01.ZFS -volumes totzf1 -cylinders 10 1
IOEZ00248E VSAM linear dataset OMVS.CMP01.ZFS successfully created.

Allocate using IDCAMS in JCL
308 ABCs of z/OS System Programming Volume 9

7.11 Create the aggregate from ISHELL

Figure 7-11 How to allocate a zFS aggregate from the ISHELL

Allocate zFS aggregate from the ISHELL
The panel shown in Figure 7-11, new with z/OS V1R4, allows you to allocate a zFS aggregate
from the ISHELL.

Once you enter the ISHELL, place the cursor under File_systems and press Enter. Then
select Option 4 (New zFS) and the panel shown in the figure appears. Type in the information
to create the aggregate. When you specify the parameters, you now have a linear VSAM data
set.

Specify the appropriate parameters to allocate a data set for an aggregate, format the
aggregate, and create a file system in that aggregate. The aggregate is initially created as a
compatibility mode. The file system defined in the aggregate is the same name as the
aggregate and data set. See z/OS Distributed File Service zSeries File System
Administration, SC24-5989 for detailed information on zFS aggregates, file systems, and their
attributes.

Format of aggregate
This ISHELL panel function also formats the aggregate and creates the file system; it just
needs to be mounted before it can be used.

File_systems - Option 4 - New zFS

New with z/OS V1R4
Chapter 7. zFS file systems 309

7.12 Format VSAM space - create aggregate

Figure 7-12 Formatting a zFS aggregate

Formatting aggregates
The VSAM linear data set must be formatted to be used as a zFS aggregate. Two options are
available for formatting an aggregate and they use the same parameters:

� The IOEAGFMT format utility
� The zfsadm format command, as follows:

zfsadm format -aggregate name [-initialempty blocks] [-size blocks] [-logsize
blocks] [-overwrite] [-compat] [-owner {uid | name}] [-group {group_id | name}]
[-perms decimal | octal | hex_number] [-level] [-help]

#> zfsadm format -a OMVS.CMP01.ZFS -compat -owner 316 -p o755
IOEZ00077I HFS-compatibility aggregate OMVS.CMP01.ZFS has been successfully
created

The formatting of aggregates can be done without the colony address space (the zFS
address space) being active. The IOEFSPRM file, or the BPXPRMxx PARMLIB member, are
not required for the format to take place.

Creating aggregates and file systems
A zFS file system is created in a zFS aggregate (which is a VSAM linear data set). When
using compatibility mode aggregates, the aggregate and the file system are created at the
same time during the format.

Stand alone utility to format allocated space:

IOEAGFMT format utility

zfsadm command to format the allocated space

zfsadm format -aggregate name [-initialempty blocks] [-size
blocks] [-logsize blocks] [-overwrite] [-compat] [-owner {uid
| name}] [-group {group_id | name}] [-perms decimal |
octal | hex_number] [-level] [-help]

#> zfsadm format -a OMVS.CMP01.ZFS -compat -owner 316 -p o755

IOEZ00077I HFS-compatibility aggregate OMVS.CMP01.ZFS has been successfully created

Does not need zFS colony address space to be active

Does not use the IOEFSPRM configuration file - or
IOEPRMxx parmlib member (z/OS V1R6)
310 ABCs of z/OS System Programming Volume 9

Formatting space
This utility formats the primary allocation and, if requested by using the -size parameter (with
a value greater than the primary allocation), a single extension. An extension is a single call to
the Media Manager to extend the data set to the size specified in the -size parameter. It is
completely independent of the number of cylinders specified in the secondary allocation when
the data set was defined (the secondary allocation could have been 0).

Multi-volume allocations
If your initial VSAM LDS allocation is for multiple volumes, the initial formatting of the zFS
aggregate is limited to the primary allocation (in this case, the first volume). After that, you
must use multiple zfsadm grow commands to grow to each new volume.

Note: To format an entire multi-volume allocation, see “The -grow option - z/OS V1R4” on
page 329.
Chapter 7. zFS file systems 311

7.13 Format the aggregate

Figure 7-13 JCL to format an aggregate

Formatting aggregates using JCL
Figure 7-13 shows the JCL for formatting compatibility mode aggregates.

.The sample JCL was run using the default values shown in bold.

Parameter Values Description

-aggregate VSAM LDS cluster name The name of the data set to format.

-size 4K, 8K, 16K, 32K, 64K The size in bytes of the logical block.

-owner uid | name Specifies the owner for the root directory of the file
system for compat mode only. Default is uid of
issuer of ioeagfmt.

-group gid | name Specifies the group owner for the root directory for
compat mode only. Default is gid of issuer.

-logsize a number The size in blocks of the log. The default is 1% of
the aggrsize.

-overwrite NA Reformat an existing aggregate.

-compat NA Create a compatibility mode aggregate.

-perms o755 Permission bit settings for root directory.

A compatibility mode aggregate is formatted with this JCL:

//ROGERSA JOB (999,POK),'R F',CLASS=A,MSGCLASS=U,NOTIFY=&SYSUID,
// REGION=0M
//STEP1 EXEC PGM=IOEAGFMT,
// PARM=(' -aggregate ROGERS.AAA.ZFS -compat ')
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//

JCL can be used to format aggregates

PARM parameters must be lower case

-compat required for compatibility aggregates
312 ABCs of z/OS System Programming Volume 9

7.14 Ioeagfmt messages

Figure 7-14 zFS formatting messages

Formatting messages
When you format a compatibility mode aggregate (output of the JCL shown in the figure), the
following processing is done:

� The aggregate is attached and then detached.

� A file system is created for the aggregate with the same name as the aggregate.

The ioeagfmt utility
The ioeagfmt utility is used to format an existing VSAM LDS as a zFS aggregate. All zFS
aggregates must be formatted before use. Ioeagfmt can be run even if the ZFS PFS is not
active on the system. The size of the aggregate is as many 8K blocks as fit in the primary
allocation of the VSAM LDS or as specified in the -size option. The -size option can cause
one additional extension to occur during formatting. To extend it further, use the zfsadm grow
command. If -overwrite is specified, all existing primary and secondary allocations are
formatted and the size includes all of that space.

IOEZ00004I Formatting to 8K block number 1800 for primary extent of ROGERS.AAA.ZFS.
IOEZ00005I Primary extent loaded successfully for ROGERS.AAA.ZFS.
IOEZ00535I *** Using initialempty value of 1.
*** Using 1799 (8192-byte) blocks
*** Defaulting to 17 log blocks(maximum of 1 concurrent transactions).
IOEZ00327I Done. ROGERS.AAA.ZFS is now a zFS aggregate.
IOEZ00048I Detaching aggregate ROGERS.AAA.ZFS
IOEZ00071I Attaching aggregate ROGERS.AAA.ZFS to create HFS-compatible file system
IOEZ00074I Creating file system of size 14207K, owner id 0, group id 2, permissions
IOEZ00048I Detaching aggregate ROGERS.AAA.ZFS
IOEZ00077I HFS-compatibility aggregate ROGERS.AAA.ZFS has been successfully created

The following messages are displayed in the
SYSPRINT data set of the JCL job

To use the file system, it must be mounted
Chapter 7. zFS file systems 313

7.15 Mounting the file system

Figure 7-15 Mounting a file system

Mounting a file system
The zFS file system can now be mounted into the z/OS UNIX hierarchy. This can be
accomplished in the following ways:

� With the TSO/E MOUNT command

� Using an OMVS shell mount command

� Using the ISHELL

� A mount statement in the BPXPRMxx PARMLIB member

� An automount policy

This assumes that the directory mountpoint exists. The TYPE parameter of the MOUNT
command specifies ZFS. This is required for any zFS file system. All other forms of the mount
function are also supported (for example, the /usr/sbin/mount command, the automount
facility, etc.). Once the zFS file system is mounted, applications and commands can be
executed and files and directories can be accessed in zFS just as in HFS.

Note: When the file system is mounted, it causes the aggregate to be attached.

Once a compatibility aggregate is formatted

The file system is created

The aggregate is not attached

When mounting the file system

The aggregate is attached

Note: Do not manually attach a compatibility
 mode aggregate
314 ABCs of z/OS System Programming Volume 9

7.16 ISHELL support for zFS (z/OS V1R5)

Figure 7-16 Managing zFS aggregates from the ISHELL

Manage zFS aggregates
In the pull-down under File_systems is the new option 5. This function has been added to the
ISHELL with z/OS V1R5.

To make use of it, select Option 5 in the File_systems menu, and press Enter; the screen
shown in Figure 7-17 is displayed. This screen enables you to work with all the attached
aggregates from the ISHELL.

Similar information about the aggregates can also be obtained by using the zfsadm command
from the OMVS shell session.

ISHELL provides ability to manage zFS aggregates
Chapter 7. zFS file systems 315

7.17 Panel of attached zFS aggregates

Figure 7-17 ISHELL panel showing attached zFS aggregates

Attached zFS aggregate ISHELL panel
This panel shows the aggregate list of all zFS aggregates that are currently attached explicitly
or implicitly as HFS-compatible aggregates. The amounts of free space and total space are
also shown, in units of kilobytes. From this panel you can select an option of one or more
aggregates with an action code.

The valid action codes are:

A Show the attributes for the aggregate.
L List the file systems in the aggregate. The file system list will allow you to perform

actions on file systems.
D Detach an aggregate that is not in use.
E Extend the size of the aggregate.

The available options are:

1. Attach aggregate: Select this option to specify an aggregate to attach.

2. Create aggregate: Select this option to create an HFS-compatible aggregate. Note that
an HFS-compatible aggregate also contains a file system with the same name as the
aggregate. Additional file systems can be created in that aggregate if it has been explicitly
attached, and the original file system can also be deleted.
316 ABCs of z/OS System Programming Volume 9

7.18 Display aggregate attributes

Figure 7-18 Display of an aggregate’s attributes

Display attributes for an aggregate
Figure 7-18 shows the screen returned when you specify A - Attributes for an aggregate from
the previous screen and press Enter.

For detailed information about zFS aggregates, file systems, and their attributes, see z/OS
Distributed File Service zSeries File System Administration, SC24-5989.

The zfsadm command
If you use the zfsadm command to list the aggregate attributes, the result is as follows:

OMVS.HERING.TEST.ZFS (R/W COMP): 454 K free out of total 11520
42 free 8k blocks; 118 free 1K fragments

 112 K log file; 24 K filesystem table
 8 K bitmap file
Chapter 7. zFS file systems 317

7.19 Display attached aggregates

Figure 7-19 Displaying attached aggregates

Displaying attached aggregates
The zfsadm lsaggr command lists all currently attached aggregates for zFS.

This command displays a separate line for each aggregate. Each line displays the following
information:

� The aggregate name

� The system name where the aggregate is attached

� The access mode - R/W is Read/Write

You can use the zfsadm aggrinfo command to display information about the amount of disk
space available on a specific aggregate or on all aggregates on a system.

ROGERS @ SC65:/u/rogers>zfsadm lsaggr
IOEZ00106I A total of 18 aggregates are attached
TWS.TWSABIN.ZFS SC63 R/W
TRAUNER.ROLAND.ZFS SC63 R/W
ZFSFR.ZFSA.ZFS SC65 R/W
ZFSFR.ZFSC.ZFS SC65 R/W
ZFSFR.ZFSE.ZFS SC65 R/W
ZFSFR.ZFSG.ZFS SC65 R/W
ROGERS.HARRY.ZFS SC65 R/W
TWS.TWSAWRK.RVA.ZFS SC63 R/W
OMVS.HERING.TEST.ZFS SC63 R/W
ROGERS.TEST.ZFS SC65 R/W
TWS.TWSABIN.RVA.ZFS SC63 R/W
ZFSFR.ZFSB.ZFS SC65 R/W
ZFSFR.ZFSD.ZFS SC65 R/W
ZFSFR.ZFSF.ZFS SC65 R/W
ROGERS.AAA.ZFS SC65 R/W
OMVS.TEST.MULTIFS.ZFS SC64 R/O
TWS.TWSAWRK.ZFS SC63 R/W
TRAUNER.ROLAND1.ZFS SC63 R/W
ROGERS @ SC65:/u/rogers>
 ===>

318 ABCs of z/OS System Programming Volume 9

7.20 List file systems

Figure 7-20 Displaying zFS file systems

Displaying file systems
The zfsadm lsfs command lists all the file systems on a given aggregate or all attached
aggregates.

Using the -a option and specifying the file system name is shown in Figure 7-20. If you
specify an aggregate name that is used to retrieve file system information, the aggregate
name is not case sensitive and is always translated to uppercase. If this option is not
specified, the command displays information for all attached aggregates.

The -fast option causes the output of the command to be shortened to display only the
aggregate name if it contains one or more file systems, or a message indicating that there are
no file systems contained in the aggregate.

ROGERS @ SC65:/u/rogers> zfsadm lsfs -a ROGERS.HARRY.ZFS
IOEZ00129I Total of 1 file systems found for aggregate ROGERS.HARRY.ZFS
ROGERS.HARRY.ZFS RW (Mounted R/W) 9 K alloc 9 K quota On-line
Total file systems on-line 1; total off-line 0; total busy 0; total mounted 1
ROGERS @ SC65:/u/rogers>
 ===>

ROGERS @ SC65:/u/rogers> zfsadm lsfs -fast
IOEZ00369I A total of 5 aggregates are attached to the sysplex.
ROGERS.HARRY.ZFS
TWS.TWSAWRK.RVA.ZFS
OMVS.HERING.TEST.ZFS
ROGERS.TEST.ZFS
ROGERS.AAA.ZFS
ROGERS @ SC65:/u/rogers>
 ===>

The -fast option just lists the aggregate names -
For compat mode aggregates - same as file system name
Chapter 7. zFS file systems 319

7.21 Defining IOEFSPRM options

Figure 7-21 IOEFSPRM file options and defaults

IOEFSPRM file options
The best and only reasonable option is to define IOEFSPRM as a member of a PDS data set.
This allows updates while the zFS PFS is active.

Figure 7-21 lists the processing options for the zFS PFS. There is no mandatory information
in this file, therefore it is not required. The options all have defaults. Aggregates can all be
compatibility mode aggregates (which do not need definitions). However, if you need to
specify any options (for tuning purposes, for example), you need to have an IOEFSPRM file.

The location of the IOEFSPRM file is specified by the IOEZPRM DD statement in the ZFS
PROC. The IOEFSPRM file is normally a PDS member, so the IOEZPRM DD might look like
the following:

//IOEZPRM DD DSN=SYS4.PVT.PARMLIB(IOEFSPRM),DISP=SHR

adm_threads=5
aggrfull(90,5)
aggrgrow=on
allow_duplicate_filesystems=on
auto_attach=on
dir_cache_size=4M
fsfull(85,5)
fsgrow(100,16)
group=IOEZFS1
log_cache_size=32M
meta_cache_size=64M
metaback_cache_size=64M
nbs=on
sync_interval=45
tran_cache_size=4000
user_cache_readahead=off
user_cache_size=64M
vnode_cache_size=131072
vnode_cache_limit=800000

debug_settings_dsn=usera.zfs.debug(file1)
trace_dsn=usera.zfs.trace.out
trace_table_size=1M
xcf_trace_table_size=8M
storage_details=on
storage_details_dsn=usera.zfs.storage.output(file1)
msg_output_dsn=usera.zfs.msg.out
msg_input_dsn=usera.sioemjpn

A ioefsprm file and parameters in the file are optional
Parameter file is created in order to be referenced by the

DDNAME=IOEZPRM statement in PROCLIB JCL for zFS
320 ABCs of z/OS System Programming Volume 9

7.22 Logical PARMLIB support - z/OS V1R6

Figure 7-22 Logical PARMLIB support

IOEPRMxx PARMLIB member
Beginning with z/OS V1R6, as an alternative to the IOEZPRM DDNAME specification, the
IOEFSPRM member can be specified as a true PARMLIB member. In this case, the member
has the name IOEPRMxx, where xx is specified in the PARMLIB member list.

When the IOEFSPRM file is specified in the IOEZPRM DD statement of the ZFS PROC, there
can only be one IOEFSPRM file for each member of a sysplex. Using PARMLIB, zFS
configuration options can be specified in a list of configuration parm files. This allows an
installation to specify configuration options that should be common among all members of the
sysplex (for example, adm_threads) in a shared IOEPRMxx member; and configuration
options that should be system-specific (for example, define_aggr) in a separate,
system-specific IOEPRMxx member. If a configuration option is specified more than once, the
first one found is taken.

With this new support, a logical parmlib search is used

Member names are in the form IOEPRMxx

Multiple members can be specified

Allows installation to have a common parmlib member
that is shared among members of the sysplex but also
have an additional member that is unique

The logical parmlib concatination is a set of up to 10 partitioned
data sets defined by PARMLIB statements in the LOADxx
member of SYSn.IPLPARM or SYS1.PARMLIB
Chapter 7. zFS file systems 321

7.23 Specifying PARMLIB members

Figure 7-23 Examples of PARMLIB members

PARMLIB member examples
The IOEPRMxx files are contained in the logical PARMLIB concatenation, which is a set of up
to 10 partitioned data sets defined by PARMLIB statements in the LOADxx member of either
SYSn.IPLPARM or SYS1.PARMLIB. The logical PARMLIB concatenation contains zFS
IOEPRMyy members, which contain zFS configuration statements. Columns 73-80 are
ignored in the IOEPRMyy member. The yy is specified in the PARM option of the
FILESYSTYPE statement for ZFS (in the BPXPRMxx). The PARM string is case sensitive.
You must enter the string in upper case. For example:

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS,'SUB=MSTR')
PARM('PRM=(01,02,03)')

Up to 32 member suffixes can be specified. You can also use any system symbol that
resolves to two characters. For example:

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS,'SUB=MSTR')
PARM('PRM=(01,&SYSCLONE.)')

If &SYSCLONE.=AB, this specifies that PARMLIB member IOEPRMAB should be searched
after PARMLIB member IOEPRM01. IOEPRM01 could contain common configuration
options and IOEPRMAB could contain configuration options that are specific to system AB. If
a PARMLIB member is not found, the search for the configuration option continues with the
next PARMLIB member.

List of member (suffixes) is specified in the
FILESYSTYPE statement for ZFS in a BPXPRMxx
member

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS,'SUB=MSTR')
PARM('PRM=(01,02,03)')

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS,'SUB=MSTR')
PARM('PRM=(AA,&SYSCLONE.)')
322 ABCs of z/OS System Programming Volume 9

7.24 Searching for IOEZPRM

Figure 7-24 Searching the PARMLIB for IOEPRMxx members

PARMLIB search
If no PRM suffix list is specified (and no IOEZPRM DD is specified in the ZFS PROC), then
member IOEPRM00 is read. PARMLIB support is only used when the IOEZPRM DD
statement is not specified in the ZFS PROC. When an IOEZPRM DD is specified in the ZFS
PROC, the single IOEFSPRM file specified in the DD is used, as previously.

Coexistence
Coexistence between IOEFSPRM in the procedure and IOEPRMxx when using the
FILESYSTYPE PARM PRM specification is ignored in previous releases. Therefore, if you
specify it in a BPXPRMxx member that is shared between this release and previous releases
(and no IOEZPRM DD is specified in the ZFS PROC), the PRM specification will be honored
in this release but will be ignored in previous releases. This means that the IOEPRMxx
members will be searched for zFS configuration parameters in this release, but defaults will
be taken in previous releases. Also, if the ZFS FILESYSTYPE PARM has no PRM
specification (and no IOEZPRM DD is specified in the ZFS PROC), then ZFS will attempt to
use the IOEPRM00 member in this release, but will take defaults in the previous releases. If
IOEPRM00 is not found, then defaults will be used.

If IOEZPRM DD not specified in ZFS PROC

Before V1R6, hard-coded defaults taken for zFS
configuration options

In V1R6 and later, PARMLIB members specified in
PRM= are searched

If no PRM= is specified, IOEPRM00 searched for
zFS configuration options and if IOEPRM00
non-existent, hard-coded defaults taken

You could wait to remove the IOEZPRM DD until all
systems are at z/OS V1R6
Chapter 7. zFS file systems 323

7.25 Dynamic configuration: z/OS V1R4

Figure 7-25 Changing the zFS IOEFSPRM member parameters dynamically

Changing PARMLIB member parameters dynamically
zFS has a IOEFSPRM configuration file that specifies the processing options for the zFS PFS
and some definitions for multi-file aggregates. Before z/OS V1R4, to change any
configuration file parameters, you had to do the following:

1. Modify the IOEFSPRM file.

2. Shut down and restart the zFS PFS.

Doing this causes unmounts and potential moves of zFS file systems in a sysplex
environment, which could be disruptive to applications and is administratively involved.

New commands
Two new zfsadm commands have been added with z/OS V1R4; they are used to change
configuration values dynamically without a shutdown, restart the zFS PFS, and display the
current value of the zFS configuration options.

� The zfsadm config command changes the value of zFS configuration options in memory
that were specified in the IOEFSPRM file (or defaulted) or the IOEPRMxx PARMLIB
member.

� The zfsadm configquery command displays the current value of zFS configuration
options retrieved from the zFS address space memory, rather than from the IOEFSPRM
file or the IOEPRMxx PARMLIB member.

In previous releases - to change configuration parms:
Modify the IOEFSPRM file
Shutdown and restart the ZFS PFS

This causes unmounts and/or moves of zFS file
systems (in a sysplex)

This can be disruptive to applications and is
adminstratively involved

With z/OS V1R4:
Command Command description IOEFSPRM SU mode

zfsadm config Modify current
configuration options

READ YES

zfsadm configquery Display current
configuration options

READ NO
324 ABCs of z/OS System Programming Volume 9

7.26 zfsadm config command options

Figure 7-26 The IOEFSPRM member or IOEPRMxx parameters

zfsadm config command options
The zfsadm config command changes the configuration options (in memory) that were
specified in the IOEFSPRM file (or defaulted) or in the IOEPRMxx PARMLIB member. The
IOEFSPRM file is not changed. If you want the configuration specification to be permanent,
you need to modify the IOEFSPRM file or the IOEPRMxx PARMLIB member since ZFS reads
the one that you use to determine the configuration values the next time ZFS is started.

Authorization required
The issuer must have READ authority to the data set that contains the IOEFSPRM file and
must be root or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the
UNIXPRIV class.

Using the fixed page options
By default, zFS does not fix any pages in any of the caches except when an I/O is pending to
or from the cache buffers. The administrator can permanently page fix the user file cache, the
metadata cache, and/or the log file cache by choosing the fixed option for the cache. This
ensures that the cache experiences no paging and avoids the overhead of page fixing for
each I/O, but this comes at the expense of using real storage for the given cache, which
means the real storage is not available for other applications. If your file system performance
is critical and you have enough real memory to support it, the fixed option may be useful.
Otherwise, you should not set it.

[-admin_threads number]
[-user_cache_size number[,fixed]]
[-meta_cache_size number[,fixed]]
[-log_cache_size number[,fixed]]
[-sync_interval number]
[-vnode_cache_size number]
[-nbs {on|off}]
[-fsfull threshold,increment]
[-aggrfull threshold,increment]
[-trace_dsn PDSE_dataset_name]
[-tran_cache_size number]
[-msg_output_dsn Seq_dataset_name]
[-user_cache_readahead {on|off}]
[-metaback_cache_size number[,fixed]]
[-fsgrow increment,times]
[-aggrgrow {on|off}]
[-allow_dup_fs {on|off}]
[-vnode_cache_limit number]
[-system system name]
[-level]
[-help]

[-metaback_cache_size number]
[-fsgrow increment,times]
[-aggrgrow {on|off}]
[-allow_dup_fs {on|off}]

New options
in z/OS V1R4

New options
in z/OS V1R7

[-system system name]

IOEFSPRM or IOEPRMxx parameters
Chapter 7. zFS file systems 325

7.27 zfsadm configquery command options

Figure 7-27 zfsadm configquery command options

zfsadm configquery command
The zfsadm configquery command, introduced in z/OS V1R4, queries the current value of
zFS configuration options that you specify in either the IOEFSPRM DD statement in the
procedure or the IOEPRMxx PARMLIB member.

The zfsadm configquery command displays the current value of zFS configuration options.
The value is retrieved from ZFS address space memory rather than from the IOEFSPRM file.
You can specify that the configuration option query request should be sent to another system
by using the -system option.

Note: Use zfsadm configquery -all to display all of the parameter definitions.

[-system system name]
[-adm_threads]
[-aggrfull]
[-aggrgrow]
[-all]
[-allow_dup_fs]
[-auto_attach]
[-cmd_trace]
[-code_page]
[-debug_dsn]
[-fsfull]
[-fsgrow]
[-group]
[-log_cache_size]
[-meta_cache_size]
[-metaback_cache_size]

[-msg_input_dsn]
[-msg_output_dsn]
[-nbs]
[-storage_details]
[-sync_interval]
[-sysplex_state]
[-trace_dsn]
[-trace_table_size]
[-tran_cache_size]
[-user_cache_readahead]
[-user_cache_size]
[-usercancel]
[-vnode_cache_size]
[-level]
[-help]

R7<---

R7<---

R7<---

$> zfsadm configquery -sysplex_state
IOEZ00317I The value for configuration option -sysplex_state is 1.
(Display all of the parms)
$> zfsadm configquery -all
326 ABCs of z/OS System Programming Volume 9

7.28 zfsadm aggregate space commands

Figure 7-28 Aggregate space commands from the OMVS shell

Aggregate space commands
The zfsadm aggrinfo command shows aggregate disk space usage. This is based on the
number of 8KB blocks. The zfsadm aggrinfo command shows output in units of 1KB blocks.
If you use the -long option of the zfsadm aggrinfo command, it shows the number of free 8K
blocks, the number of free 1K fragments and the size (in K) taken up by the log file, the file
system table, and the bitmap, as follows:

PAUL @ SC65:/>zfsadm aggrinfo ZFSFR.ZFSG.ZFS -long
ZFSFR.ZFSG.ZFS (R/W COMP): 6374 K free out of total 7200
version 1.4
749 free 8k blocks; 382 free 1K fragments
 112 K log file; 24 K filesystem table
 8 K bitmap file

A zFS aggregate is an array of 8K blocks. There are three special objects in a zFS aggregate
(present in all zFS aggregates) that take up space in an aggregate and hence that space
cannot be used for user files:

� Log file - This is used to record metadata changes. It is by default 1% of the disk size.
� Bitmap - This records which blocks are free on disk, and is as big as needed. How big it is

depends on the size of the aggregate.
� Aggregate File System List - This describes the file systems contained in the aggregate.

For compatibility mode aggregates it is usually only one 8KB block. For multi-file system
aggregates, its size depends on how many file systems there are.

ROGERS @ SC65:/u/rogers>zfsadm aggrinfo ZFSFR.ZFSG.ZFS
ZFSFR.ZFSG.ZFS (R/W COMP): 6374 K free out of total 7200
ROGERS @ SC65:/u/rogers>zfsadm lsquota ZFSFR.ZFSG.ZFS
Filesys Name Quota Used Percent Used Aggregate
ZFSFR.ZFSG.ZFS 7047 673 9 11 = 826/7200 (zFS)
PAUL @ SC65:/>zfsadm aggrinfo ZFSFR.ZFSG.ZFS -long
ZFSFR.ZFSG.ZFS (R/W COMP): 6374 K free out of total 7200
version 1.4

 749 free 8k blocks; 382 free 1K fragments
 112 K log file; 24 K filesystem table
 8 K bitmap file

AGGRINFO - Displays information about an aggregate

LSQUOTA - Shows quota information about file systems
and aggregates

Space usage on all aggregates

zfsadm aggrinfo
Chapter 7. zFS file systems 327

7.29 Grow an aggregate

Figure 7-29 How to grow the size of an aggregate

Grow an aggregate
The format utility formats the primary allocation and, if requested by using the -size
parameter (with a value greater than the primary allocation), a single extension. An extension
is a single call to the Media Manager to extend the data set to the size specified in the -size
parameter. It is completely independent of the number of cylinders specified in the secondary
allocation when the data set was defined (the secondary allocation could have been 0).

If a compatibility mode aggregate becomes full, the administrator can grow the aggregate
(that is, cause an additional allocation to occur and format it to be part of the aggregate). This
is accomplished with the zfsadm grow command. There must be space available on the
volume(s) to extend the aggregate's VSAM linear data set. The size specified on the zfsadm
grow command must be larger than the current size of the aggregate. In the example in the
figure, we used -size 0. Specifying a size of 0 indicates to use the secondary allocation.

Grow example
For example, suppose a 2-cylinder (primary allocation, 3390) aggregate has a total of 179 8K
blocks and a (potential) secondary allocation of 1 cylinder. 179 8K blocks is 1432K bytes. A
zfsadm aggrinfo command for this aggregate might show 1296K with 136K reserved. This is
a total of 1432K. A zfsadm grow command would need to specify a size greater than 1432 to
actually grow the aggregate. zfsadm grow does this by calling DFSMS to allocate the
additional DASD space. You may need to specify a few blocks larger than the current size
before an allocation occurs because DFSMS may require some number of reserved blocks.
For example, you may need to specify a size of 1441 before the extension actually occurs.

#> zfsadm grow -aggregate OMVS.CMP02.ZFS -size 0
IOEZ00173I Aggregate OMVS.CMP02.ZFS successfully grown
OMVS.CMP02.ZFS (R/W COMP): 61598 K free out of total 62072 (2000 reserved)

Grow the size of an aggregate

Size 0 - Indicates to use secondary extent allocation

ROGERS @ SC43:/>zfsadm aggrinfo omvs.cmp02.zfs
OMVS.CMP02.ZFS (R/W COMP): 50806 K free out of total 51272 (2000 reserved)
328 ABCs of z/OS System Programming Volume 9

7.30 The -grow option - z/OS V1R4

Figure 7-30 Using the -grow option when formatting aggregates

Using the -grow option
The VSAM linear data set must be formatted to be used as a zFS aggregate. There are two
options available to format an aggregate:

� The IOEAGFMT format utility

� The zfsadm command

After you have allocated the space for an aggregate, the default size is the number of 8K
blocks that fits into the primary allocation. You can specify a -size option giving the number
of 8K blocks for the aggregate. If you specify a number that is less than (or equal to) the
number of blocks that fits into the primary allocation, the primary allocation size is used. If you
specify a number that is larger than the number of 8K blocks that fits into the primary
allocation, the VSAM LDS is extended to the size specified. This occurs during its initial
formatting.

When an aggregate is initially formatted using the IOEAGFMT format utility or the zfsadm
format command, the formatting takes place as follows:

� The default size formatted is the number of blocks that will fit in the primary allocation.

� Using the -size parameter, if the number of blocks to be formatted is less than the default,
it is rounded up to the default.

� If a number greater than the default is specified, a single extend of the VSAM LDS is
attempted after the primary allocation is formatted.

When an aggregate is initially formatted using
IOEAGFMT or zfsadm format command

Size, -size specified must be able to be allocated in
the primary allocation and one extension

If you wanted to format a three volume aggregate
with IOEAGFMT - not possible

Requires a primary and at least two extensions

Need to use zfsadm grow command
Chapter 7. zFS file systems 329

7.31 The -grow option - z/OS V1R4 (2)

Figure 7-31 Specifying the -grow option

A -grow example
Since the -size parameter specified can only be allocated in the primary allocation and one
extension, and you wanted to format a three-volume aggregate with the IOEAGFMT
utility—this was not possible because it requires a primary and at least two extensions.
However, a new -grow option is provided with z/OS V1R4 for the IOEAGFMT utility and the
zfsadm format command to allow specification of the increment that can be used for
extension of the aggregate when -size is larger than the primary allocation. This allows the
extension by the -grow amount until -size is satisfied.

-grow Specifies the number of 8K blocks that zFS uses as the increment for an extension
when the -size option specifies a size greater than the primary allocation.

Other examples of -grow
To illustrate the before and after using the -grow option, the following example has a VSAM
LDS defined with 2 cylinders of primary space and 1 cylinder of secondary space.

300240 8K blocks 300240 8K blocks 300240 8K blocks

When an aggregate is initially formatted using
IOEAGFMT or the zfsadm format command

Size, -size specified must be able to be allocated in
the primary allocation and one extension

If you wanted to format a three-volume aggregate with
IOEAGFMT - not possible

Requires a primary and at least two extensions

Need to use the zfsadm format command to specify:

zfsadm format -size 900720 -grow 300240
330 ABCs of z/OS System Programming Volume 9

The file created has two extents: the first one corresponds to the primary space specified in
the define process (30 tracks), and a second one with 30 tracks.

With the new -grow parameter, you are allowed to specify the increment that will be used for
an extension size larger than the primary allocation. That is, after the primary space is
allocated, multiple extensions of the amount specified by the -grow parameter rounded up to
a multiple of the secondary space defined will be attempted until the total number of blocks
specified by the -size parameter is satisfied.

Replacing the example shown previously, use the -grow parameter on the format process, as
follows:

Now the VSAM LDS has three extensions, the first corresponding to the primary space
specified and the next two by the -grow amount.

//AYVIVAR2 JOB CLASS=J,MSGCLASS=A,NOTIFY=AYVIVAR
/*JOBPARM S=SC65
//P010 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER(NAME(OMVS.TESTA.ZFS) VOLUMES(SBOX43) -
 LINEAR CYL(2,1) SHAREOPTIONS(2))
//

//AYVIVAR2 JOB CLASS=J,MSGCLASS=V,NOTIFY=AYVIVAR
/*JOBPARM S=SC65
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.TESTA.ZFS -size 276 -grow 90 -compat')
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
Chapter 7. zFS file systems 331

7.32 New -grow option - z/OS V1R4

Figure 7-32 -grow option for format

The -grow option for format
There are many allocations of VSAM linear data sets where you may want to format the entire
extent during the initial format. The -grow option allows you to specify that you want to do this
during the format of the aggregate.

Use the -grow option to specify the size of a secondary allocation. This causes the format
routine to continue formatting the specified allocation until the entire allocation is completely
formatted.

The -size option
To format the entire allocation, use the -size option, together with the -grow option, as
follows:

zfsadm format -size 900720 -grow 300240

The -size option specifies the number of 8K blocks that should be formatted to form the zFS
aggregate. The default is the number of blocks that will fit in the primary allocation of the
VSAM LDS. If a number less than the default is specified, it is rounded up to the default. If a
number greater than the default is specified, a single extend of the VSAM LDS is attempted
after the primary allocation is formatted unless the -grow option is specified. In that case,
multiple extensions of the amount specified in the -grow option will be attempted until the
-size is satisfied. The size may be rounded up to a control area (CA) boundary by DFSMS. It
is not necessary to specify a secondary allocation size on DEFINE of the VSAM LDS for this
extension to occur. Space must be available on the volumes.

Now, IOEAGFMT and zfsadm format provide the
-grow option

Specifies the increment that will be used for extension
when -size is larger than the primary allocation

Extends by -grow amount until -size is satisfied

primary -grow

-size
300240 8K blocks 300240 8K blocks 300240 8K blocks
332 ABCs of z/OS System Programming Volume 9

7.33 Dynamic aggregate extension

Figure 7-33 Growing the aggregate size dynamically

Growing an aggregate dynamically
Before this change in z/OS V1R4, if aggregates became full they could only be grown by
using the zfsadm grow command. You needed to specify a larger size or specify zero for the
size to get a secondary allocation size extension.

z/OS V1R4 introduces the possibility of dynamically growing an aggregate if it becomes full.
The aggregate is extended automatically when an operation cannot complete because the
aggregate is full.

Important: To dynamically grow an aggregate when it becomes full, the VSAM LDS must
have a secondary allocation and have space on the volumes.

Before V1R4, aggregates had to be grown via:

The zfsadm grow command

Increasing the file system quota by zfsadm setquota

This option grows aggregates dynamically without any
commands issued

With V1R4, aggregates and file system quotas can be
dynamically increased

VSAM LDS must have a secondary allocation + space
Chapter 7. zFS file systems 333

7.34 Dynamic aggregate extension aggrgrow

Figure 7-34 How to specify the dynamic aggregate grow option

Specifying the dynamic aggregate grow option
An administrator can specify that an aggregate should be dynamically grown if it becomes
full. This is specified by the -aggrgrow option on the zfsadm attach command, or the aggrgrow
suboption of the define_aggr option of the IOEFSPRM file, or globally by the aggrgrow option
of the IOEFSPRM file. The aggregate (that is, the VSAM Linear Data Set) must have
secondary allocation specified when it is defined, and space must be available on the
volume(s). The aggregate will be extended when an operation cannot complete because the
aggregate is full. If the extension is successful, the operation will be redriven transparently to
the application.

Ways to specify the dynamic option
Dynamic aggregate extension can be enabled in the following ways:

� In the IOEFSPRM configuration file, you can dynamically extend an aggregate when it
becomes full by specifying one of the following options:

– Specify a new option, aggrgrow=on | off. The default value is off.

Note: The option specified here is the default if none of the following ways of speci-
fying the aggrgrow | noaggrgrow options are used.

Ways to specify aggregate extension

zfsadm config command - aggrgrow on | off

New option in IOEFSPRM file - aggrgrow=on|off

mount command - parm('aggrgrow')

mount filesystem('omvs.test.zfs')
mountpoint('/tmp/test') type(zfs) mode(rdwr)
parm('aggrgrow')

Multi-file mode aggregate dynamic extension

Attach the aggregate using IOEFSPRM file

define_aggr R/W attach aggrgrow
cluster(OMVS.TEST.ZFS) aggrgrow | noaggrgrow

zfsadm attach command - -aggrgrow or -noaggrgrow
zfsadm attach -aggregate OMVS.TEST.ZFS -aggrgrow
334 ABCs of z/OS System Programming Volume 9

– Specify either aggrgrow | noaggrgrow as a suboption on the define_aggr option for a
multi-file system aggregate, as shown in the following definition:

define_aggr R/W attach aggrgrow cluster(OMVS.TEST.ZFS)

� Using the mount command, in the PARM keyword you can specify either aggrgrow or
noaggrgrow, as shown in the following example:

mount filesystem('omvs.test.zfs') mountpoint('/tmp/test') type(zfs) mode
(rdwr) parm('aggrgrow')

� Using the zfsadm attach command, for attaching a multi-file system aggregate, you can
specify either the -aggrgrow or -noaggrgrow option as shown in the following example:

zfsadm attach -aggregate OMVS.TEST.ZFS -aggrgrow

� Using the zfsadm config command, you can dynamically change the configuration file
option, aggrgrow on | off. This becomes the new default if no other option specification
is in use.

Note: This aggrgrow | noaggrgrow option can only be used with compatibility mode
aggregates.
Chapter 7. zFS file systems 335

7.35 Dynamic aggregate extension processing

Figure 7-35 Example of growing an aggregate dynamically

Example of the dynamic grow option
When an aggregate fills and dynamic aggregate extension has been specified using one of
the options, the aggregate is extended using secondary allocation extensions, and the
extensions taken are formatted and become available transparently to the application. The
messages issued indicating the process are the following:

IOEZ00312I Dynamic growth of aggregate OMVS.TEST.ZFS in progress, (by user
AYVIVAR).
IOEZ00329I Attempting to extend OMVS.TEST.ZFS by a secondary extent.
IOEZ00324I Formatting to 8K block number 360 for secondary extents of
OMVS.TEST.ZFS
IOEZ00309I Aggregate OMVS.TEST.ZFS successfully dynamically grown (by user
AYVIVAR).

When the aggregate fills and an option is specified

Aggregate is extended using a secondary allocation

Secondary allocation is formatted

Becomes available to application

IOEZ00312I Dynamic growth of aggregate OMVS.TEST.ZFS in progress, (by
user JANE).
IOEZ00329I Attempting to extend OMVS.TEST.ZFS by a secondary extent.
IOEZ00324I Formatting to 8K block number 360 for secondary extents of
OMVS.TEST.ZFS
IOEZ00309I Aggregate OMVS.TEST.ZFS successfully dynamically grown (by
user JANE).
336 ABCs of z/OS System Programming Volume 9

7.36 zFS aggregates on disk

Figure 7-36 Aggregate space

Space in a zFS aggregate
A zFS aggregate is an array of 8K blocks. There are three special objects (see Figure 7-36) in
a zFS aggregate (present in all zFS aggregates) that take up space in an aggregate and
hence that space cannot be used for user files:

� Log file - This is used to record metadata changes. It is by default 1% of the disk size.

� Bitmap - This records which blocks are free on disk, and is as big as needed. How big it is
depends on the size of the aggregate.

� Aggregate File System List - This describes the file systems contained in the aggregate.
For compatibility mode aggregates it is usually only one 8KB block. For multi-file system
aggregates, its size depends on how many file systems there are.

The zfsadm aggrinfo command shows aggregate disk space usage. This is based on the
number of 8KB blocks. It subtracts the space reserved for the above three objects in its
calculations (and tells you this in the output). The zfsadm aggrinfo command shows output
in units of 1KB blocks.

ROGERS @ SC65:/u/rogers>zfsadm aggrinfo
IOEZ00368I A total of 1 aggregates are attached.
ZFSFR.ROOT.ZFS (R/W COMP): 292908 K free out of total 1440000

A zFS aggregate is an array of 8K blocks

Three special objects in all zFS aggregates that take up
space that cannot be used for user files:

Log file - Used to record metadata changes and is by
default 1% of the disk size

Bitmap - Records which blocks are free on disk, and is
as big as needed and depends on size of the aggregate

Aggregate File System List - Describes the file systems
contained in the aggregate

Compatibility mode aggregates - only one 8KB block
ROGERS @ SC65:/u/rogers>zfsadm aggrinfo
IOEZ00368I A total of 1 aggregates are attached.
ZFSFR.ROOT.ZFS (R/W COMP): 292908 K free out of total 1440000
Chapter 7. zFS file systems 337

7.37 zFS aggregate space commands

Figure 7-37 Aggregate space commands

zFS commands to determine aggregate space
Each file system has a quota represented in 1KB fragments. The quota of a file system is a
logical number and can be smaller or larger than the size of the disk (if the size of the disk
were expressed in 1KB fragments).

The zfsadm lsquota command shows the quota in 1KB units and also shows the aggregate
size and usage in 1KB units (it shows the amount of space used for the three special objects
in Figure 7-36 also). For compatibility mode aggregates the file system quota is set to be the
following size:

Total disk size (in 1KB units) - size of the above three special objects (in 1KB units)

zFS aggregate disk usage
zFS stores files on disk in one of three ways:

� Inline - If the file is 52 bytes or less, it is stored in the same data structure on disk that
holds the file status (things like owner, size, and permissions). A file of 52 bytes or less
takes no extra disk space.

� Fragmented - If the file is 7KB or less and has never been larger than 7KB, it is stored in
1KB fragments (hence it is stored in part of an 8KB block). Multiple small files can share
the same 8KB block on disk.

� Blocked - If the file is over 7KB, it is stored as an array of 8KB blocks.

ROGERS @ SC65:/u/rogers>zfsadm aggrinfo ZFSFR.ZFSG.ZFS
ZFSFR.ZFSG.ZFS (R/W COMP): 6374 K free out of total 7200
ROGERS @ SC65:/u/rogers>zfsadm lsquota ZFSFR.ZFSG.ZFS
Filesys Name Quota Used Percent Used Aggregate
ZFSFR.ZFSG.ZFS 7047 673 9 11 = 826/7200 (zFS)

AGGRINFO - Displays information about an aggregate

LSQUOTA - Shows quota information about file
systems and aggregates

Space usage on all aggregates

zfsadm aggrinfo

zfsadm aggrinfo shows aggregate disk space usage

Based on the number of 8K blocks

Subtracts the space reserved for the 3 objects
338 ABCs of z/OS System Programming Volume 9

7.38 Command for aggregate display

Figure 7-38 Display aggregate usage for the specified file system

zFS command to display aggregate usage
The IOEZ00438I message just indicates that AGGRINFO is the keyword for running a query
command.

This command provides a detailed breakdown of the space utilization in the zFS aggregate
that is specified containing a file system.

F ZFS,AGGRINFO,ROGERS.LARGE.ZFS
 IOEZ00438I Starting Query Command AGGRINFO.
 Total 8K blocks on aggregate: 70470 (563760K bytes)
 Number of 8K blocks used for log file: 705 (indirect blocks 1)
 Number of 8K blocks reserved for cross-system serialization: 1
 Number of 8K blocks used for filesystem table: 6
 Number of 1K fragments used for bad-block file: 1
 Number of 8K blocks used for bitmap file: 11
 Number of 8K blocks free for use on aggregate: 5711
 Number of free 1K fragments available for use on aggregate: 14

 Filesystem inode table 8K quota limit 557975K used 512273K
 name=ROGERS.LARGE.ZFS

 IOEZ00025I zFS kernel: MODIFY command - AGGRINFO,ROGERS.LARGE.ZFS
 completed successfully

Chapter 7. zFS file systems 339

7.39 zFS threshold monitoring space usage

Figure 7-39 Monitoring aggregate space usage

zFS monitoring aggregate space usage
The zFS threshold monitoring function aggrfull reports space usage based on total
aggregate disk size. It incorporates the space for the above three special objects when
showing total disk space and amount used on disk in its messages. The aggrfull message
shows units in 8K blocks.

The aggrfull threshold parameter
This parameter option in the configuration file specifies the threshold and increment for
reporting aggregate full error messages to the operator. The following message is issued to
the operator:

IOEZ00078E zFS aggregate Name exceeds Threshold% full (blocks1/blocks2)
(WARNING)

The message indicates that a zFS aggregate used space has exceeded the
administrator-defined threshold specified on the aggrfull option. The numbers in
parentheses are the number of 8K blocks used in the aggregate and the number of 8K blocks
in the total aggregate, respectively.

zFS threshold monitoring function aggrfull reports:

Space usage based on total aggregate disk size

Has the space for the three special objects - total disk
space and amount used on disk in its messages

The aggrfull message shows units in 8K blocks

Number of 8K blocks used in the aggregate
Number of 8K blocks in the total aggregate

ROGERS @ SC65:/u/rogers>zfsadm configquery -aggrfull
IOEZ00317I The value for configuration option -aggrfull is
(80,5).

ROGERS @ SC65:/u/rogers>zfsadm config -aggrfull "(80,5)"
IOEZ00300I Successfully set -aggrfull to (80,5)

IOEZ00078E zFS aggregate Name exceeds Threshold% full (blocks1/blocks2)(WARNING)

 New with z/OS V1R5
340 ABCs of z/OS System Programming Volume 9

7.40 Add a volume to a zFS aggregate

Figure 7-40 Adding a volume to a zFS aggregate

Add space to a zFS aggregate
To add a candidate volume to a zFS aggregate, use the IDCAMS utility ALTER command
with the ADDVOLUMES parameter. The following sample job adds two volumes to the
(SMS-managed) OMVS.ROGERS.TEST zFS aggregate:

//SUIMGVMA JOB (ACCTNO),'SYSPROG',CLASS=A,
// MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

ALTER OMVS.ROGERS.TEST -
 ADDVOLUMES(* *)
/*

In this case, DFSMS is choosing the particular candidate volumes. If you want to specify the
volumes, use their volume serials in place of the asterisks. See z/OS DFSMS: Access
Method Services for Catalogs, SC26-7394 for additional information on IDCAMS ALTER
ADDVOLUMES. DFSMS states that if an ALTER ADDVOLUMES is done to a data set
already opened and allocated, the data set must be closed, unallocated, reallocated, and
reopened before VSAM can extend onto the newly-added candidate volume.

//ROGERSA JOB (ACCTNO),'SYSPROG',CLASS=A,
// MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 ALTER OMVS.ROGERS.TEST.DATA -
 ADDVOLUMES(* *)
/*

Use the IDCAMS utility ALTER command

With the ADDVOLUMES parameter

Add two volumes to aggregate - OMVS.ROGERS.TEST
Chapter 7. zFS file systems 341

7.41 zFS migration considerations

Figure 7-41 zFS migration from HFS considerations

zFS migration considerations
zFS can be used for all levels of the z/OS UNIX System Services hierarchy (including the root
file system) when all members are at the z/OS V1R7 level. Because zFS has higher
performance characteristics than HFS and is the strategic file system, HFS may no longer be
supported in future releases and you will have to migrate the remaining HFS file systems to
zFS.

HFS may no longer be supported in future releases. At that time, you will have to migrate the
remaining HFS file systems to zFS.

Beginning with z/OS V1R7, you can use the file system type HFS as a generic file system
type that can mean either HFS or zFS. Mount processing will direct the mount to the correct
PFS.

Migrate from HFS file systems to zFS file systems
(recommended) - because zFS is planned to become
a requirement in a future release

zFS is the strategic file system

HFS may no longer be supported in future releases
and you will have to migrate the remaining HFS file
systems to zFS

HFS and zFS file system types in mount statements
and command operands are now generic file system
types that can mean either HFS or zFS

Based on the data set type, the system will determine
which is appropriate
342 ABCs of z/OS System Programming Volume 9

7.42 HFS/zFS as generic file system type

Figure 7-42 Using HFS/zFS as a generic file system type

Generic file system type
HFS is now a generic file system type that can be HFS or zFS.

Mount processing will recognize a substitutable token in the file system name if the file
system type is HFS and substitute zFS for HFS as appropriate, based on data set existence.

Mount processing will first search for a data set matching the file system name. If the data set
is not an HFS data set and zFS has been started, the file system type is changed to ZFS and
the mount proceeds to zFS. If the data set was not found, the mount proceeds to zFS
(assuming zFS is started). If zFS is not started, the type is not changed and the mount
proceeds to HFS.

Note: If the zFS data set names are to be the same as the HFS data set names, it is likely
that scripts or policies that are used to mount file systems would not need to be changed.

They can be used for either HFS or ZFS

Mount processing first searches for a data set
matching the file system name

If the data set is not an HFS data set and zFS has
been started, the filesystem type is changed to ZFS
and the mount proceeds to zFS

If the data set was not found, the mount proceeds to
zFS (assuming zFS is started)

If zFS is not started, the type is not changed and the
mount proceeds to HFS
Chapter 7. zFS file systems 343

7.43 Migration considerations

Figure 7-43 Migration considerations for zFS file systems

Migration considerations
Several considerations are in order regarding file system naming conventions and very large
VSAM linear data sets.

File system names
Given that during migration there are now two data sets, it is likely that some installations may
want to have a different naming standard for their zFS data sets than their HFS data sets if
the file type is part of the file name. It is also likely that they prefer keeping the names just as
they are. If the installation chooses to have a new naming convention, then any mount policy
or mount scripts (including from PARMLIB) have to be altered to mount the correct file system
name.

If you decide to have a new naming convention, then you must change mount policies and
mount scripts (including from the BPXPRMxx PARMLIB) to mount the correct file system
name. You will have to look at your automount policies very carefully. You may need to
modify the generic entry, migrate all file systems at one time, or add specific entries for each
migrated file system.

zFS file systems
zFS file systems that will span volumes must be preallocated prior to invoking the tool.

zFS file systems that are greater than 4 GB (about 4825 cylinders of a 3390) must be defined
with a data class that includes extended addressability. zFS file systems cannot be striped.

Often the file system type is used in a portion of the
file system name

With the change to a file type of zFS, PARMLIB
members, mount scripts and policies are affected as
well as the file system name

You may prefer to keep the current file system name
and then no changes to mount scripts
Migration tool will help with handling these changes

zFS file systems that span volumes must be
preallocated prior to invoking the tool
zFS file systems that are greater than 4 GB must be
defined with a data class that includes extended
addressability

zFS file systems cannot be striped
344 ABCs of z/OS System Programming Volume 9

7.44 Migration tool

Figure 7-44 Migration tool with z/OS V1R7

Migration tool from HFS to zFS
To assist with the migration, a new tool, BPXWH2Z, is provided in the form of an ISPF dialog.
It is expected that this tool will have a limited life both within the product stream and especially
for any specific customer since it is only there for HFS to zFS migration. For this reason, for
service purposes, it should be handled similar to the way samples are handled.

A panel interface allows you to alter the space allocation, placement, SMS classes, and data
set names. The actual migration could run either in the TSO foreground or UNIX background.

To understand the panels, there is help information with sample information filled in. The
panel syntax is explained in the help information.

This tool uses pax to perform the actual copy operation. New functions are in pax copy mode
to ensure the migration tool performs the conversion.

Use a migration tool to handle many details for the
migration of HFS file systems to zFS, including the
actual copy operation - z/OS V1R7

Migration tool - BPXWH2Z

An ISPF-based tool for migration from an HFS file
system to zFS

It has a panel interface that enables you to alter the
space allocation, placement, SMS classes, and data
set names

A Help panel is provided

Uses a new pax utility for copy
Chapter 7. zFS file systems 345

7.45 Migration checks file system type

Figure 7-45 Migration placeholder for file system names

Migration placeholder for file system names
Support is added in z/OS V1R7 to provide the capability to specify a file system name with
substitution place holders. The place holder is /// and represents the string HFS or ZFS as
appropriate, if the file system type is specified as HFS.

/// is selected because it is the same number of characters as ZFS and HFS, / is not a
character that is processed by the shell, and / is not used in a data set name. Where /// is
used, mount processing will first substitute ZFS and check to see if the data set exists and is
not an HFS data set. If this is the case it proceeds with that name and directs the mount to
ZFS. Otherwise, mount processing substitutes HFS in the name and checks the status of that
data set name. If that data set exists and is not an HFS, it directs the mount to ZFS;
otherwise, it directs the mount to HFS.

Since this is a migration scenario, mount processing first checks for the ZFS file system type
under the assumption that if that data set exists, the migration has been done. In order to
revert back to using the HFS, that data set must be renamed or removed.

 MOUNT FILESYSTEM('ZOSR17.MAN.///')
 TYPE(HFS)
 MODE(READ)
 MOUNTPOINT('/usr/man')

For migration scenario, mount processing first checks for
ZFS; if that data set exists, migration has been done

To revert back to using HFS, that data set must be
renamed or removed

A new place holder, ///, is created to represent the string
HFS or ZFS

If type is HFS, as shown in the following mount statement
or mount command
Mount processing first substitutes ZFS to see if data set
exists - If no, HFS is used to see if the data set exists
Mount is directed to zFS or HFS
346 ABCs of z/OS System Programming Volume 9

7.46 REXX exec - BPXWH2Z

Figure 7-46 Using the BPXWH2Z migration tool

Using the migration tool
From the ISPF Option 6 command line, enter bpxwh2z to begin to use the migration tool. The
tool is a REXX exec that is located in library SYS1.SBPXEXEC, which is concatenated to
SYSPROC.

Command line options for bpxwh2z
The first argument can specify option flags. The option flags are preceded by a dash (-),
followed immediately by the flags. The flags are as follows:

-v Additional messages are issued at various points in processing.

-c Summary information goes to a file when background selected; if this is not specified,
summary information goes to the console.

Specify the line options as follows:

bpxwh2z -v or bpxwh2z -c

The REXX exec is located in library
SYS1.SBPXEXEC which is concatenated to
SYSPROC

ISPF Option 6 command line, Enter

bpxwh2z

Command line flag options:

-v Additional messages are issued at various points
in processing

-c Summary information goes to a file when
background (bg) is selected once you are in the
application. If this is not specified, summary
information goes to the console

bpxwh2z -c - bpxwh2z -v
Chapter 7. zFS file systems 347

7.47 BPXWH2Z panels

Figure 7-47 Using BPXWH2Z panels

Using BPXWH2Z panels
If the HFS file system is mounted, either unmount it or switch it to read-only mode. The
migration switches it to R/O mode if not done manually.

If the file system is not mounted, the tool makes a directory for it and mounts it in R/O mode.

The tool creates a temporary directory for the zFS file system in /tmp for the mountpoint and
deletes it when migration is complete).

Size of HFS being migrated
The tool checks the allocation attributes of the HFS file system. It then defines a new zFS file
system with appropriate allocation attributes, as follows:

� The tool defaults these to the same attributes as the HFS file system if its utilization is
below about 75% full, otherwise it adds about 10% to the new zFS if it’s below 90%.

� The tool adds 20% to the zFS if the HFS is above 90% full.

It is difficult to determine the exact size necessary for a zFS file system to contain all of the
data within an HFS file system. Depending on the number of files, directories, ACLs,
symlinks, and file sizes, zFS can consume either more or less space than HFS. zFS also has
a log in the aggregate. For general purpose file systems, it appears that they consume about
the same amount of space.

Panels allow for customization of space allocation,
placement SMS class and data set name

Tool makes the zFS a little larger if it sees the HFS is
near capacity by:

10% if it is over 75% full and under 90% and 20% if over

This is a precaution since zFS is a logging file system and
includes the log in the aggregate

If unmounted it creates a mountpoint in /tmp and mounts
it read only for the migration, then deletes the mountpoint

If there are file systems mounted below the migrating file
system, they are unmounted for migration

The mount points are created in the new file system and
when complete, the file systems are remounted
348 ABCs of z/OS System Programming Volume 9

7.48 Space allocations - HFS versus zFS

Figure 7-48 Space allocation between HFS and zFS

Space allocations - HFS versus zFS
Define zFS aggregates by default to be approximately the same size as the HFS. The new
allocation size can be increased or decreased.

Depending on the number of files, directories, ACLs, symlinks, and file sizes, zFS can
consume either more or less space than HFS. zFS also has a log in the aggregate. For
general purpose file systems, it appears that they consume about the same amount of space.

Assistance with space and other data set management issues is a consideration during the
migration. This includes having the DASD space available to perform the migrations. You
may need to change automatic class selection (ACS) routines to direct allocations to desired
storage classes with the right attributes, and security changes that may be necessary for new
data set profiles.

It is difficult to determine the exact size necessary
for a zFS file system to contain all of the data within
an HFS file system

Depending on number of files, directories, ACLs,
symlinks, and file sizes, zFS can consume either
more or less space than HFS

 zFS also has a log in the aggregate

For general purpose file systems, it appears that
they consume about the same amount of space

Two data sets will exist during the migration, so
plan for space for two file systems about same size
Chapter 7. zFS file systems 349

7.49 BPXWH2Z panels

Figure 7-49 Using BPXWH2Z panels

Using BPXWH2Z panels
By default, the panels are initialized such that your HFS data set will be renamed with a .SAV
suffix and the zFS data set will be renamed to the original HFS name.

You can preallocate the zFS file system or specify a character substitution string. If you
specify a substitution string, the panel will be primed such that the data sets will not be
renamed. The substitution string is specified as the first argument on the command line as:

/fromstring/tostring/

For example, if your data set is OMVS.HFS.WJS and you want your zFS data set to be
named OMVS.DB2.HFS you can specify a command argument, as follows:

/hfs/zfs/ omvs.db2.hfs

The resulting new zFS data set name will be OMVS.DB2.ZFS.

Attention: Be careful—all strings matching the fromstring in the data set name will be
replaced.

By default, the panels are primed such that your HFS
data set is renamed with a .SAV suffix and the zFS
data set is renamed to the original HFS name

You can preallocate the zFS file system or specify a
character substitution string such that the data sets
are not renamed - The substitution string is specified
as the first argument on the command line as follows:

/fromstring /tostring/ datasetname

For example, if your data set is OMVS.DB2.HFS and
you want your zFS data set to be named
OMVS.DB2.ZFS, you can specify the following:

bpxwh2z -cv /hfs/zfs/ omvs.db2.hfs
350 ABCs of z/OS System Programming Volume 9

7.50 Migration steps

Figure 7-50 Migration steps

Migration steps
Following are the steps taken by the migration tool to migrate HFS data sets to zFS data sets:

1. If the HFS file system is mounted, either unmount it or switch it to read-only mode. The
tool will switch it to R/O mode.

2. If the file system is not mounted, make a directory for it and mount it in R/O mode. The tool
will create a temporary directory in /tmp for the mountpoint and delete it when migration is
complete.

3. Create a temporary directory for the zFS file system. The tool will create a temporary
directory in /tmp for the mountpoint and delete it when migration is complete.

4. Check the allocation attributes for the HFS file system. See “Size of HFS being migrated”
on page 348.

If the HFS file system is mounted, either unmount it or
switch it to read-only mode

The migration tool switches it to R/O
If the file system is not mounted make a directory for it
and mount it in R/O mode

The migration tool creates a temporary directory in /tmp
for the mountpoint and deletes it when the migration is
complete

Create a temporary directory for the zFS file system
The migration tool creates a temporary directory in /tmp
for the mountpoint and deletes it when the migration is
complete

Check the allocation attributes of the HFS file system
Chapter 7. zFS file systems 351

7.51 Migration steps

Figure 7-51 Migration steps continued

Migration steps continued
5. Define a new zFS file system with appropriate allocation attributes.

6. Mount the zFS file system on its temporary mountpoint.

7. Use the pax utility to copy the HFS contents to the zFS by entering the shell and then
change the directory to the HFS mountpoint and run the new pax utility. The pax command
is as follows:

pax -rw -X -E . /tmp/zfsmountpoint

The previous pax -X option caused pax to write only those files that are on the same
device as the parent directory. Invoking this option causes active mountpoints to be
ignored when pax is in copy mode. However, in z/OS V1R7, the new pax option causes an
empty directory to be created on the target for these mountpoints.

8. If the HFS contains active mountpoints, do an mkdir for each of these in the zFS file
system and set directory attributes as required. Set attributes for the zFS based on the
HFS that was copied. Note that this must include all extended attributes, ACLs, owner,
group, code page, and mode bits.

Define a new zFS file system with the appropriate
allocation attributes

Mount the zFS file system on its temporary
mountpoint (a pre-existing zFS cannot already be
mounted)

Use the pax utility to copy the HFS contents to the
zFS by entering the shell, change directory to the HFS
mountpoint, and run the pax utility - The pax
command you can use is:

pax -rw -X -E . /tmp/zfsmountpoint

If the HFS contains active mountpoints, do an mkdir
for each of these in the zFS file system and set
directory attributes as required
352 ABCs of z/OS System Programming Volume 9

7.52 Migration steps continued

Figure 7-52 Migration steps continued

Migration steps continued
9. Unmount the zFS file system.

10.Unmount the HFS file system. Note that if it contains active mountpoints, those file
systems and any hierarchy below them must be unmounted first.

11.Remove any temporary directories used as mountpoints.

12.Rename the data sets as appropriate and ensure that all mount scripts and policies have
been updated as needed. The migration tool will not modify or search for any type of
mount scripts or policies.

13.If the HFS file system was originally mounted, mount the zFS file system in that same
location along with any hierarchy that also had to be unmounted to unmount that HFS.

Unmount the zFS file system

Unmount the HFS file system

Remove any temporary directories used as
mountpoints

Rename the data sets as appropriate and ensure all
mount scripts and policies have been updated as
needed

The migration tool does not modify or search for any
type of mount scripts or policies

If the HFS file system was originally mounted, mount
the zFS file system in that same location along with
any hierarchy that also had to be unmounted to
unmount the HFS
Chapter 7. zFS file systems 353

7.53 Using the migration tool

Figure 7-53 Using the migration tool first panel

Migration tool first panel
The utility can be run with no arguments; it will prompt for an HFS file system name. You can
also specify one or more file system names as an argument. The names can be simple
names or patterns that you might use for the ISPF data set list panel.

You can also specify one or more file system names as an argument. The names can be
simple names or patterns that you might use for the ISPF data set list panel. However, an
asterisk (*) must be specified at the end to find data sets with additional characters at the end
of the name.

Using the tool
To use the migration tool, Enter bpxhw2x on the ISPF Option 6 command line and the panel
shown in Figure 7-53 is displayed.

To migrate a file system, specify the file system name on the panel as shown,
OMVS.ROGERS.TEST. Then press Enter to display the next panel.

From ISPF Option 6, Enter:

bpxwh2z

When the first panel is displayed:

Enter HFS data set name to migrate

Then press Enter
354 ABCs of z/OS System Programming Volume 9

7.54 Using SMS if required

Figure 7-54 Specify SMS classes and volume if required

Using SMS classes
There are panel interfaces that allow the user to alter the space allocation, placement, SMS
classes, and data set names.

With this panel, you can specify either a default volume or SMS classes to determine where
the new zFS data set will be placed.

Otherwise, the new zFS will be placed to the same place as the HFS data set.

When you press Enter, the panel shown in Figure 7-55 is displayed.

Alter SMS classes and volume if required

Then press Enter to see the allocations
Chapter 7. zFS file systems 355

7.55 Migrate in the foreground

Figure 7-55 Migrating the HFS data set in the foreground

Migrate in the foreground
This panel displays the HFS and zFS allocations. You may alter these allocations for the new
zFS data set. To begin the migration, enter the command FG or BG to run the migration in
foreground or background. If this is run in the background, the tool will keep a standard output
log and also a summary log. The prefix for the pathnames is displayed. The commands D or
A may be specified for each HFS data set to delete items from the migration list or to alter
allocation parameters for the items.

Each table entry shows the data set names that will be used, current HFS space utilization
and space allocation, and allocation parameters that will be used to create the zFS file
system. Select a row to alter the allocation attributes or data set names. Rows can also be
deleted. Additional rows cannot be added.

The commands that can be used on this panel are as follows:

D To delete items from this migration list
A To alter allocation parameters for the items, enter an A on the action character line to

alter the space allocation. A new panel is displayed and is shown in Figure 7-56 on
page 357.

FG To begin migration in the TSO/E foreground, enter FG on the command line.
BG To begin migration in UNIX background, enter BG on the command line.

When you press Enter on this panel using the current specifications, the messages shown
are issued on a blank screen.

A - Alter allocation

 Migrating OMVS.ROGERS.TEST
 creating zFS OMVS.ROGERS.TEST.TMP
 copying OMVS.ROGERS.TEST to OMVS.ROGERS.TEST.TMP Blocks to copy: 2832
 IGD01009I MC ACS GETS CONTROL &ACSENVIR=RENAME
 IGD01009I MC ACS GETS CONTROL &ACSENVIR=RENAME
 IDC0531I ENTRY OMVS.ROGERS.TEST.TMP ALTERED
 IDC0531I ENTRY OMVS.ROGERS.TEST.TMP.DATA ALTERED
 mount /u/rogers/tmp OMVS.ROGERS.TEST ZFS 1

356 ABCs of z/OS System Programming Volume 9

7.56 Alter allocation parameters

Figure 7-56 Panel to alter allocations of new zFS

Alter allocation parameters panel
This panel allows you to change the allocation options that were initially determined by the
migration tool. The values shown in the figure were filled in by the migration tool. You may
change these parameters by overtyping the shown specifications.

Migrating to a multivolume zFS
If your HFS is multivolume, you must preallocate your zFS in order to have similar attributes
and multivolume. However, do not mount it. Then, specify A for alter allocation and on the
panel shown in Figure 7-55 on page 356, specify a Y on the line Preallocated zFS, shown in
Figure 7-56.

Panel to alter allocations of the zFS data set

This panel is required if your zFS is going to be
multi-volume
Chapter 7. zFS file systems 357

7.57 Migrating a list of data sets

Figure 7-57 A list of data sets to migrate

Migrating a list of data sets
When you have a list of data sets to migrate that have very similar names, you can use a
wildcard, * , to specify the list, as shown in the figure. After getting the list of data sets to
migrate, the migration tool obtains data set information on each data set. The tool does not
migrate the following types of data sets:

� That do not exist

� Are HSM migrated

� Are not HFS data sets

The resulting data set list is presented in a table, shown in Figure 7-58 on page 359.

OMVS.ROGERS.TEST1
OMVS.ROGERS.TEST2
OMVS.ROGERS.TEST3
OMVS.ROGERS.TEST4
OMVS.ROGERS.TEST5
OMVS.ROGERS.TEST6
OMVS.ROGERS.TEST7

List of data sets to migrate:
358 ABCs of z/OS System Programming Volume 9

7.58 Data set list displayed

Figure 7-58 List of data sets displayed using a data set name with a wildcard

List of data sets
Use your normal up/down to scroll through the list. Each table entry shows the following:

� Data set names that will be used

� Current HFS space utilization

� Space allocation and allocation parameters

These are used to create the zFS file system. Select a row to alter the allocation attributes or
data set names. Rows can also be deleted. Additional rows cannot be added.

To begin the migrations, enter the command FG or BG to run the migration in the foreground
or background. Note the copy process may take a long time. If this is run in the background,
the tool keeps a standard output log and also a summary log. The prefix for the pathnames is
displayed.

Use the HELP command for full usage information on this tool
 Select items with D to delete items from this migration list
 Select items with A to alter allocation parameters for the items
 Enter command FG or BG to begin migration in foreground or UNIX background
 --
 _ HFS data set ..: OMVS.ROGERS.TEST Utilized: 62%
 Save HFS as ..: OMVS.ROGERS.TEST.SAV
 Initial zFS ..: OMVS.ROGERS.TEST.TMP Allocated: N
 HFS space Primary : 25 Secondary: 5 Units ..: CYL
 zFS space Primary : 25 Secondary: 5 Units ..: CYL
 Dataclas : HFS Mgmtclas : HFS Storclas: OPENMVS
 MOUNTED Volume : SBOX1F Vol count: 1
 --
 _ HFS data set ..: OMVS.ROGERS.TEST1 Utilized: 62%
 Save HFS as ..: OMVS.ROGERS.TEST1.SAV
 Initial zFS ..: OMVS.ROGERS.TEST1.TMP Allocated: N
 HFS space Primary : 25 Secondary: 5 Units ..: CYL
 zFS space Primary : 25 Secondary: 5 Units ..: CYL
 Dataclas : HFS Mgmtclas : HFS Storclas: OPENMVS
 Volume : SBOX1E Vol count: 1

 --------------------------- DATA SET LIST --- Row 1 to 3 of 8
 Command ===> fg

............................. more data sets
Chapter 7. zFS file systems 359

7.59 Migration tool enhancements with APAR OA18196

Figure 7-59 Migration tool enhancements

Migration tool implementation
Before this APAR was introduced, the migration tool BPXWH2Z had the following
requirements:

� Support needed to migrate multi-volume HFS file systems to multi-volume zFS file
systems. The tool currently requires the zFS file systems to be preallocated for
multi-volume HFS file system migration.

� The tool currently tries to convert an HFS file system that is too small for a zFS file system
and fails on zFS allocation. The minimum supported size for zFS file systems is 6 tracks.
The tool does not validate the minimum zFS allocation.

� When the BPXWH2Z tool is invoked via the ISPF batch job, all the HFS file system names
that start with the input HFS file system name are included for migration. There is no way
to include or exclude the HFS file systems from the migration list.

Migration tool enhancements
The BPXWH2Z tool is enhanced to provide the following new functions:

� Migration of SMS-managed multi-volume HFS file systems to SMS-managed
multi-volume zFS file systems. If your HFS file system is multi-volume, then make sure
that it is SMS-managed before you use this tool to do the migration. Your zFS will be
allocated based upon the allocation attributes of the HFS and you will have an opportunity
to modify these attributes via the Change Allocation Attributes panel.

Following enhancements are being made to the
BPXWH2Z HFS-to-ZFS migration tool via this APAR:

1) Multi-volume conversion support

2) Minimum zFS allocation verification

3) Panel usability enhancements

4) New option for exact HFS name match

-e option

Migrating OMVS.FILE1.HFS 11:47:18
creating zFS OMVS.FILE1.HFS.TMP
Error=79x EINVAL: The parameter is incorrect. Reason=EF17631Fx
zFS create failed for OMVS.FILE1.HFS.TMP
zFS create failed
66 150 CYL 18

Exact name match messages
360 ABCs of z/OS System Programming Volume 9

� The tool will ensure that the zFS file system allocation is no less than the minimum
allocation supported by the zFS file system.

� The Data Set List panel in the BPXWH2Z tool is enhanced to display the “final zFS” field.
If you select an HFS data set with character A to change the attributes, you will be able to
modify the final zFS name. The Change Allocation Attributes panel is also enhanced to
display and modify the Final zFS name field. When a substitution string is specified, the
Data Set List panel will be primed such that the HFS will be saved as it is and the final zFS
name will be changed according to the specified substitution string. You have the option to
change the saved HFS name, the final zFS name as well as the allocation attributes by
specifying the character A in front of the HFS name in the Data Set List panel and
modifying it in the Change Allocation Attributes panel.

� A new option, -e, is added to the BPXWH2Z tool to exactly match the HFS file system
name. When the new option is used during the invocation of the BPXWH2Z tool, it will
match the input HFS file system name as exact name and will not consider it as a pattern
string (default behavior).

� The new zFS data set is now being allocated under a user's authority. Therefore, the user
must have authority to create, rename, and delete the new zFS data sets. Otherwise, the
BPXWH2Z tool will fail.

� When a zFS data set is preallocated, the Initial zFS name field and the Final zFS name
field in the Change Allocation Attributes panel must be the same.
Chapter 7. zFS file systems 361

7.60 New pax functions in z/OS V1R7

Figure 7-60 Pax functions in z/OS V1R7

New pax functions
Pax, used in copy mode, has been identified as the tool of choice for migrations from HFS to
zFS. Therefore, necessary changes were made to pax to do this in z/OS v1R7.

All functions and options from previous levels of pax are still valid at this new level. All
automated scripts that use pax at a previous level still work without errors.

Any archives created with previous levels of pax can be extracted by the new version without
problem.

There are new option flags in this new release of pax. If scripts or commands that use these
new options are run on an older level of pax, pax will fail with a usage message. The usage
message for pax copy mode is changed to reflect the new option flags.

New pax options
-C Causes pax to continue after encountering an error on the source file system. pax

prints an error message and returns a nonzero value after the command ends. Errors
on the target file system (such as out-of-space or write errors) still cause the pax
command to end as it always has.

-D Files will not be created sparse in the target directory tree. Sparse files are those that
do not use real disk storage for pages of file data that contain only zeros. This saves
on disk space. When those files are opened and read, the file system returns zeros
for those portions of the files that do not have real disk storage. The default for pax is

All functions and options from previous levels of pax
are still valid at this level

All automated scripts that use pax at the previous
level still work without errors

Any archives created with previous levels of pax can
be extracted by the new version without problems

New option flags for pax

New options on an older level of pax will fail with a
usage message - new options are:

-C , -M , -D
362 ABCs of z/OS System Programming Volume 9

to copy all files as sparse, whether or not the original files were sparse, if sparse files
are supported on the target file system.

-M Creates empty directories within the target directory tree for each active mountpoint
encountered within the source directory tree. pax identifies mountpoints by checking
whether a subdirectory in the source tree is on the same device as the parent current
directory. This behavior is like the current pax -X option (write out only those files and
directories that are on the same device as their parent directory), except instead of
skipping the subdirectory entirely, a corresponding empty directory is created in the
target directory tree. Any contents in the subdirectory on the source directory tree are
ignored. The -M option is only for pax copy mode.
Chapter 7. zFS file systems 363

7.61 pax enhancements

Figure 7-61 List of pax enhancements in z/OS V1R7

pax enhancements in z/OS V1R7
The necessary modifications to the pax utility provide the necessary migration options for
HFS to zFS migrations, in addition to other changes.

Sparse files
Pax writes target files as sparse files when it is working in copy mode. Sparse files are a way
of preserving disk space when storing files that contain large sections of data composed only
of zeros. When a file is sparse, these large sections containing zeros will not be stored on
disk but when the file is read the file system will return zeros for those sections. After pax
reads and places data to be copied to the target in a write buffer, it scans the write buffer in 4k
increments (the HFS blocksize) for an increment containing all zeros. When pax encounters
an increment of all zeros, it seeks 4k ahead instead of writing the zeros. This causes the
target file to be sparse. pax does this regardless of whether the source file was sparse. This
reduces storage used on the target system and should otherwise be transparent to end
users.

Read errors
Currently, when pax encounters an error when reading a source file while in copy mode, it
prints an error message and exit. There is now an option flag to cause pax to continue
processing when a read error occurs after pax has printed an error message to stderr. A
non-zero value is returned when pax exits.

Sparse files are those which do not use real disk
storage for pages of file data that contain only zeros

Copying files as sparse saves disk space

The ability to skip read errors may allow installations
to salvage some files from corrupted file systems

Preserving all files attributes of copied file saves
installations from having to manually set desired
attributes that may not have been preserved
previously

Create mountpoint directories

Copy all attributes from the source root to the target
of the copy after the copy is complete
364 ABCs of z/OS System Programming Volume 9

Preserving file attributes
pax reads the specified path name and copies it to the target directory. The target directory
must already exist and you must have write access to it. If a path name is a directory, pax
copies all the files and subdirectories in that directory, as well as the directory itself, to the
target directory.
Chapter 7. zFS file systems 365

7.62 Special characters in zFS aggregates

Figure 7-62 Special characters in file system names

Special characters
When specifying a new zFS file system name for the read-write file system, the name must
be unique within the sysplex (or system, if not in a sysplex).

With z/OS v1R7, the following characters can now be included in the name of a file system:

� The at sign (@)

� The number sign (#)

� The dollar sign ($)

Previously, you could not have a zFS aggregate or
file system name that contained special characters

Support in z/OS V1R7 for special characters:

(@ # $)

zfsadm define -aggr OMVS.HERING.@TEST.ZFS -volumes CFC000 -cyl 10
IOEZ00248E VSAM linear datase PLEX.JMS.AGGR#06.LDS0006 successfully
created.
zfsadm format -aggr OMVS.HERING.@TEST.ZFS -compat
IOEZ00077I HFS-compatibility aggregate OMVS.HERING.@TEST.ZFS has been
successfully created
366 ABCs of z/OS System Programming Volume 9

7.63 BPXMTEXT shell command

Figure 7-63 BPXMTEXT command change with z/OS V1R8

The BPXMTEXT command
BPXMTEXT displays the description and action text for a reason code returned from the
kernel. It supports reason codes from z/OS UNIX System Services, TCPIP, and now with
z/OS V1R8 for zFS. This command is intended as an aid for problem determination.

zFS reason codes
The reason_code is specified as 8 hexadecimal characters. Leading zeros may be omitted. If
no text is available for the reason code, a blank line is displayed. An argument that is not 1-8
hex digits will result in a usage message. This message will not be translated.

Distributed File Service reason code qualifiers are found in the range X'EF01' to X'EFFF' for
the zSeries File System (zFS).

Note: In addition to displaying UNIX System Services reason codes, the UNIX System
Services shell command, bpxmtext, also displays the text and action of zFS reason codes
(EFxxnnnn) returned from the kernel. zFS does not use the xx part of the reason code to
display a module name. It always displays zFS. If you only know the nnnn part of the zFS
reason code, you can use EF00nnnn as the reason code. The date and time returned with
the zFS reason code matches the date and time returned from the zFS kernel (displayed
with operator command F ZFS,QUERY,LEVEL).

Previously, the bpxmtext command could not display
the meaning of a zFS reason codes

With z/OS V1R8, support is added to allow the
bpxmtext command to display the meaning of zFS
reason codes

ROGERS @ SC75:/u/rogers>bpxmtext EF096800
zFS Fri Jul 28 10:36:15 EDT 2006
Description: Mount for file system contain in multi-file system
aggregate is not allowed

Action: Using a release of z/OS prior to z/OS V1R8, attach the
aggregate, mount the file system and copy the file system data to a
compatibility mode aggregate.
Chapter 7. zFS file systems 367

368 ABCs of z/OS System Programming Volume 9

Chapter 8. Managing file systems

This chapter describes the hierarchical file system and how to customize it to your
requirements. In addition to providing an introduction to HFS concepts, it provides details on
how to:

� Manage and create a hierarchical file system

� Use commands to display useful information

� Perform space management for a hierarchical file system

8

© Copyright IBM Corp. 2006, 2008. All rights reserved. 369

8.1 Hierarchical file system (HFS)

Figure 8-1 Hierarchical file system structure

Hierarchical file system structure
The z/OS UNIX file system is hierarchical and byte-oriented. Finding a file in the file system is
done by searching a directory or a series of directories. There is no concept of a z/OS catalog
that points directly to a file.

z/FS and HFS are both UNIX file systems and both can participate in shared sysplexes.
However, while HFS always has a single file system per data set, zFS may have multiple file
systems in a single data set. These data sets are called aggregates and are a collection of
data sets.

A path name identifies a file and consists of directory names and a file name. A fully qualified
file name, which consists of the name of each directory in the path to a file plus the file name
itself, can be up to 1023 bytes long, for example: /u/joe/projects/p1/prog1.

The hierarchical file system allows for file names in mixed case. The files in the hierarchical
file system are sequential files, and they are accessed as byte streams. A record concept
does not exist with these files, other than the structure defined by an application.

The files can be text files or binary files. In a text file, each line is separated by a newline
delimiter. A binary file consists of sequences of binary words, and the application reading or
writing to the file is responsible for the format of the data.

A file name can be up to 255 characters long. HFS data sets, zFS data sets, and z/OS data
sets can reside on the same SMS-managed DASD volume.

HFS data set or zFS data set

Directory Directory

Directory

Directory Directory Directory

File

File

File

File

File

File
File

File

File

File
370 ABCs of z/OS System Programming Volume 9

8.2 File linking

Figure 8-2 File linking

File linking
A link is a new pathname, or directory entry, for an existing file. The new directory entry can
be in the same directory that holds the file, or in a different directory. You can access the file
under the old pathname or the new one. After you have a link to a file, any changes you make
to the file are evident when it is accessed under any other name. Links are useful when:

� A file is moved and you want users to be able to access the file under the old name.
� You want to create a link with a short pathname (an alias) for a file that has a long

pathname.

You can use the ln command to create a hard link or a symbolic link. A file can have an
unlimited number of links to it.

Hard link
A hard link is a new name for an existing file. You cannot create a hard link to a directory, and
you cannot create a hard link to a file on a different mounted file system.

Symbolic link
A symbolic link is another file that contains the pathname for the original file—in essence, a
reference to the file. A symbolic link can refer to a pathname for a file that does not exist.

External link
A file can be an external link to a sequential data set, a PDS, or a PDS member.

Hard link

ln oldfile newfile

newfile becomes a new pathname for the existing file
oldfile - If oldfile names a symbolic link, link creates a
hard link to the file

Symbolic link

A symbolic link is another file that contains the
pathname for the original file

External link

An external link is a special type of symbolic link, a
file that contains the name of an object outside of the
hierarchical file system
Chapter 8. Managing file systems 371

8.3 Hard links

Figure 8-3 Hard link example

Hard links
A hard link is a new name for an existing file. You cannot create a hard link to a directory, and
you cannot create a hard link to a file on a different mounted file system.

All the hard link names for a file are as important as its original name. They are all real names
for the one original file. To create a hard link to a file, use this command format:

ln old new

When you create a hard link to a file, the new filename shares the inode number of the
original physical file. Because an inode number represents a physical file in a specific file
system, you cannot make hard links to other mounted file systems.

INODE
The inode is the internal structure that describes the individual files in the operating system;
there is one inode for each file. An inode contains the node, type, owner, access times,
number of links, and location of a file. A table of inodes is stored near the beginning of a file
system. The file system is used to store data and organize it in a hierarchical way by using file
system entries such as directories and files. These file system entries have certain attributes,
such as ownership, permission bits, and access time stamps. The data and the attributes of a
file are stored with the file in the file system. All file attributes are stored in a control block that
is sometimes called the inode.

The inode number specifies a particular inode file in the file system.

Hard link - Used to define an alternate path to a file (alias)

ln /place/zoo/cage/lion /place/house/cat

/
place

zoo

cage cat

house

lion

hard link

primary
path

alternate
path

(inode 1023)

(inode 1023)
372 ABCs of z/OS System Programming Volume 9

8.4 Symbolic links

Figure 8-4 Symbolic link examples

Symbolic links
A symbolic link is a type of file system entry that contains the pathname of, and acts as a
pointer to another file or directory.

You can create a symbolic link to a file or a directory. Additionally, you can create a symbolic
link across mounted file systems, which you cannot do with a hard link. A symbolic link is
another file that contains the pathname for the original file—in essence, a reference to the file.
A symbolic link can refer to a pathname for a file that does not exist. To create a symbolic link
to a file, use this command format:

ln -s old new

where new is the name of the new file containing the reference to the file named old. In
Figure 8-4, /house/room/cat is the name of the new file that contains the reference to
/place/zoo/cage/lion.

When you create a symbolic link, you create a new physical file with its own inode number, as
shown in the figure. Because a symbolic link refers to a file by its pathname rather than by its
inode number, a symbolic link can refer to files in other mounted file systems.

/
place

zoo

cage

lion

/
house

room

catsymbolic link

ln -s /place/zoo/cage/lion /house/room/cat

(inode 1043)

(inode 1023)

Symbolic link refers to a file by its pathname rather than its inode number
A symbolic link can refer to a file in another mounted file system

HFS1 or zFS1 HFS2 or zFS2
Chapter 8. Managing file systems 373

8.5 External links

Figure 8-5 Defining external links

External links
An external link is a special type of symbolic link. It is a file that contains the name of an
object that is outside of the hierarchical file system.

DFSMS/NFS uses this link to access z/OS data sets.

An example of defining an external link is to make a link between an HFS file and an MVS
program, as follows:

� Define an HFS file as:

/usr/lpp/db2/db2910

� Where the MVS program name IMWYWWS is an external link, the command to define the
external link is:

ln -e DSNAQLDA /usr/lpp/db2/db2910/lib/libdb2os390j2.so

When you are done, you have created an external link that can be used to access an MVS
load library.

Using an external link, you associate that object with a pathname. For example, setlocale()
searches for locale object files in the HFS, but if you want to keep your locale object files in a
partitioned data set, you can create an external link in the HFS that points to the PDS. This
will improve performance by shortening the search that setlocale() makes.

Links to an object outside of the HFS

ln -e DSNAQLDA /usr/lpp/db2/db2910/lib/libdb2os390j2.so

old

/usr/lpp/db2/db2910

/lib
libdb2os390j2.so

new

DB2.SDSNLOD2

PDSE

(DSNAQLDA)

Search order for module:
STEPLIB
LPA
LNKLST
374 ABCs of z/OS System Programming Volume 9

A file can be an external link to a sequential data set, a PDS, PDSE, or a PDS member.

External link examples
Consider the following examples:

ln -e SYS1.PRIVATE.PGMA /u/ggi/plib/pgma
ln -e PGMPDS /u/ggi/plib/pgm

The second example assumes that the PGMPDS member will be found in a PDS library,
using the traditional z/OS search order. Because of performance considerations, put the
library into the LPA or LNKLST.
Chapter 8. Managing file systems 375

8.6 File system structure

Figure 8-6 File system structure

File system structure
The z/OS UNIX file system can consist of multiple file systems joined together to form a
hierarchical file system. Connecting one file system to another is called mounting.

The root file system is the first file system that is mounted, and subsequent file systems can
be mounted on a directory in a file system that is already mounted. The file systems will form
a hierarchy of file systems. A file system must be mounted before anybody can access it.

An HFS or zFS data set is a mountable file system. A mountable file system can be logically
mounted to a mount point, which is a directory in another file system, with a TSO/E MOUNT
command. A mountable file system can be unmounted from a mount point with a TSO/E
UNMOUNT command. ISPF users can also perform these tasks using the ISPF shell.

Build a directory in the root file system. A directory can be used as a mount point for a
mountable file system. The mount point should be an empty directory; otherwise, its contents
will be hidden for the duration of any subsequent mounts.

Note: If you want to unmount HFS2, you first have to unmount HFS3 or the system will tell
you that the resource is busy. However, you can unmount by using the immediate option or
the force option without first unmounting HFS3. If users are working on those directories,
they will get errors trying to list the current directories.

Dir Dir Dir

Dir

Dir

F F

F FF

Dir

Dir

F

FDir

/
HFS1

HFS1Dir

F FDir

ZFS1

F FF

ZFS2

//

/

Multiple HFS, zFS data sets
376 ABCs of z/OS System Programming Volume 9

8.7 Temporary directory space

Figure 8-7 Temporary file system and temporary directory space

Temporary directory space
When compiling C programs, the compiler will use the /tmp directory for temporary files.
When compiling large applications, the /tmp directory can use a lot of space. Use a separate
file system for temporary data. In this way, a maximum of one volume will be used for
temporary space.

Separate file system
Placing the /tmp directory in a separate file system can also improve performance in a system
with a large number of interactive z/OS UNIX users, where the I/O activity can be very high on
the /tmp directory. Do this with the following procedure:

� Allocate an HFS data set for the temporary data file system, for example:
OMVS.<SYSNAME>.TMP.HFS

� Mount this data set on the /tmp directory in the root file system. When data is written to
files in the /tmp directory, the data will be physically located in the
OMVS.<SYSNAME>.TMP.HFS file system.

Temporary file system (TFS)
When you have a large number of interactive users, the /tmp directory can sustain large
amounts of I/O activity. There are several approaches you can take:

tmp

/

Root-HFS

OMVS.<SYSNAME>.TMP.HFS

Can be a real HFS or a TFS
$HOME/tmp
Chapter 8. Managing file systems 377

� Mount a temporary file system (TFS) over /tmp in the HFS, so that you have a high-speed
file system for temporary files. The temporary file system is an in-memory file system that
is not written to DASD.

� Place the /tmp directory in its own mountable file system and put the file system on its own
pack.

� Reduce /tmp activity by setting the TMPDIR environment variable to $HOME/tmp in each
user's .profile. This causes various utilities to put temporary files in the user's $HOME/tmp
directory rather than in the common /tmp directory.

Recommendations
It is suggested that you place the temporary data in a separate file system. In this way, it will
be easier to manage the space used by temporary files. How much temporary space is
needed will depend on how z/OS UNIX is used. When the C compiler is invoked from the
z/OS UNIX shell, the /tmp directory will be used for temporary data. Miscellaneous shell
commands use the /tmp directory as well. If the z/OS UNIX shell is not installed, there will
probably not be that much activity in the /tmp directory.

Another reason for placing the /tmp in a separate file system is to improve file system
performance. If there is a lot of I/O activity on the /tmp directory, it would improve the
performance if the OMVS.<SYSNAME>.TMP.HFS file system is placed on a different volume
than the root file system.
378 ABCs of z/OS System Programming Volume 9

8.8 Temporary file system (TFS)

Figure 8-8 Temporary file system and temporary file system address space

Temporary file system (TFS)
The /tmp (temporary) directory is where many programs running on the system keep
temporary copies of files or data. Users often use the tmp directory for working space
knowing that they should not put anything out there that they want to keep. Currently the /tmp
directory is part of the root HFS data set. The data in /tmp is not automatically deleted unless
you have set up some mechanism (like the cron automation daemon) to delete the data at
certain intervals. If the data is not deleted, you could run into space problems over time.

The TFS is an in-memory physical file system that supports in-storage mountable file
systems. Because it is an in-memory file system, all data that is written to a TFS is lost over
an IPL. This makes it a good candidate for the /tmp directory. Not only do you get a new clean
/tmp file system at each IPL, you also get very high I/O access because it resides in a data
space that is part of the kernel address space.

Creating a TFS
The ServerPac installation jobs already defined the following FILESYSTYPE definition in
SYS1.PARMLIB(BPXPRMFS):

FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)

Unfortunately, you need an IPL to pick up any FILESYSTYPE definitions in BPXPRMFS.
Because we have not IPLed the system since we installed the root HFS, the TFS physical file
system is not started.

FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)
MOUNT FILESYSTEM('/TMP') TYPE(TFS)
MOUNTPOINT('/tmp')
PARM(' -s 10')

BPXPRMxx

tmp

/

TFS

Root-HFS

TFS address space

TFS
Chapter 8. Managing file systems 379

Edit SYS1.PARMLIB(BPXPRMFS), that is, add the mount statement to mount an in-memory
file system at the /tmp mount point. You can add the following mount statement right under
the FILESYSTYPE TYPE(TFS) definition:

MOUNT FILESYSTEM('/TMP')
 MOUNTPOINT('/tmp')
 TYPE(TFS)
 PARM('-s 10')

(-s 10) allocates 10MB of storage.

Figure 8-8 shows the mount command for a TFS. Normally this would be included in
BPXPRMxx. Key points to remember are the following:

� The file system name should be unique. If you use the pathname of the mount point, it will
simplify the understanding of the output of the df command.

� Type must be a TFS.

� Mountpoint is /tmp.

� Parm specifies how much virtual storage the TFS should use. The default is 1 MB; PARM
(-s 10) specifies 10 MB.

� You cannot mount a TFS using a DDname.

� If unmounted, all data stored in a TFS is lost; when remounted, the file system has only
dot(.) and dot-dot(..) entries.
380 ABCs of z/OS System Programming Volume 9

8.9 Colony address space

Figure 8-9 Colony address spaces

z/OS UNIX colony address spaces
The standard z/OS UNIX Physical File Systems (PFS) run as tasks in the kernel address
space. However, it is possible to package a physical file system component in a separate
address space, called a colony address space.

The Logical File System in the kernel provides the linkage to the new PFS in the colony
address space. To a z/OS UNIX user application, there is no difference in interaction between
accessing the standard PFS and one in a colony address space.

Running a PFS in a colony address space has some advantages, as follows:

� It is a simpler way for other components to add a new PFS to z/OS UNIX environment.

� A PFS can use a different security ID to kernel, and allocate its own z/OS data sets.

� A PFS can run as a standard process with normal C/C++ SYSCALL linkages.

When a PFS runs in a colony address space, an extra address space is created, and each
PFS operation has a slightly longer path length.

Note: The cataloged procedure (named with ASNAME) must contain the statement:

EXEC PGM=BPXVCLNY

BPXPRMxx
FILESYSTYPE TYPE(NFS)

ENTRYPOINT(GFSCINIT)
ASNAME(NFSCLNT)

FILESYSTYPE TYPE(TFS)
ENTRYPOINT(BPXTFS)
ASNAME(TFSPROC)

Procedure name
in SYS1.PROCLIB

MOUNT FILESYSTEM('/SPEED') TYPE(TFS)
MOUNTPOINT('/speed')
PARM(' -s 10')

Logical File
 System

Physical
File

SystemsHFS

I/O
syscall

NFS
Client

SYS1.PROCLIB

NFSCLNT

TFSTFSPROC

OMVS Kernel
Chapter 8. Managing file systems 381

Creating colony address spaces
The following tasks must be performed to run the colony address space:

� Define FILESYSTYPE TYPE(TFS) in BPXPRMxx.

� Use a procedure name for the TFS, in the ASNAME in the BPXPRMxx.

� Define a profile in the started class for the procedure name.

� Add the MOUNT FILESYSTEM('/xxxx') to the BPXPRMxx.

� IPL the system.

The RACF profile for started class could look like:

RDEFINE STARTED TFSPROC.** -
 STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(NO))

For physical file systems that do not run in the kernel address space, ASNAME specifies the
name of the procedure in SYS1.PROCLIB used to start the address space in which this PFS
will be initialized. The procedure name is also used as the name of the address space. For
example, for the NFS client, you must create a procedure to run a PFS in a colony address
space.
382 ABCs of z/OS System Programming Volume 9

8.10 Mounting file systems

Figure 8-10 Ways to mount zFS file systems

Ways to mount file system
A file system is the entire set of directories and files, consisting of all HFS files shipped with
the product and all those created by the system programmer and users. The system
programmer (superuser) defines the root file system; subsequently, a superuser can mount
other mountable file systems on directories within the file hierarchy. Altogether, the root file
system and mountable file systems comprise the file hierarchy used by shell users and
applications.

Figure 8-10 shows the different methods of mounting file systems.

UNIX shell mounts
The REXX exec /usr/sbin/unmount performs essentially the same functions that the TSO/E
mount command performs. You can run it from the shell.

For hierarchical file systems, you can use the chmount command to logically mount, or add, a
mountable file system to the file system hierarchy. This is the same command used by the
REXX exec /usr/sbin/mount.

TSO mounts
Have an authorized user enter a TSO/E mount command to logically mount the file system.

Using the File Systems pull-down from the ISHELL panel and Option 3, you can perform the
mount for a file system.

Using the usr/sbin/mount REXX exec from the shell

Using the TSO MOUNT command

Using the mount shell command (/usr/sbin)

Using the ISHELL File_Systems pull-down

Adding a mount statement to the BPXPRMxx
member in SYS1.PARMLIB so that it will be
mounted when the system re-IPLs

Direct mount

Automount facility
Chapter 8. Managing file systems 383

PARMLIB mounts
The MOUNT statement defines the hierarchical file systems to be mounted at initialization
and where in the file hierarchy they are to be mounted. It is up to the installation to ensure that
all HFS data sets specified on MOUNT statements in the BPXPRMxx PARMLIB member are
available at IPL time.

z/OS UNIX mounting
For a direct mount, you need to allocate an intermediate HFS data set to be mounted
between the root file system and all user file systems. Create a mount point using the mkdir
command and issue the mount command. (To make the mount permanent you will also need
to add the HFS data set name and its mount point to the BPXPRMxx member of PARMLIB.)

Using the automount facility simplifies management of file systems. You do not need to
mount most file systems at initialization and you do not need to request that operators
perform mounts for other file systems. In addition, it is easier to add new users because you
can keep your PARMLIB specification stable. You can establish a simple automount policy to
manage user home directories.
384 ABCs of z/OS System Programming Volume 9

8.11 Mount and unmount

Figure 8-11 Mounting of file system considerations

Mounting and unmounting file systems
A file system must be mounted before it can be accessed. When z/OS UNIX is started, the
root file system is mounted as the first file system. All other file systems included on the
MOUNT statements in the BPXPRMxx members or mounted with the TSO command
MOUNT will be mounted on the root file system or on other file systems.

A file system can be mounted in read/write mode or in read-only mode. If it is mounted in
read-only mode, nobody can update any files or directories in the file system. To change the
mount mode, the file system must be unmounted and then remounted with a mode of
read/write.

A file system must be mounted on a directory; this is called a mount point. Use empty
directories as mount points. If a directory is not empty, the existing files will be overlapped by
the file system which is mounted on the directory. When this file system is unmounted, the
existing files will be accessible and visible again.

Superuser authority is required to mount or unmount a file system. That means the user must
have a OMVS UID(0) or have a RACF profile that defines superuser authority for the user.

If the file system does not need to be updated, it could be mounted in a read-only mode. This
will improve the performance. However, if a file system mounted as read-only needs updates,
it must be unmounted and remounted again.

ZFS

F

Dir Dir Dir

Dir

Dir

F
F

F
F

F

Dir

F FDir

Dir

Dir

FDir

/

ZFS ZFS

mount
points

F
F

When the ZFS is
mounted, these files
will be hidden and
will no longer be
accessable until the
ZFS is unmounted.

(superuser authority required for mounts)

/ /
Chapter 8. Managing file systems 385

8.12 Managing user file systems

Figure 8-12 Managing the mounting of file systems of z/OS UNIX users

Ways to mount
When a user requires an HFS or zFS file system to be accessed, you need to get it mounted
at a mount point off of the root directory to make it available. The preferred place to mount all
user HFS or zFS file systems is the /u mount point. In z/OS UNIX, there are two ways to
accomplish this:

Direct mount Allocate an intermediate HFS data set to be mounted between the root file
system and all user file systems.

Create a mount point using the mkdir command and issue the mount
command. To make the mount permanent you will also need to add the
HFS data set name and its mount point to the BPXPRMxx member of
PARMLIB.

Automount You need to customize the automount facility to control all user file systems
to automatically mount them when they are needed. This is the preferred
method to manage user HFS data sets because it saves administration
time.

The automount facility lets you designate directories as containing only
mount points. This is the preferred method of managing user HFS file
systems. As each of these mount points is accessed, an appropriate file
system is mounted. The mount point directories are internally created as
they are required. Later, when the file system is no longer in use, the mount
point directories are deleted.

Mount user file systems at the /u mount point

Two ways to mount:

(1). Direct mount (2) Automount facility

joe bill

u

386 ABCs of z/OS System Programming Volume 9

8.13 User file systems: Direct mount

Figure 8-13 Mounting user file systems with direct mount

Direct mount
You should set up the root file system so that it does not require frequent changes. This can
be accomplished by putting user data in user file systems. The /u directory contains the user
home directories; if these directories are placed in separate file systems, most of the user
data will be kept out of the Root file system.

The UNIX System Service programmer can choose to use only one HFS for all users, or use
one HFS per user. If the user HFS is too small, you can mount some of the users to another
user's HFS, or increase the user space for the HFS. This will make it easier to manage the
HFS.

User home directory
A recommendation is to name the user home directories /u/userid with the user ID in
lowercase, for example /u/joe for user JOE as shown in the visual.

Following is a suggested method for creating user file systems:

� Leave the /u directory in the root file system empty.

� Create an HFS file called OMVS.<SYSNAME>.USERS.HFS.

janebilljoe

Dir

F FDir

Dir

F FF

Dir

Dir

F FDir

Dir

F

OMVS.<SYSNAME>.USERS.HFS

u

/
 Root-HFS

OMVS.<SYSNAME>.JOE.HFS OMVS.<SYSNAME>.BILL.HFS OMVS.<SYSNAME>.JANE.HFS
Chapter 8. Managing file systems 387

This file system will contain the home directories for all users, and will be mount points for
the user file systems. The reason for keeping these home directories in a separate file
system is to avoid updating the root file system each time a new home directory is created
or deleted. The second qualifier of the DSNAME identifies the z/OS system image it
relates to.

� Create a file system for each user or for a department, depending on what is best for the
installation. The user file systems can be called OMVS.<SYSNAME>.<userid>.HFS.

The user file systems will be mounted on the home directories in the
OMVS.<SYSNAME>.USERS.HFS file system.

Define a file system for user directories
You should have a separate file system just to contain the user's home directories. These
home directories will be empty, and they will act as mount points for the user file systems.
Depending on how the installation is organized and on the need for user space, each user
can have their own file system, or users in a department can share a system. It is easier to
control space usage when each user has their own file system. It can be compared to users
having their own z/OS data set for user data, or their own minidisk on VM. How large it should
be depends entirely on who will use it and what the user will do. If multiple users share an
HFS data set, it is not possible to guarantee space for each user. One user can dominate the
space in a file system shared between multiple users.

When making plans for a file structure, it is important to think about a naming convention for
the HFS data sets. If the automount facility will be used, one of the data set qualifiers should
be equal to the directory name where the file system will be mounted.
388 ABCs of z/OS System Programming Volume 9

8.14 Mounting file systems

Figure 8-14 How to mount file systems

Mounting from the ISHELL
The ISHELL is a powerful application based on ISPF. You can do many things with the menu
shown at the top of Figure 8-14. The eight menu options have the following meanings:

File Edit, browse, delete, copy, rename, print, run, and so on

Directory List, create, rename, print, find string, and so on

Special_file New FIFO, link, Attribute, delete, rename, and so on

Tools Processes, Shell commands, run programs, and so on

File_systems Mount, unmount, change attribute, allocate HFS, and so on

Options Directory list, edit, browse, settings, and so on

Setup User and Group Admin., create TTY, RACF permit Field, and so on

Help Action code, Help, Keys help, About, and so on

Mounting from TSO/E
A file system can be mounted by using the TSO/E MOUNT command or the ISHELL.
Superuser authority is required for mounting or unmounting a file system.

The options for the MOUNT command are the same as for the MOUNT statement in
BPXPRMxx, except for an additional option called WAIT or NOWAIT. This option specifies
whether to wait for an asynchronous mount to complete before returning.

MOUNT FILESYSTEM('OMVS.<SYSNAME>.JANE.HFS')
 MOUNTPOINT('/u/jane') TYPE(HFS) MODE(RDWR)

UNMOUNT FILESYSTEM('OMVS.<SYSNAME>.JOE.HFS') NORMAL

TSO/E Commands

3

Chapter 8. Managing file systems 389

The syntax for the UNMOUNT command is as follows:

UNMOUNT FILESYSTEM(file_system_name)
DRAIN | FORCE | IMMEDIATE | NORMAL | REMOUNT(RDWR | READ) | RESET

DRAIN Specifies that an unmount drain request is to be made. The system will wait
for all use of the file system to be ended normally before the unmount
request is processed or until another UNMOUNT command is issued.

FORCE Specifies that the system is to unmount the file system immediately. Any
users accessing files in the specified file system receive failing return
codes. All data changes to files in the specified file system are saved, if
possible. If the data changes to the files cannot be saved, the unmount
request continues and data is lost.

IMMEDIATE Specifies that the system is to unmount the file system immediately. Any
users accessing files in the specified file system receive failing return
codes. All data changes to files in the specified file system are saved. If the
data changes to files cannot be saved, the unmount request fails.

NORMAL Specifies that if no user is accessing any of the files in the specified file
system, the system processes the unmount request. Otherwise, the system
rejects the unmount request. This is the default.

REMOUNT (RDWR|READ) Specifies that the specified file system be remounted,
changing its mount mode. REMOUNT takes an optional argument of
RDWR or READ. If you specify either argument, the file system is
remounted in that mode if it is not already in that mode. If you specify
REMOUNT without any arguments, the mount mode is changed from
RDWR to READ or READ to RDWR.

RESET A reset request stops a previous UNMOUNT DRAIN request.

WAIT Specifies that MOUNT is to wait for the mount to complete before returning.
WAIT is the default.

NOWAIT Specifies that if the file system cannot be mounted immediately (for
example, a network mount must be done), then the command will return
with a return code indicating that an asynchronous mount is in progress.
390 ABCs of z/OS System Programming Volume 9

8.15 Option 3: Mount

Figure 8-15 Mounting file systems from the ISHELL with Option 3

Mounting from the ISHELL
The ISHELL command invokes the z/OS ISPF shell, a panel interface that helps you to set up
and manage z/OS UNIX System Services functions such as mounting of file systems.

To mount a file system, you must be a superuser.

If you are a user with an MVS background, you may prefer to use the ISPF shell panel
interface instead of shell commands or TSO/E commands to work with the file system. The
ISPF shell also provides the administrator with a panel interface for setting up users for z/OS
UNIX access, for setting up the root file system, and for mounting and unmounting a file
system.

Select the options you require on the panel. The mount point must be a directory. If it is not
an empty directory, files in that directory are not accessible while the file system is mounted.

Only one file system can be mounted at a directory (mount point) at any one time.

ZFS
Chapter 8. Managing file systems 391

8.16 Automount facility

Figure 8-16 Using the automount facility

Automount facility
Use the automount facility to simplify management of your file system. With this facility, you
do not need to mount most file systems at initialization and you do not need to request that
operators perform mounts for other file systems. In addition, the facility simplifies the addition
of new users because you can keep your PARMLIB specification stable. You can establish a
simple automount policy to manage user home directories.

The automount facility also helps you to avoid consuming resources until they are requested.
A file system that is managed by the automount facility remains unmounted until its mount
point is accessed.

In addition, the automount facility helps you to reclaim system resources used by a mount if
that file system has not been used for some period of time. You can specify how long the file
system should remain mounted after its last use.

The automount facility lets you designate directories as containing only mount points. This is
the preferred method of managing user HFS data sets. As each of these mount points is
accessed, an appropriate file system is mounted. The mount point directories are internally
created as they are required. Later, when the file system is no longer in use, the mount point
directories are deleted.

Try to think of automount as an administrator that has total control over a directory. When a
name is accessed in this directory, it looks up in its policy what file system is supposed to be
associated with that name. If it finds one, it (logically) performs a mkdir followed by a mount,
then quietly moves out of the way. Once out of the way, the root directory of that newly
mounted file system is now accessed as that name.

Used to simplify management of your file system

Eliminates mounting files at initialization

Eliminates operators performing mounts

Easier to add a new user's file system

Files not mounted until required

Use BPXPRMxx and two definition files
392 ABCs of z/OS System Programming Volume 9

8.17 Automount facility overview

Figure 8-17 An overview of automount facility processing

Overview of automount facility processing
The automount facility simplifies the management of mountable file systems.

With automount, an installation defines the directories that should be managed in a policy file.
These directories must be the parent directories of the mount point directories. When a mount
point directory (which is a subdirectory of a managed directory) is referenced in a pathname,
the system will create the mount point directory and mount the proper file system.

The root directory cannot be managed by automount.

With automount, it is also possible to specify how long a file system should remain
unreferenced before it is automatically unmounted. When a mounted file system is
unmounted, the mount point directory will be deleted.

==> ls -al /u/jane

Check automount
policy

MOUNT FILESYSTEM('OMVS.JANE.ZFS')
 MOUNTPOINT('/u/jane') TYPE(ZFS)
 MODE(RDWR)

z/OS UNIX Shell user JANE:

z/OS UNIX

OK

Result from ls -al command:

/etc/auto.master

/etc/auto.map

-rwxr-xr-x 2 JANE SYS1 668 Oct 26 08:07 vi1.txt
-rwxr-xr-x 2 JANE SYS1 240 Oct 26 08:07 wc.c
-rwxr-xr-x 2 JANE SYS1 202 Oct 26 08:07 wc.l
Chapter 8. Managing file systems 393

8.18 Automount setup

Figure 8-18 Automount facility policy setup

Setting up the automount policy
To use the automount facility, the following statement must be added to the BPXPRMxx
member:

FILESYSTYPE TYPE(AUTOMNT) ENTRYPOINT(BPXTAMD)

Automount policy files
Automount uses two HFS files for specifying the policy for which file systems should be
automatically mounted when referenced:

/etc/auto.master Contains a list of directories to be managed, along with their MapName
files.

/etc/u.map Is the MapName file for a directory.

The MapName file contains the mapping between a subdirectory of a directory managed by
automount and the mount parameters as follows:

name The name of the mount point directory. An asterisk (*) specifies a generic
entry for the automount-managed directory.

type File system type. The default is HFS.

file system Data set name of the file system to mount. Two special symbols are
supported to provide name substitution:

<asis_name> Used to represent the name exactly, as is.

FILESYSTYPE TYPE(AUTOMNT) ENTRYPOINT(BPXTAMD)

BPXPRMxx1.

/u /etc/u.map

/etc/auto.master2.

<asis_name>

HFS automount map file for mount point /u
name *
type ZFS
filesystem OMVS.<uc_name>.ZFS
mode rdwr
duration nolimit
delay 60
setuid no | yes
allocany space(10,5) tracks

/etc/u.map3.

allocuser

filesystem name = any naming convention you choose
394 ABCs of z/OS System Programming Volume 9

<uc_name> Used to represent the name in uppercase characters.

These can be used when specifying a file system name or file system
parameter that has a specific form, with the name inserted as a qualifier.

mode Mount mode.

duration The minimum amount of time in minutes to leave the file system mounted.
The default is nolimit.

delay The minimum amount of time in minutes to leave the file system mounted
after the duration has expired and the file system is no longer in use. The
default is 0.

setuid Can be specified as yes or no. This will support or ignore the SETUID and
SETGID mode bits on executable files loaded from the file system.

The APF extended attribute is not honored.

The Program Control extended attribute is not honored.

New with z/OS V1R3
� ### ZFS automount map file for mount point /u ###. The use of the # symbol is new; it

indicates a comment statement in the map file.

� &SYSNAME is new with z/OS V1R3. It indicates that system symbols are supported in the
map file.

� allocany allocation-spec specifies the allocation parameters when using automount to
allocate an HFS or zFS data set. allocany will cause an allocation if the zFS data set does
not exist for any name looked up in the automount managed directory.

� allocuser allocation-spec specifies the allocation parameters when using automount to
allocate an zFS data set. allocuser will cause an allocation to occur only if the name
looked up matches the user ID of the current user.

Where:

allocation-spec is a string that specifies allocation keywords. Keywords can be specified in
the string, as follows:

space(primary-alloc[,secondary alloc])
cyl | tracks | block(block size)
vol(volser[,volser]...)
maxvol(num-volumes)
unit(unit-name)
storclas(storage-class)
mgmtclas(management-class)
dataclas(data-class)

The next four keywords are automatically added:

dsn(filesystem)
dsntype(hfs)
dir(1)
new

Note: The following attributes apply to a file system mounted with NOSETUID: SETUID
and SETGID programs are not supported. That is, the UID or GID will not be changed
when the program is executed.
Chapter 8. Managing file systems 395

8.19 Generic match on lower case names

Figure 8-19 Specification of the automount map file keywords

Keywords in automount policy
Four special symbols are supported to provide name substitution:

<asis_name> Used to represent the name exactly, as is.

<uc_name> Used to represent the name in uppercase characters.

<sysname> Used to substitute the system name.

&SYSNAME. Used to substitute the system name. This is new with z/OS V1R3.

You can use these when specifying a file system name or file system parameter that has a
specific form with the name inserted as a qualifier.

lowercase [Yes|No] - This keyword is new with z/OS V1R3. It indicates the case for names
that can match the * specification. This keyword is valid on any specification, but is only
meaningful on the generic entry.

Yes Only names composed of lowercase characters can match the * specification
(numbers and special characters may also be used). When this is specified,
uppercase characters are not allowed.

No Any names can match the * specification. This is the default.

Attention: IBM recommends that you use &SYSNAME. <sysname> is only temporarily
supported for compatibility.

<asis_name>
This represents the exact name of the subdirectory to be
“automounted”. If name is in uppercase, the substitution
name in the fielsystem name is in uppercase. If the name is
in lowercase, the substitution name results in lowercase.

<uc_name>
This represents the name of the subdirectory to be
“automounted” in uppercase characters. In this case,
/u/user1 and /u/USER1 mount point directories map the
same file system

lowercase[YES]
This indicates that only names in lowercase (special
characters are also allowed) match the * specification

lowercase[NO]
This is the default and indicates that any names will match
the * specification.
396 ABCs of z/OS System Programming Volume 9

8.20 Activating automount

Figure 8-20 Activating the automount facility when a user accesses a file system

Activating the automount policy
The automount command is used to configure the z/OS UNIX automount facility. When run
with no arguments, automount reads the /etc/auto.master file to determine all directories that
are to be configured for automounting and the filenames that contain their configuration
specifications.

automount -s can be specified to check the syntax of the configuration file. No automount is
performed when using the -s option.

The automount command requires superuser authority.The automount command is located in
the /usr/sbin directory. The superuser should have this directory in their PATH environment
variable.

When the HFS is first allocated for a new user and automount is used to dynamically allocate
a mount point, the new mountpoint directory has permission bits of 700 and the owner is the
superuser. A chown command will have to be issued to change the ownership.

After the automount command is done, the system will automatically mount a file system if the
mount point directory is managed by the automount facility.

z/OS shell

joe bill

u

jane

Before JANE accesses => ls -al/u/jane:

After JANE accesses => ls -al/u/jane:

OMVS.ROOT.ZFS

*AMD/u

u

*AMD/u

OMVS.JOE.ZFS

4.

/usr/sbin/automount

5.

joe bill

u

6.

OMVS.ROOT.ZFS

OMVS.JANE.ZFS
OMVS.BILL.ZFS

OMVS.JOE.ZFS OMVS.BILL.ZFS
Chapter 8. Managing file systems 397

8.21 SETOMVS RESET=xx implementation

Figure 8-21 Option to start a PFS with an operator command

Defining automount in BPXPRMxx member
The setomvs command enables you to modify BPXPRMxx PARMLIB settings without
re-IPLing. So if you need to add the automount physical file system to your environment, the
setomvs command can be used with the reset= keyword. For example:

setomvs reset=xx

You can use the setomvs reset command to dynamically add the FILESYSTYPE,
NETWORK, and SUBFILESYSTYPE statements without having to re-IPL. You place those
statements in a BPXPRMxx member, say BPXPRMtt, and issues the command, as follows:

setomvs reset=tt

However, if you change the values in the PARMLIB member, a re-IPL will be necessary.

To make the dynamic changes when you use the setomvs command permanent, you will
have to edit the BPXPRMxx member that is used for IPLs.

SETOMVS RESET=L1

Designed to be used with a subset of the BPXPRMxx
parmlib statements to add Physical File Systems to a
configuration

FILESYSTYPE - Basic PFS Definition Statement

SUBFILESYSTYPE - Stack Definitions under Cinet

NETWORK - Socket Stack Domain Parameters

System limits - MAXPROCSYS, etc...

Logical extension of SET OMVS=(xx,yy,...)

Only one keyword and member allowed:
SETOMVS RESET=(xx)
398 ABCs of z/OS System Programming Volume 9

8.22 Issue the SETOMVS command

Figure 8-22 Example of issuing the SETOMVS command

Activate the automount physical file system
These steps show how to set up the automount facility to mount user file systems:

� Add the FILESYSTYPE statement to the BPXPRMxx member as follows:
FILESYSTYPE TYPE(AUTOMNT)
ENTRYPOINT(BPXTAMD)

� Use the setomvs command to dynamically specify the new FILESYSTYPE statements;
this changes the current system settings. (You cannot use the setomvs or set omvs
command to specify the new statements.)

� Issue the setomvs reset= command to dynamically create to AUTOMNT physical file
system.

To make a permanent change, edit the BPXPRMxx member used for IPLs by placing the
FILESYSTYPE statement into it.

The SET OMVS command
Beginning with z/OS V1R7, another way to dynamically reconfigure parameters is to use the
SET OMVS command to specify a BPXPRMxx PARMLIB member to make changes in your
system dynamically. With the SET OMVS command, you can have multiple BPXPRMxx
definitions and use them to easily reconfigure a set of the z/OS UNIX system characteristics.
You can keep the reconfiguration settings in a permanent location for later reference or
reuse.

FILESYSTYPE TYPE(AUTOMNT)
 ENTRYPOINT(BPXTAMD)

Add an automnt physical file system to a new

 BPXPRMtt member

Issue system command:

SETOMVS RESET=(tt)

With z/OS v1R7, you can use:

SET OMVS=tt

ROOT, MOUNT, FILESYSTYPE, SUBFILESYSTYPE,
and NETWORK statements
Chapter 8. Managing file systems 399

SET OMVS=xx can be used to execute the ROOT, MOUNT, FILESYSTYPE,
SUBFILESYSTYPE, and NETWORK statements in the BPXPRMxx PARMLIB member.
400 ABCs of z/OS System Programming Volume 9

8.23 Updating an existing automount policy

Figure 8-23 New options to update an existing automount policy

Update automount policy in storage
The automount command is used to configure the automount facility. This facility can
automatically mount file systems at the time they are accessed, and also unmount them later.
You can use a single automount policy to manage both HFS and zFS file systems.

/usr/sbin/automount

When run with no arguments, automount reads the /etc/auto.master file to determine all
directories that are to be configured for automounting and the file names that contain their
configuration specifications.

Changes in z/OS V1R6
Two new operands have been added in the release, as follows:

-a Indicates that the policy being loaded is to be appended to the existing policy rather
than replace the existing policy. For example:

/usr/sbin/automount -a

-q Displays the current automount policy.

The operands -q and -a are mutually exclusive.

New option (-a) added to the command line:

"-a" - option indicates that the policy being loaded is

to be appended

Example: /usr/sbin/automount –a

Option “-a” is mutually exclusive with query option “-q”

New option (-q) added to command line

"-q" - option displays current active policy
Chapter 8. Managing file systems 401

8.24 Example of new options

Figure 8-24 Example showing changing the auto.map file while policy is active

Changing the auto.map file
The first command in Figure 8-24 displays the current active automount auto.map file, as
follows:

ROGERS @ SC65:/u/rogers>/usr/sbin/automount -q

The next command entered from the OMVS shell is to edit the current auto.map file. During
the edit of the file, the duration is changed from 1440 to 600.

The next command, with the -a option, causes the changed auto.map file to replace the
current active auto.map file in storage with the changed one.

The last command in the figure displays the current active auto.map file which shows the
changed duration.

Changed duration to 600

/u
name *
filesystem OMVS.<uc_name>.ZFS
type ZFS
allocuser space(1,1) storclas(OPENMVS)
mode rdwr
duration 1440
delay 360

ROGERS @ SC65:/u/rogers>oedit /etc/u.map
ROGERS @ SC65:/u/rogers>/usr/sbin/automount -a
FOMF0107I Processing file /etc/u.map
FOMF0108I Managing directory /u
ROGERS @ SC65:/u/rogers>/usr/sbin/automount -q
/u
name *
filesystem OMVS.<uc_name>.ZFS
type ZFS
allocuser space(1,1) storclas(OPENMVS)
mode rdwr
duration 600
delay 360

ROGERS @ SC65:/u/rogers>/usr/sbin/automount -q
402 ABCs of z/OS System Programming Volume 9

8.25 One auto.master for a sysplex

Figure 8-25 One auto.master for a sysplex

auto.master for a sysplex
The default file name of the master file is /etc/auto.master. It contains the directory or
directories that the automount facility will monitor. It also contains an associated MapName
file that contains the mount parameters.

z/OS V1R6 option to use an MVS data set
Figure 8-25 shows an example of a /etc/auto.master file that is placed in an MVS data set. It
specifies that the automount facility is to manage the /u directory. If someone using kernel
services tries to access a directory in the /u directory, the automount facility automatically
mounts the data set based on the MapName policy shown in the visual.

This change, made in z/OS V1R6, makes it possible in a sysplex to share the auto.master file
and allow protection against simultaneous updates from each system.

The name of the map file can be specified as a data set name. The data set name must be
specified as a fully qualified name and can be uppercase or lowercase. Single quotes are not
needed.

The syntax is enhanced to indicate a master file name
as a data set name:

Master file name is specified on the command line

Data set name can be sequential or member of PDS

Convention of // preceding the data set name is used

Data set name must be a fully qualified name and can
be in upper or lower case

 /usr/sbin/automount “//auto.mapfile(automap)”

auto.master contains - /u //auto.mapfile(automap)
Chapter 8. Managing file systems 403

8.26 HFS to zFS automount

Figure 8-26 Using a single auto.map file for automounting HFS and zFS file systems

Single auto.map file for HFS and zFS
You can use a single automount policy to manage both HFS and zFS file systems in the
same managed directory. Automount is changed such that when HFS or zFS is specified as
the file system TYPE, the data set will be checked to determine what type of data set it is, and
direct the mount to the appropriate physical file system (HFS or zFS).

This allows automount managed file systems to be changed from HFS to zFS without
changing the file system name and without changing the automount policy. If the file system
name must be changed, it will be necessary to add a specific entry in the automount policy for
this file system or manage it on another managed directory.

APAR OA06364
While this change occurred in z/OS V1R6, with APAR OA06364 this function can be used
with z/OS V1R5.

Change automount to set the file system type to either
HFS or zFS when either of those is specified based
on the type of data set that is being mounted

Specify and manage both HFS and zFS file systems
in one automount policy

Facilitates migration from HFS to zFS over time rather
than all file systems at once

Determine whether the data set is a HFS type or not:

If it is, then set the file system type to HFS

If it is not, then set the file system type to zFS

Available for z/OS V1R5 with APAR OA06364
and PTF UA10075
404 ABCs of z/OS System Programming Volume 9

8.27 HFS to zFS automount

Figure 8-27 HFS to zFS automount policy

HFS to zFS automount policy
Automount recognizes the type specification in the automount map files of HFS and zFS as
potentially interchangeable file system types.

At the time automount applies the specification for the mount it will determine if the file system
is the name of either an HFS or zFS data set and alter the type as appropriate.

If the data set does not exist and allocany or allocuser is not specified, the type will
generally be assumed to be zFS. If either allocany or allocuser is specified, a new file
system is allocated as before, of the file system type specified in type. If your preference is to
have new file systems allocated as zFS file systems, the automount policy should be
changed to specify type zFS.

allocuser
The automount facility recognizes the type specification in the automount map files of HFS
and zFS as potentially interchangeable file system types. At the time automount applies the
specification for the mount, it will determine whether the file system is the name of either a
zFS or HFS file system and alter the type as appropriate. If the data set does not exist and if
allocany or allocuser is not specified, a new file system is allocated as the file system type
as specified in type. Allocation is only done if allocuser or allocany is specified. If it is
preferred to have new file systems allocated as zFS file systems, the automount policy should
be changed to specify type zFS. The following keywords can be specified in the string:

space(primary-alloc[,secondary alloc])

/u
name *
filesystem OMVS.<uc_name>.HFS
type ZFS
allocuser space(1,1)
storclas(OPENMVS)
mode rdwr
duration 1440
delay 360

New support is used when HFS or zFS is specified as
the file system type in the automount policy

If "allocany" or "allocuser" is specified, a new file
system is allocated using the file system type
specified in the automount policy

If the data set already exists, a check is done to see
whether it is an HFS file system or a zFS aggregate
and then the mount is directed to the appropriate PFS
Chapter 8. Managing file systems 405

cyl | tracks | block(block size)
vol(volser[,volser]...)
maxvol(num-volumes)
unit(unit-name)
storclas(storage-class)
mgmtclas(management-class)
dataclas(data-class)

The next four keywords are automatically added:

dsn(filesystem)
dsntype(hfs)
dir(1)
new

allocany
allocany specifies the allocation parameters when using automount to allocate HFS or zFS
file systems, keeping in mind that zFS is the preferred file system. allocany will cause an
allocation if the data set does not exist for any name looked up in the automount-managed
directory. The following keywords can be specified in the string:

space(primary-alloc[,secondary alloc])
cyl | tracks | block(block size)
vol(volser[,volser]...)
maxvol(num-volumes)
unit(unit-name)
storclas(storage-class)
mgmtclas(management-class)
dataclas(data-class)

The next four keywords are added as appropriate:

dsn(filesystem)
dsntype(hfs)
dir(1)
new
406 ABCs of z/OS System Programming Volume 9

8.28 Automount migration considerations

Figure 8-28 Automount policy migration considerations

Automount policy for migration
Automount does have support for recalling migrated data sets and will recall data sets as
necessary. The automount processing for HFS file system types is as follows:

� If the file system name does not contain any substitution strings, the data set status is
determined to see if the data set is migrated. If migrated, a recall is done.

– If the data set is an HFS data set, the mount is directed to the HFS PFS.

– If the data set is not an HFS data set, the mount is directed to the ZFS PFS.

� If the file system name contains substitution strings, the data set status is determined after
substitution is performed substituting ZFS for any /// in the name.

– If the data set exists (migrated or not), the mount is directed to ZFS without automount
performing the recall (recall is done by zFS).

� If the file system name contains substitution strings and is for type HFS, the data set
status is determined for data set names after substitution is performed substituting HFS
for any /// in the name. If the data set is migrated, a recall is done.

– If the data set is an HFS data set, the mount is directed to HFS.

– If the data set is not an HFS data set, the mount is directed to ZFS.

name *
type ZFS
filesystem OMVS.<uc_name>.///
mode rdwr
duration 1440
delay 360

File system name contains substitution strings (V1R7)

Data set status is determined after substitution is
performed substituting ZFS or HFS for any /// in the
name
Chapter 8. Managing file systems 407

8.29 How to mount zFS file systems

Figure 8-29 Methods to use when mounting zFS file systems

Mounting file systems
After you have created your zFS file systems, you need to get them mounted at a mount point
off the root directory to make them available. The first consideration for mounting zFS file
systems is to decide where in the root file system to create the starting mount point.

There are two types of aggregates that contain file systems to be mounted, as follows:

Compatibility mode A zFS file system in a compatibility mode aggregate can be mounted,
using the mount command, at an installation-created mount point. A
zFS file system in a compatibility mode aggregate can also be
AUTOMOVEed or automounted using the automount facility.

Multi-file mode A multi-file system aggregate must be attached before a zFS file
system can be created. After creating a directory for the mount point,
you can use the mount command for the mount.

A preferred place to mount all user HFS data sets is a user directory under the /u user
directory. Therefore, we describe both methods for the mounting of zFS file systems, since
some installations may already be using direct mount while others may be using the
automount facility. We suggest that you use one of the following methods:

� Direct mount

� Automount facility using zFS

z/OS UNIX mounting for zFS

(1). Direct mount

(2). Automount facility

For all zFS file systems
408 ABCs of z/OS System Programming Volume 9

8.30 Using direct mount commands

Figure 8-30 Direct mount commands

Direct mount commands
After a user's file system is allocated, you need to get it mounted at a mount point off the root
directory to make it available. Mount points are created by using the mkdir command. The
preferred place to mount all individual user file systems is a user directory under the /u user
directory, such as /u/john, for example. The root file system should be set up so that it does
not require frequent changes or updates (outside of SMP/E maintenance).

Mount command example
An example of a direct mount from a shell session for file system OMVS.JOHN follows:

/usr/sbin/mount /u/john omvs.user1
OMVS.JOHN is now mounted at
/u/john
df -P
Filesystem 512-blocks Used Available Capacity Mounted
OMVS.JOHN 12960 40 12920 1% /u/john
OMVS.ROOT 82800 79608 3192 97% /
chown user1:grpoe /u/john
ls -l /u/john
total 16

drwx------ 2 JOHN GRPOE 0 Nov 7 09:09 john

Using the usr/sbin/mount REXX exec from the shell

/usr/sbin/mount /u omvs.users.zfs

Using the mount shell command

Using the ISHELL File_Systems pull-down

Adding an entry to the BPXPRMxx member in
SYS1.PARMLIB so that it will be mounted when the
system re-IPLs

Makes the mount permanent at IPL time

Requires an ID that has superuser authority
Chapter 8. Managing file systems 409

Permanent mounts
To make a mount permanent you will also need to add the file system name and its mount
point to the BPXPRMxx parmlib member, as follows:

MOUNT FILESYSTEM('OMVS.JOHN')
 TYPE(HFS)
 MOUNTPOINT('/u/john')
 MODE(RDWR)

Note: Since only superusers can mount file systems, in order for JOHN to use this new file
system, the superuser must issue the chown command to change the ownership and to
change the group to the user's default group. Issue this command to set the owner and
group fields of this mount point directory for the JOHN user ID. The need to issue the chown
command is only once because the values will be saved in the new file system and will be
reused even when the file system is remounted later.
410 ABCs of z/OS System Programming Volume 9

8.31 Direct mount

Figure 8-31 Using direct mount to mount zFS file systems

Using direct mount
Using direct mount requires the allocation of an intermediate HFS or zFS data set, as shown
in Figure 8-31. We named this zFS data set OMVS.USERS.ZFS. It is to be mounted at the /u
directory between the root file system and all user file systems.

Creating zFS mount points
Create a mount point in the OMVS.USERS.ZFS data set by using the mkdir command, as
follows:

#> cd /u
#> mkdir zfs

You can now either add new directories for each zFS file system in OMVS.USERS.ZFS, or
add them off of the zfs directory mount point as shown in the figure.

Note: To make the mount of OMVS.USERS.HFS permanent every time an IPL occurs,
you need to add the zFS data set name and its mount point to the BPXPRMxx member of
parmlib.

//

optopt dev tmp var etc

SYSTEM/

symlinks

dev tmp var etc

samplessamples binbin usrusruu liblib

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.ZFS

 OMVS.USERS.ZFS

zfs
z/OS UNIX shell
#> cd /u
#> mkdir zfs
Chapter 8. Managing file systems 411

8.32 Mounting zFS file systems

Figure 8-32 Mounting zFS file system with direct mount

Mounting zFS file systems
In Figure 8-32 we show multiple zFS file systems mounted at specified mount points. For the
multi-file system aggregates, we are using single-qualifier file system names.

To create the directories and issue the mounts, the example continues as follows:

#> cd zfs
#> mkdir cmp01
#> mkdir m02a
#> mkdir m02b
#> mkdir m01a

Mounted file systems
As shown in the figure, there are two multiple file aggregates, one with one file system in it,
OMVS.M01A.ZFS, and the other with two file systems, OMVS.M02A.ZFS and
OMVS.M02B.ZFS. The compatibility mode aggregate, of course, has only one file system,
which is named the same as the aggregate name.

Attention: In this direct mount example, we are using a different naming convention for the
aggregate names and file system names. We have also not shown the creation of the
aggregates and file systems.

OMVS.USERS.ZFS

OMVS.MUL01.ZFSOMVS.MUL02.ZFS

Compat mode Multi-file mode

OMVS.CMP01.ZFS OMVS.M02A.ZFS

zfs

m01am02a m02b

u

/

OMVS.CMP01.ZFS

OMVS.M02B.ZFS
OMVS.M01A.ZFS

cmp01
412 ABCs of z/OS System Programming Volume 9

8.33 MOUNT command from TSO/E

Figure 8-33 Issuing the mount command from TSO/E

TSO mount commands
Once your zFS file systems have been defined, you can make the following decisions on how
to mount them:

� You can issue the mount command from TSO/E for the compatibility mode file system as
follows:

� MOUNT FILESYSTEM(‘OMVS.CMP01.ZFS’) TYPE(ZFS) MODE(RDWR)
MOUNTPOINT('/u/zfs/cmp01')

� IPL the system and use the startup of z/OS UNIX to have them mounted.

� Use the mount command from TSO/E or the mount command from the OMVS shell.

Note: There are some further possibilities for mounting file systems. You can use option 3
in the File_systems action menu of the ISHELL, for example.

MOUNT FILESYSTEM('OMVS.M01A.ZFS') TYPE(ZFS)
MODE(RDWR) MOUNTPOINT('/u/zfs/m01a')

Mount a multi-file mode file system

MOUNT FILESYSTEM('OMVS.CMP01.ZFS') TYPE(ZFS)
MODE(RDWR) MOUNTPOINT('/u/zfs/cmp01')

Mount a compatibility mode file system

Mounts could be done via
/etc/rc
BPXPRMxx member
Chapter 8. Managing file systems 413

8.34 Automount policy using /z

Figure 8-34 Using the automount policy for direct mount of zFS file systems

Pseudo-file system for /z
If your installation already has an existing automount policy using /u, you can consider the
implementation we used for the mounting of zFS file systems into the z/OS UNIX hierarchy.

The first step is to create a new directory in the root. In our example, this is directory /z shown
in Figure 8-34.

#> cd /
#> mkdir z

One of the main concerns when creating zFS file systems is where they should be mounted
in the z/OS UNIX hierarchy. If you choose to add to an existing automount policy, you can
modify it by doing the following:

� Adding a new entry in the auto.master file

� Creating a new map file for the new mount point in the auto.master file

Note: The pathname of the managed directory is used as a file system name prefixed with
*AMD.

//

usrusr dev tmp var etc

SYSTEM/

symlinks

dev tmp var etc

samplessamples binbin uuzz optopt

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.ZFS

liblib

AMD/z* z/OS UNIX shell
#> cd /
#> mkdir z
414 ABCs of z/OS System Programming Volume 9

8.35 Automount policy for zFS

Figure 8-35 Defining the automount policy for zFS file systems

Defining an automount policy for zFS file systems
The file system name in the z.map file specifies the file systems that are to be mounted by the
automount facility. In our previous examples, we created the multi-file aggregate
OMVS.MUL02.ZFS. We defined the following file systems in the aggregate:

ROGERS @ SC43:>zfsadm lsfs -a OMVS.MUL02.ZFS -fast
OMVS.M02A.ZFS
OMVS.M02D.ZFS
OMVS.M02B.ZFS
OMVS.m02c.ZFS

Using <uc_name>
The <uc_name> variable is used to convert the name being looked up to uppercase.
Whenever this variable is encountered it is replaced by the name being looked up. A directory
with the looked-up name is created, and used as a mount point for the file system to be
mounted. When creating a map file, the <uc_name> variable can be used to replace any level
qualifier in the data set name.

FILESYSTYPE TYPE(AUTOMNT) ENTRYPOINT(BPXTAMD)

BPXPRMxx

/u /etc/u.map
/z /etc/z.map

/etc/auto.master

ZFS automount map file for mount point /z
name *
type ZFS
filesystem OMVS.<uc_name>.ZFS
mode rdwr
duration nolimit
delay 10

/etc/z.map

1.

2.

3.

<asis_name>
Chapter 8. Managing file systems 415

8.36 Automount of a zFS file system

Figure 8-36 Example of mounting a zFS file system with automount

Mounting using automount
A file system is mounted by the automount facility when any user issues the commands
shown in Figure 8-36:

ROGERS @ SC43:>cd /z/m02a
ROGERS @ SC43:>/z/m02a>ls -al

Once the file system is mounted, the response to the command ls -al that caused the file
system to be mounted is displayed for the user, as shown in the figure.

Users or programs reference a file system

ROGERS @ SC43:>cd /z/m02a
ROGERS @ SC43:>/z/m02a>ls -al
total 336
drwxr-xr-x 9 HERING SYS1 736 Apr 2 01:43 .
drwxr-xr-x 9 HERING SYS1 736 Apr 2 01:43 ..
-rwxr-xr-x 1 HERING SYS1 1869 Mar 14 16:27 .profile
-rwxr-xr-x 1 HERING SYS1 689 Mar 14 16:29 .setup
-rw------- 1 HERING SYS1 3033 Apr 1 15:29 .sh_history
drwxr-xr-x 2 HERING SYS1 256 Mar 15 16:08 bin
drwx------ 4 RC43 SYS1 1088 Apr 4 00:35 test
-r--r--r-- 1 RC43 SYS1 147 Mar 17 14:41 test.extattr
drwx------ 2 RC43 SYS1 256 Mar 31 15:29 test1
lrwxrwxrwx 1 RC43 SYS1 15 Apr 4 00:35 test1.sl ->
/u/hering/test
1
drwxr-xr-x 2 HERING SYS1 256 Mar 14 14:58 test2
drwxr-xr-x 2 HERING SYS1 256 Mar 19 00:43 test3
416 ABCs of z/OS System Programming Volume 9

8.37 zFS file systems mounted (automount)

Figure 8-37 Example of the automount pseudo directories for mount of file systems

Directories where file systems are automounted
When all the file systems have been accessed, Figure 8-37 shows that *AMD/z is managing
the /z directory and three file systems have been mounted on directories m02a, m02b, and
mo2d.

*AMD/z
The pathname of the managed directory is used as a file system name prefixed with *AMD.
This restricts the length of the pathname of a managed directory to 40 characters. If
pathnames need to be longer, you can use symbolic links to resolve all or part of the
pathname.

//

usrusr dev tmp var etc

SYSTEM/

symlinks

dev tmp var etc

samplessamples binbin uuzz optopt

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.ZFS

liblib

m02dm02bm02a

AMD/z*
Chapter 8. Managing file systems 417

8.38 zFS file system clone

Figure 8-38 zFS file system clone

zFS file system clone
You can make a clone of a zFS file system. The zFS file system, which is the source file
system for the clone, is referred to as the read-write file system. The zFS file system that is
the result of the clone operation is called the backup file system. The backup file system is a
read-only file system and can only be mounted as read-only. You can create a backup file
system for every read-write file system that exists.

The aggregate containing the read-write file system to be cloned must be attached. Creating
a file system clone is accomplished with the zfsadm clone command, as follows:

zfsadm clone -filesystem OMVS.CMP01.ZFS
IOEZ00225I File system OMVS.CMP01.ZFS successfully cloned.

Clone file system name
When a file system is cloned, a copy of the file system is created in the same aggregate;
space must be available in the aggregate for the clone to be successful. The file system
name of the backup file system is the same as the original (read-write) file system with .bak
(in lower case) appended to the file system name, as shown in Figure 8-38. This means that
you need to limit the length of a file system name to 40 characters if you want to clone it. The
clone operation happens relatively quickly and does not take up too much additional space
because only the metadata is copied. Metadata consists of things like owner, permissions,
and data block pointers.

zFS file system clone is a "copy" of a zFS file system

In the same aggregate

The clone file system is R/O

Only the metadata is copied

The cloned file system is called filename.bak

ZFSVOLZFSVOL

metadata metadata
OMVS.PAY.ZFS.bak

OMVS.PAY.ZFS

F

/

F
F F

F

418 ABCs of z/OS System Programming Volume 9

8.39 Backup file system - zFS clone

Figure 8-39 zFS clone

zFS clone
This command creates a backup version, or clone, of the indicated read-write zFS file
system. It names the new backup version by adding a .bak extension to the name of its
read-write source file system. It places the backup version on the same aggregate as the
read-write version. The aggregate that the read-write file system is contained in must be
attached. The read-write file system may or may not be mounted when the clone operation is
issued. The backup file system cannot be mounted when the clone operation is issued.

After the clone operation, the backup file system can be mounted read-only. The zfsadm
clone command cannot clone non-zFS file systems.

Permission to clone
The issuer must have READ authority to the data set that contains the IOEFSPRM file and
must be root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in
the z/OS UNIXPRIV class. For more information about this authority, see “Authorization for
administrators for zFS commands” on page 289.

RDEFINE UNIXPRIV SUPERUSER.FILESYS.PFSCTL UACC(NONE)
PERMIT SUPERUSER.FILESYS.PFSCTL CLASS(UNIXPRIV) ID(ROGERS) ACCESS(READ)

ZFSVL1ZFSVL1

File1

/

 File2

metadata metadata

OMVS.CMP01.ZFS

OMVS.CMP01.ZFS.bak

zfsadm clone -filesystem OMVS.CMP01.ZFS

IOEZ00225I File system OMVS.CMP01.ZFS successfully cloned.

RDEFINE UNIXPRIV SUPERUSER.FILESYS.PFSCTL UACC(NONE)
PERMIT SUPERUSER.FILESYS.PFSCTL CLASS(UNIXPRIV) ID(ROGERS) ACCESS(READ)
Chapter 8. Managing file systems 419

8.40 zFS clone mounted

Figure 8-40 A mounted zFS clone

Mounted zFS clones
Once you have created the clone, it must be mounted before anyone can use it. You can use
the TSO/E MOUNT command for the backup file system (clone), as follows:

MOUNT FILESYSTEM('''OMVS.CMP01.ZFS.bak''') MOUNTPOINT('/u/zfs/c01cl')
TYPE(READ) NOAUTOMOVE

The clone must be mounted NOAUTOMOVE.

If you prefer to use an OMVS mount command for the clone, enter:

/usr/sbin/mount -t ZFS -r -a no -f OMVS.CMP01.ZFS.bak /u/zfs/c01cl

Note: Using the TSO/E MOUNT command for a clone requires that you use three quotes
around the file system name. This is required because the file system name is mixed case
with .bak being lower case.

Note: The backup file system or clone can be mounted (read-only) so that users of the
read-write file system can have an online backup of that file system available without
administrative intervention.

ZFSVL1ZFSVL1

OMVS.USERS.HFS

/

File1

/
metadata metadata

OMVS.CMP01.ZFS

OMVS.CMP01.ZFS.bak

File2

c01

zfs

u

c01cl

MOUNT FILESYSTEM('''OMVS.CMP01.ZFS.bak''')
MOUNTPOINT('/u/zfs/c01cl') TYPE(READ) NOAUTOMOVE
420 ABCs of z/OS System Programming Volume 9

8.41 Using the clone

Figure 8-41 Using the clone

Using a clone
The clone uses a small amount of space since only the metadata is copied, not the user data.
The backup file system's data block pointers point to the same data blocks that the read-write
file system's data block pointers point to. After a clone operation creates the backup file
system, then if the read-write file system user data is updated, zFS does the following:

� Makes sure that new physical blocks are allocated to hold the updates.

� Maintains the backup file system's data pointers to the original data.

� Keeps the backup file system as an exact copy (at the point-in-time the clone was made)
when updates to the read-write file system are made.

If a user accidentally erases a file from the read-write file system, they can simply copy the file
from the clone into the read-write file system to restore the file to the time the backup was
created.

The read-only clone of a file system resides in the same data set as the file system that is
cloned. This clone file system can be made available to users to provide a read-only
point-in-time copy of a file system.

Updating the clone
The read-write file system can be cloned again (reclone). If the clone file system already
exists, it is replaced during this clone operation. Backup file systems cannot be mounted
during the clone operation.

After a clone operation creates the backup file
system, if the read-write file system user data is
updated, zFS does the following:

Makes sure that new physical blocks are allocated
to hold the updates

Maintains the backup file system's data pointers to
the original data

Keeps the backup file system as an exact copy at
the point-in-time the clone was made when updates
to the read-write file system are made

zfsadm clonesys -aggregate OMVS.CMP01.ZFS

---- Update previous clone ----
Chapter 8. Managing file systems 421

8.42 File sharing in a sysplex and mounts

Figure 8-42 Options when mounting file systems

Changes to the MOUNT command
The parameters that have been added to the MOUNT processing commands apply only in a
sysplex where systems are participating in a shared file system environment. They indicate
what happens if the system that owns a file system goes down.

AUTOMOVE(indicator,sysname1,sysname2,...,sysnameN)
This new AUTOMOVE feature of z/OS V1R4 allows for a list of systems to be included or
excluded (indicated by the indicator field) from being AUTOMOVEd. The include indicator
and system list provides an ordered list of systems that should be moved to if the file system's
owning system should leave the sysplex. The exclude indicator and system list provides a list
of systems that the file system should not be moved to if the file system's owning system
should leave the sysplex.

SYSNAME
For systems participating in a shared file system environment, SYSNAME specifies the
particular system on which a mount should be performed. This system will then become the
owner of the file system mounted. This system must be IPLed with SYSPLEX(YES). IBM
recommends that you specify SYSNAME(&SYSNAME.) or omit the SYSNAME parameter. In
this case, the system that processes the mount request mounts the file system and becomes
its owner.

 MOUNT file system(file_system_name)
 MOUNTPOINT(pathname)
 TYPE(file_system_type)
 MODE(RDWR|READ)
 PARM(parameter_string)
 TAG(NOTEXT|TEXT,ccsid)
 SETUID|NOSETUID
 WAIT|NOWAIT
 SECURITY|NOSECURITY
 SYSNAME (sysname)
AUTOMOVE|AUTOMOVE(indicator,sysname1,sysname2,...,sysnameN
 NOAUTOMOVE|UNMOUNT

Functions added in OS/390 V2R9 (sysplex file sharing)

AUTOMOVE - NOAUTOMOVE - SYSNAME

Functions added in z/OS V1R3 and V1R4

UNMOUNT (V1R3) - AUTOMOVE (syslist) (V1R4)
422 ABCs of z/OS System Programming Volume 9

8.43 MOUNT command options

Figure 8-43 MOUNT command options for the shared sysplex environment

AUTOMOVE
When AUTOMOVE is specified for a file system and the file system’s owner goes down,
AUTOMOVE indicates that ownership of the file system can be automatically moved to
another system participating in shared sysplex HFS or zFS. AUTOMOVE is the default.

NOAUTOMOVE
When NOAUTOMOVE is specified for a file system, it indicates that ownership should not be
moved to another system participating in a shared file system environment if the file system's
owner should crash.

UNMOUNT
When UNMOUNT is specified for a file system, this indicates that the file system will not be
moved and will be unmounted if the file system's owner should crash. This file system and
any file systems mounted within its subtree will be unmounted.

Note: AUTOMOVE is not supported for zFS file systems mounted in a multi-system mode
aggregate. They must be mounted NOAUTOMOVE.

AUTOMOVE - Specifies that ownership of the file
system is automatically moved to another system. It
is the default

NOAUTOMOVE - Specifies that the file system will
not be moved if the owning system goes down and
the file system is not accessible

UNMOUNT - Specifies that the file system will be
unmounted when the system leaves the sysplex

Note: This option is not available for automounted
file systems
Chapter 8. Managing file systems 423

8.44 Shared file systems in a sysplex

Figure 8-44 Shared sysplex environment file systems

File systems in a sysplex sharing mode
The three file systems in Figure 8-44 are as follows:

1. This is the sysplex root HFS data set, which was created by running the BPXISYSR job.
AUTOMOVE is the default and therefore is not specified, allowing another system to take
ownership of this file system when the owning system goes down.

2. This is the system-specific HFS data set, which was created by running the BPXISYSS
job. It must be mounted read-write. NOAUTOMOVE is specified because this file system
is system-specific and ownership of the file system should not move to another system
should the owning system go down. The MOUNTPOINT statement /&SYSNAME. will
resolve to /SC64 during PARMLIB processing. This mount point is created dynamically at
system initialization.

3. This is the old root HFS (version HFS). The recommendation is that it should be mounted
read-only. Its mount point is created dynamically and the name of the HFS is the value
specified on the VERSION statement in the BPXPRMxx member. AUTOMOVE is the
default and therefore is not specified, allowing another system to take ownership of this
file system when the owning system goes down.

HFS data sets that exist in a sysplex

(1). Sysplex root - only 1 for all sharing systems

Contains directories and symlinks

Redirects addressing to other directories

(2). System-specific

Contains data specific to each system

Directories for /dev, /tmp, /var, /etc (mount points)

(3). Version

Contains system code and binaries(/bin, /usr, /lib,
/opt, and /samples)

Same function as the root in a non-sysplex system
424 ABCs of z/OS System Programming Volume 9

8.45 Sysplex environment setup

Figure 8-45 Steps required to set up the shared sysplex environment

Defining the shared sysplex environment
Figure 8-45 shows the steps involved in defining the HFS data sets for sharing in read/write
mode in a sysplex environment. Some details are included in the following sections.

Sysplex root
The sysplex root is an HFS data set that is used as the sysplex-wide root. This HFS data set
must be mounted read-write and designated AUTOMOVE. Only one sysplex root is allowed
for all systems participating in a shared file system environment. The sysplex root is created
by invoking the BPXISYSR sample job in SYS1.SAMPLIB.

The sysplex root provides access to all directories. Each system in a sysplex can access
directories through the symbolic links that are provided. Essentially, the sysplex root provides
redirection to the appropriate directories, and it should be kept very stable; updates and
changes to the sysplex root should be made as infrequently as possible.

Version HFS
The version HFS is the IBM-supplied root HFS data set. To avoid confusion with the sysplex
root HFS data set, “root HFS” has been renamed to “version HFS.”

Note: No files or code reside in the sysplex root data set. It consists of directories and
symbolic links only, and it is a small data set.

Create the Sysplex Root HFS

Create the system-specific HFS

Version HFS supplied by ServerPac

Create OMVS couple data set (CDS)

Define OMVS CDS to XCF

Additional recommendations

Use standard naming convention for HFS data sets

Do not use &SYSNAME as a Root HFS qualifier

Update BPXPRMxx member
Chapter 8. Managing file systems 425

System-specific HFS
Directories in the system-specific HFS data set are used as mount points, specifically for /etc,
/var, /tmp, and /dev. To create the system-specific HFS, run the BPXISYSS sample job in
SYS1.SAMPLIB on each participating system (in other words, you must run the sample job
separately for each system that will participate in a shared file system environment). IBM
recommends that the name of the system-specific data set contain the system name as one
of the qualifiers. This allows you to use the &SYSNAME. symbolic (defined in IEASYMxx) in
BPXPRMxx.

OMVS couple data set
The couple data set (CDS) contains the sysplex-wide mount table and information about all
participating systems, and all mounted file systems in the sysplex. To allocate and format a
CDS, customize and invoke the BPXISCDS sample job in SYS1.SAMPLIB. The job will
create two CDSs: one is the primary and the other is a backup that is referred to as the
alternate. In BPXISCDS, you also specify the number of mount records that are supported by
the CDS.

Define CDS to XCF
Following is the sample JCL with comments to define the CDS to XCF.

BPXPRMxx member
You should also be aware that when SYSPLEX(YES) is specified in BPXPRMxx, each
FILESYSTYPE in use within the participating group must be defined for all systems
participating in a shared file system environment. The easiest way to accomplish this is to
create a single BPXPRMxx member that contains file system information for each system
participating in a shared file system environment.

//STEP10 EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
/* Begin definition for OMVS couple data set(1) */
 DEFINEDS SYSPLEX(PLEX1)
/* Name of the sysplex in which the OMVS couple data set is to be used
 DSN(SYS1.OMVS.CDS01) VOLSER(3390x1)
/* The name and volume for the OMVS couple data set.
The utility will allocate a new data set by the name specified on the
volume specified.*/
MAXSYSTEMS(8)
/* Specifies the number of systems to be supported by the OMVS CDS.
 Default = 8 */
 NOCATALOG
/* Default is not to CATALOG */
DATA TYPE(BPXMCDS)
/* The type of data in the data set being created for OMVS.

BPXMCDS is the TYPE for OMVS. */
ITEM NAME(MOUNTS) NUMBER(500)
 /* Specifies the number of MOUNTS that can be supported by OMVS.*/
 Default = 100
 Suggested minimum = 10
 Suggested maximum = 35000 */
 ITEM NAME(AMTRULES) NUMBER(50)
 /* Specifies the number of automount rules that can be supported by OMV
 Default = 50
 Minimum = 50
 Maximum = 1000 */
426 ABCs of z/OS System Programming Volume 9

8.46 File systems in a shared sysplex

Figure 8-46 Shared sysplex HFS data sets

Sysplex root
No files or code reside in the sysplex root data set. It consists of directories and symbolic links
only, and it is a small data set. The sysplex root provides access to all directories. Each
system in a sysplex can access directories through the symbolic links that are provided.
Essentially, the sysplex root provides redirection to the appropriate directories, and it should
be kept very stable; updates and changes to the sysplex root should be made as infrequently
as possible. The presence of symbolic links is transparent to the user.

System-specific HFS
The system-specific HFS data set should be mounted read-write, and should be designated
NOAUTOMOVE. /etc, /var, /tmp, and /dev should also be mounted NOAUTOMOVE. In
addition, IBM recommends that the name of the system-specific data set contains the system
name as one of the qualifiers. This allows you to use the &SYSNAME. symbolic (defined in
IEASYMxx) in BPXPRMxx.

Version HFS
The version HFS is the IBM-supplied root HFS data set. To avoid confusion with the sysplex
root HFS data set, “root HFS” has been renamed to “version HFS.” IBM supplies the version
HFS in ServerPac. CBPDO users obtain the version HFS by following directions in the
Program Directory. There is one “version HFS” for each set of systems participating in a
shared file system environment and that are at the same release level (that is, using the same
SYSRES volume).

$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc
$SYSNAME/dev

$VERSION/samples
$VERSION/bin
$VERSION/lib
$VERSION/usr
$VERSION/opt

$SYSNAME/
$VERSION/

/
OMVS.SC64.SYSTEM.HFS

symlinks

/samples
/bin
/lib
/usr
/opt

OMVS.SC64.DEV

OMVS.SC64.ETC

OMVS.SC64.VAR

OMVS.SC64.TMP

/
symlinks

OMVS.Z19RA1.ROOT.HFS

$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc
$SYSNAME/dev

/
symlinks

OMVS.SYSPLEX.ROOT
symlinks symlinks

Z19RA1 BINSAMPLES LIB USR OPT U $VERSION $SYSNAME SC64DEV TMP VAR ETC

BINSAMPLES LIB USR OPT DEV TMP ETCVAR

BINSAMPLES LIB USR OPT U VARSYSTEM DEV TMP ETCVAR

OMVS Couple
 Data Set
Chapter 8. Managing file systems 427

8.47 Multiple systems: Different versions

Figure 8-47 Shared sysplex with different z/OS levels

Using multiple roots is a shared environment
The version HFS is the IBM-supplied root HFS data set. To avoid confusion with the sysplex
root HFS data set, “root HFS” has been renamed to “version HFS.”

IBM supplies the version HFS in ServerPac. CBPDO users obtain the version HFS by
following directions in the Program Directory. There is one version HFS for each set of
systems participating in a shared file system environment and that are at the same release
level (that is, using the same SYSRES volume).

In Figure 8-47, there are two systems in the sysplex, SC54 and SC65. There are also two
different z/OS releases, one on each system for z/OS V1R7and z/OS V1R8. Therefore, there
are two version roots mounted off of the sysplex root. The directories in the sysplex root are
defined in the BPXPRMxx member for each system with the VERSION= statement, as
follows:

VERSION(‘VREL17’) VERSION(‘VREL18’)

SYSPLEX(YES) SYSPLEX(YES)

OMVS.SYSPLEX.ROOT

Z17RA1

/
SC64
SC63 OMVS.SC63.SYSTEM.HFS

OMVS.Z18RA1.ROOT.HFS

OMVS.Z17RA1.ROOT.HFS

OMVS.SC63.ETC

OMVS.SC63.VAR

OMVS.SC63.TMP

OMVS.SC63.DEV

OMVS.SC64.ETC

OMVS.SC64.VAR

OMVS.SC64.TMP

OMVS.SC64.DEV

OMVS.SC64.SYSTEM.HFS

/dev
/tmp
/var
/etc

/dev
/tmp
/var
/etc

/dev -- $SYSNAME/dev
/tmp -- $SYSNAME/tmp
/var -- $SYSNAME/var
/etc -- $SYSNAME/etc

/dev -- $SYSNAME/dev
/tmp -- $SYSNAME/tmp
/var -- $SYSNAME/var
/etc -- $SYSNAME/etc

/dev -- $SYSNAME/dev
/tmp -- $SYSNAME/tmp
/var -- $SYSNAME/var
/etc -- $SYSNAME/etc

(3)

(2)

(1)

SC65

OMVS.SC65.SYSTEM.HFS /dev
/tmp
/var
/etc

shared file system
environment

Z18RA1
428 ABCs of z/OS System Programming Volume 9

8.48 Update BPXPRMxx for sysplex

Figure 8-48 BPXPRMxx definitions for sysplex sharing

BPXPRMxx member for sysplex sharing
Sysplex sharing enables you to use one BPXPRMxx member to define all the file systems in
the sysplex. This means that each participating system has its own BPXPRMxx member to
define system limits, but shares a common BPXPRMxx member to define the file systems for
the sysplex. This is done through the use of system symbolics, as shown in Figure 8-48. You
can also have multiple BPXPRMxx members defining the file systems for individual systems
in the sysplex. The following parameters set up HFS sharing in a sysplex:

� SYSPLEX(YES) sets up sysplex sharing for those who are participating in HFS or zFS data
sharing. To participate in HFS data sharing, the systems must be at the OS/390 V2R9
level or later. Those systems that specify SYSPLEX(YES) make up the participating group
for the sysplex.

� VERSION('nnnn') allows multiple releases and service levels of the binaries to coexist and
participate in HFS sharing. nnnn is a qualifier to represent a level of the version HFS. The
most appropriate values for nnnn are the name of the target zone, &SYSR1., or another
qualifier meaningful to the system programmer. A directory with the value nnnn specified
on VERSION will be dynamically created at system initialization under the sysplex root
and will be used as a mount point for the version HFS.

BPXISYSR and BPXISYSS are provided as sample jobs to build root and system-specific
HFS in SYS1.SAMPLIB.

Jobs BPXISYS1 and BPXISYS2 are also provided to build root and system-specific HFS
directories and symlinks.

VERSION('&SYSR1')
SYSPLEX(YES)

ROOT
FILESYSTEM('OMVS.SYSPLEX.ROOT')
TYPE (HFS) MODE(RDWR)

MOUNT
FILESYSTEM('OMVS.&SYSNAME..SYSTEM.HFS')
TYPE(HFS) MODE(RDWR) UNMOUNT
MOUNTPOINT('/&SYSNAME.')

MOUNT
FILESYSTEM('OMVS.&SYSR1..ROOT.HFS')
TYPE(HFS) MODE(READ)
MOUNTPOINT('/$VERSION')

MOUNT
FILESYSTEM('OMVS.&SYSNAME..ETC')
TYPE(HFS) MODE(RDWR) UNMOUNT
MOUNTPOINT('/&SYSNAME./etc')

Created by BPXISYSR job

Created by BPXISYSS job

Release V1R7 Root HFS

System-specific /etc files
Chapter 8. Managing file systems 429

AUTOMOVE options
The AUTOMOVE|NOAUTOMOVE|UNMOUNT parameters on ROOT and MOUNT indicate
what happens to the file system if the system that owns that file system goes down, as
follows:

� AUTOMOVE specifies that ownership of the file system is automatically moved to another
system. It is the default.

� NOAUTOMOVE specifies that the file system will not be moved if the owning system goes
down and the file system is not accessible.

� UNMOUNT specifies that the file system will be unmounted when the system leaves the
sysplex. This option is not available for automounted file systems.

You should define your version and sysplex root HFS data as AUTOMOVE, and define your
system-specific file systems as UNMOUNT. Do not define a file system as NOAUTOMOVE or
UNMOUNT and a file system underneath it as AUTOMOVE. If you do, the file system defined
as AUTOMOVE will not be recovered after a system failure until that failing system has been
restarted.

Attention: The system-specific file system should be mounted read-write, and should be
designated AUTOMOVE(UNMOUNT). Also, /etc, /var, /tmp, and /dev should be mounted
AUTOMOVE(UNMOUNT).
430 ABCs of z/OS System Programming Volume 9

8.49 OMVS couple data set

Figure 8-49 Defining the OMVS couple data set

Defining an OMVS couple data set
Shared sysplex support uses a type BPXMCDS couple data set (CDS) to maintain data about
mounted file systems in the sysplex configuration. The primary and alternate CDSs are
formatted, using the IXCL1DSU utility, with a maximum number of mount entries as specified
in the NUMBER value that specifies the number of mounts, as shown in Figure 8-49.

In previous releases, users needed the capability to determine when the number of file
system mounts in a shared sysplex was approaching the configured limit. Before z/OS V1R3
there was no way to easily determine when the mount limit specified in the BPXMCDS CDS
was being approached. z/OS V1R3 introduced the possibility of monitoring the shared file
system environment mount limits, specified in the CDS, by issuing a console message when
the limit has almost been reached.

Once the mount limit is reached, no more file systems can be mounted in the sysplex until a
larger type BPXMCDS CDS is enabled. Mount table limit monitoring allows an installation to
detect when a primary CDS is reaching its mount table limit in order to begin corrective
actions before denial of service.

Issue system console messages at regular intervals
When near or at Couple Data Set (CDS) configured limit -
and when limit condition is relieved

To activate: BPXPRMxx,.......LIMMSG=SYSTEM | ALL
To display: f bpxoinit,filesys=display,global

ITEM NAME(MOUNTS) NUMBER(500)
/* Specifies the number of MOUNTS that can be supported by OMVS.*/
 Default = 100
 Suggested minimum = 10
 Suggested maximum = 35000 */
ITEM NAME(AMTRULES) NUMBER(50)
/* Specifies the number of automount rules that can be supported by OMVS */
 Default = 50
 Minimum = 50
 Maximum = 1000 */

OMVS couple data set

BPXMCDSBPXMCDS
Chapter 8. Managing file systems 431

Displaying the OMVS couple data set information
You can display the number of mount entries and the number in use by issuing the
F BPXOINIT,FILESYS=DISPLAY,GLOBAL command:

f bpxoinit,filesys=display,global
BPXM027I COMMAND ACCEPTED.
BPXF242I 2007/10/13 19.18.53 MODIFY BPXOINIT,FILESYS=DISPLAY,GLOBAL
SYSTEM LFS VERSION ---STATUS--------------------- RECOMMENDED ACTION
SC64 1. 9. 0 VERIFIED NONE
SC65 1. 9. 0 VERIFIED NONE
SC70 1. 9. 0 VERIFIED NONE
SC63 1. 9. 0 VERIFIED NONE
CDS VERSION= 2 MIN LFS VERSION= 1. 9. 0
DEVICE NUMBER OF LAST MOUNT= 558
MAXIMUM MOUNT ENTRIES= 1000 MOUNT ENTRIES IN USE= 222
MAXIMUM AMTRULES= 50 AMTRULES IN USE= 2
MAXSYSTEM= 8
BPXF040I MODIFY BPXOINIT,FILESYS PROCESSING IS COMPLETE.
432 ABCs of z/OS System Programming Volume 9

8.50 File sharing in a sysplex

Figure 8-50 File sharing in a sysplex environment

File sharing in a sysplex
Before OS/390 UNIX V2R9, users could have read/write access only to data in file systems
mounted on their own system. With a shared file system environment, users have greater
access to the file systems in a sysplex. They have read/write access to file systems that are
mounted on other systems.

With a shared file system environment, all file systems that are mounted by a system
participating in a shared file system environment are available to all participating systems. In
other words, once a file system is mounted by a participating system, that file system is
accessible by any other participating system. It is not possible to mount a file system so that it
is restricted to just one of those systems. Consider a sysplex that consists of three systems,
SC63, SC64, and SC65:

� A user logged onto any system can make changes to file systems mounted on /u, and
those changes are visible to all systems.

� The system programmer who manages maintenance for the sysplex can change entries in
both /etc file systems from either system.

The couple data set (CDS) contains the sysplex-wide mount table and information about all
participating systems, and all mounted file systems in the sysplex. To allocate and format a
CDS, customize and invoke the BPXISCDS sample job in SYS1.SAMPLIB. The job will
create two CDSs: one is the primary and the other is a backup that is referred to as the
alternate. In BPXISCDS, you also specify the number of mount records that are supported by
the CDS. The CDS must be defined in the COUPLExx PARMLIB member. A shared file
system environment must be defined in the BPXPRMxx PARMLIB member.

BPXPRMxx
SYSPLEX=YES

ZFS

SC65

ZFS

SC63
SC64

z/OS V1R7 z/OS V1R7

z/OS V1R7

ZFS

DATA TYPE(BPXMCDS)
 PCOUPLE(SYS1.OMVS.CDS01,VLOMV1)
 ACOUPLE(SYS1.OMVS.CDS02,VLOMV2)

COUPLExx

OMVS couple data set

BPXMCDS
File1

/

File2

OMVS.CMP01.ZFS
F F

F F F

 /

 HFS HFSzFS

OMVS
(HFS)

OMVS
(HFS)

OMVS
(HFS)
Chapter 8. Managing file systems 433

8.51 UNMOUNT option

Figure 8-51 UNMOUNT option on mount command

Unmount option
When a file system is mounted with the UNMOUNT parameter, attempts will not be made to
keep the file system active when the current owner fails. The file system will be unmounted
when the owner is no longer active in the participating group, as well as all the file systems
mounted within it. It is suggested for use on mounts for system-specific file systems, such as
those that would be mounted at /etc, /dev, /tmp, and /var.

Because the file system still exists in the file system hierarchy, the file system mount point is
still in use.

An unowned file system is a mounted file system that does not have an owner. The file
system still exists in the file system hierarchy. As such, you can recover or unmount an
unowned file system.

Note: AUTOMOVE and UNMOUNT are the only options you can use for file systems that
are mounted in a mode for which they are capable of being directly mounted to the PFS on
all systems (sysplex-aware). If you specify any other option on a MOUNT, it is ignored and
you will see message BPXF234I.

Requirement: Unmount certain file systems
associated with a failed system, rather than
recovering and converting to "unowned" status

Solution: Provide UNMOUNT option on MOUNT
command and change partition recovery to unmount
these file systems

Partition recovery will unmount Automount managed
file systems if owner fails and no application on active
systems is referencing

Partition recovery will unmount all file systems
associated with a PFS that does not support "move"
(e.g. TFS)
434 ABCs of z/OS System Programming Volume 9

8.52 UNMOUNT option support

Figure 8-52 UNMOUNT option support for activation

BPXPRMxx PARMLIB MOUNT statement
The AUTOMOVE | NOAUTOMOVE | UNMOUNT parameters on ROOT and MOUNT
statements indicate what happens to the file system if the system that owns that file system
goes down. UNMOUNT specifies that the file system will be unmounted when the system
leaves the sysplex. This option is not available for automounted file systems. AUTOMOVE is
the default.

TSO/E MOUNT command
The options are: AUTOMOVE | NOAUTOMOVE | UNMOUNT. The AUTOMOVE |
NOAUTOMOVE parameters apply only in a sysplex where systems are participating in a
shared file system environment. They indicate what happens if the system that owns a file
system goes down. The default setting is AUTOMOVE.

The mount shell command
The mount shell command, located in /usr/sbin, is used to mount a file system or list all
mounts over a file system. A mount user must have UID(0) or at least have READ access to
the SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

Specify unmount to allow a specified file system (and any file systems mounted on it) to be
unmounted when its owning system leaves the sysplex due to a system outage.

The options are: -a yes|no|unmount. The default is yes.

BPXPRMxx parmlib MOUNT statement
MOUNT FILESYSTEM('OMVS.&SYSNAME..SYSTEM.HFS')
TYPE(HFS) MODE(RDWR) UNMOUNT

MOUNTPOINT('/&SYSNAME.')

TSO/E MOUNT command

MOUNT filesystem(OMVS.VIVAR.HFS)
mountpoint('/u/vivar') type(HFS) mode(rdwr)
UNMOUNT

mount shell command

mount [–t fstype][–rv][–a yes|no|unmount][–o
fsoptions][–d destsys][–s nosecurity|nosetuid] –f
fsname pathname
Chapter 8. Managing file systems 435

8.53 UNMOUNT option support

Figure 8-53 UNMOUNT options for activation

UNMOUNT options
The UNMOUNT option can be used on the following commands:

� The SETOMVS command used with the FILESYS, FILESYSTEM, mount point and
SYSNAME parameters can be used to move a file system in a sysplex.

� You can use the chmount command from the shell.

In a shared file system environment, -a yes allows the system to automatically move
logical ownership for a specified file system due to a system outage. -a unmount specifies
that this file system is to be unmounted when the file system's owner leaves the sysplex.

� The ISHELL can be used to set the UNMOUNT option as shown in Figure 8-54 on
page 437

Note: A chmount user must have UID(0) or at least have read access to the
SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

SETOMVS command

SETOMVS FILESYS,FILESYS=filesystem,AUTOMOVE=YES|NO|UNMOUNT

Shell chmount command:

chmount [–R [–D |–d destsys][–a
yes|no|unmount]pathname...

The ISHELL mount interface in the Mount File System
panel is accessed by ISHELL panel -> File System
pulldown Menu -> Option 3 - Mount). The new mount
option is: Automove unmount file system
436 ABCs of z/OS System Programming Volume 9

8.54 Mount file system panel

Figure 8-54 Mount file system panel in the ISHELL

ISHELL mount file system panel
Figure 8-54 shows the panel used to mount a file system. Beginning with z/OS V1R6, this
panel changed with the removal of the option that appeared above the Set automove
attribute, as follows:

Do not automove file system

Set automove attribute
The field Automove indicates whether the system can automatically move the file system to
another system owner, remain local and unowned, or be unmounted. Other indications are an
include list and exclude list for system selection for automoved file systems.

Automatic move processing is normally done when a system fails and it is the owner of some
file systems. The file systems that contain /dev should never be moved. This should always
be a local file system. Automove should be unmount for this file system. There are some
other file systems where this is also the case.
Chapter 8. Managing file systems 437

8.55 Set AUTOMOVE options

Figure 8-55 Setting the AUTOMOVE options

Setting the AUTOMOVE options
The field Automove indicates whether the system can automatically move the file system to
another system owner, remain local and unowned, or be unmounted. Other indications are an
include list and an exclude list for system selection for automoved file systems.

Automatic move processing is normally done when a system fails and it is the owner of some
file systems. The file systems that contain /dev should never be moved. This should always
be a local file system. Automove should be Unmount for this file system. There are some
other file systems where this is also the case.

Automove Unmount means that when a system fails and if this file system is not in use, it will
be unmounted. If the file system contains mount points, this file system and all file systems
under it will be unmounted.

Automove can also specify a list of systems that may be included when selecting a system for
the target of the move. It can also specify a list of systems that are to be excluded as move
targets. If the list is long, the display may be truncated. All system names can be viewed and
modified by using the Modify file system action code and selecting Automove for change. If
the last system name is specified as * for an include list, the system will treat this as a list of
all remaining eligible systems.

The field Owning system is the name of the system that owns this file system.
438 ABCs of z/OS System Programming Volume 9

8.56 AUTOMOVE system list (syslist)

Figure 8-56 AUTOMOVE system list specifications

AUTOMOVE system list
When mounting file systems, you can specify an automove system list to indicate where the
file system should or should not be moved when a system leaves the sysplex. Previously, on
a system failure, with more than one system capable of taking over ownership, it was random
which system was the new owner.

The automove system list can be specified in many different ways to automove a file system.
The list begins with an indicator to either include or exclude (abbreviated as i or e) followed by
a list of system names. Specify the indicator as follows:

i Use this indicator with a prioritized list of systems to which the file system may be moved
if the owning system goes down. If none of the systems specified in the list can take over
as the new owner, the file system will be unmounted.

e Use this indicator with a list of systems to which the file system may not be moved.

In a shared sysplex environment, AUTOMOVE(YES)
on MOUNT moves the ownership of the filesystem to
some other system in the sysplex if the current server
system for that filesystem is brought down

The system that becomes the new server is random

z/OS V1R4 provides the capability to specify which
system or systems in a sysplex will takeover as server
for a filesystem

A system list is added to the AUTOMOVE parameter
for MOUNT

The list begins with either include or exclude,
(abbreviated i or e) followed by a list of system names
Chapter 8. Managing file systems 439

8.57 AUTOMOVE parameters for mounts

Figure 8-57 AUTOMOVE specifications for system lists

Specifying AUTOMOVE on MOUNT commands
When mounting file systems in the sysplex, you can specify a prioritized automove system list
to indicate where the file system should or should not to moved to when the owning system
leaves the sysplex. There are different ways to specify the automove system list, as follows:

� On the MOUNT statement in BPXPRMxx, specify the AUTOMOVE keyword, including the
indicator and system list.

� For the TSO MOUNT command, specify the AUTOMOVE keyword, including the indicator
and system list.

� Use the mount shell command.

� Use the ISHELL MOUNT interface.

� Specify the MNTE_SYSLIST variable for REXX.

� Specify the indicator and system list for the automove option in the chmount shell
command.

� Specify the indicator and system list for the automove option in the SETOMVS operator
command.

BPXPRMXX PARMLIB member MOUNT statement or
TSO/E MOUNT command

Shell mount command

ISHELL panels for mounts

C program, assembler program, or REXX program

AUTOMOVE(indicator, name1, name2,.....)

i - Provides a prioritized list of systems where the
file system may be moved - If no system can takeover
as the new owner, the file system is unmounted

e - This system list provides a list of systems to
where the file system may not be moved
440 ABCs of z/OS System Programming Volume 9

8.58 AUTOMOVE wildcard support

Figure 8-58 AUTOMOVE wildcard support

AUTOMOVE wildcard support
You can use the wildcard support on all methods of mounts, including the MOUNT statement
in BPXPRMxx, the TSO MOUNT command, the mount shell command, the ISHELL MOUNT
interface, the MNTE_SYSLIST variable for REXX, C program, and assembler program.

Using AUTOMOVE wildcard support, the customer can specify only those systems in the
INCLUDE list that should have priority in file system takeover, and use the wildcard ‘*’ to
specify all remaining systems:

AUTOMOVE(INCLUDE,SY1,SY3,*)

A wildcard character is permitted as an only item or as a last item of the AUTOMOVE Include
Syslist in place of a system name.

Advantages of using AUTOMOVE wildcard support
With wildcard support, the remaining systems do not have to be explicitly listed in the Include
system list, which can reduce typing errors.

Note: The wildcard is only allowed with an Include list, not with an Exclude list.

Wildcard support for system lists:
Explicitly list the systems and include the remaining systems
using wildcard character in the include system list:

Parmlib member
TSO MOUNT command
Shell - chmount
ISHELL
C program
REXX
Assembler program
SETOMVS FILESYS,FILESYSTEM=‘X.Y.Z’,AUTOMOVE=(I,*)

Automove syslist wildcard support is invoked by:
SETOMVS FILESYS,FILESYSTEM=‘X.Y.Z’,SYSNAME=*
F BPXOINIT, SHUTDOWN=FILESYS
F OMVS,SHUTDOWN
Chapter 8. Managing file systems 441

8.59 AUTOMOVE wildcard examples

Figure 8-59 AUTOMOVE wildcard examples

Examples of wildcard usage
If you have a large number of systems in your sysplex, you can specify only the systems that
should have priority and use a wildcard to indicate the rest of the systems.

In the examples, at first glance, AUTOMOVE INCLUDE (*) appears to work the same way as
AUTOMOVE(YES) because all of the systems will try to take over the file system. However,
with AUTOM0VE INCLUDE (*), if none of the systems can take over the file system, it will be
unmounted. If AUTOMOVE(YES) is used, the file system will become unowned.

Note: All systems must be at the V1R6 level or later. Otherwise, results will be
unpredictable.

Wildcard character permitted as an only item or as a

last item of the Automove Include Syslist in place of a

system name

The wildcard is only allowed with an Include list, not

with an Exclude list:

Examples

AUTOMOVE(include,sy2,*)

AUTOMOVE(include,*)

AUTOMOVE(i,sy1,sy2,sy3,*)

AUTOMOVE(i,sy*)
442 ABCs of z/OS System Programming Volume 9

8.60 Defining process limits

Figure 8-60 Defining limits for BPXPRMxx parameters

Checking limits of BPXPRMxx parameters
Use the LIMMSG statement to control the display of console messages that indicate when
parmlib limits are reaching critical levels. The LIMMSG values have the following meanings:

SYSTEM Console messages are to be displayed for all processes that reach system limits.
In addition, messages are to be displayed for each process limit of a process if:

– The process limit or limits are defined in the OMVS segment of the owning
user ID

– The process limit or limits have been changed with a
SETOMVS PID=pid,proces_limit command

ALL Console messages are to be displayed for the system limits and for the process
limits, regardless of which process reaches a process limit.

Several messages are issued for mount table limit monitoring. As the capacity of the mount
table is approached, the following message is displayed:

BPXI043E MOUNT TABLE LIMIT HAS REACHED <nn>% OF ITS CURRENT CAPACITY OF
<current limit>.

where <nn> has the value of 85, 90, 95 or 100; the message is updated when the percentage
has changed. The message is DOMed when the percentage decreases below 85%, and the
following message is issued:

BPXI044I RESOURCE SHORTAGE FOR MOUNT TABLE HAS BEEN RELIEVED.

LIMMSG=SYSTEM
Console messages are displayed for all processes
that reach system limits
Messages are displayed for each process limit of a
process if:

The process limit or limits are defined in the OMVS
segment of the owning user ID
The process limit or limits have been changed with a
SETOMVS PID=pid,process_limit command

LIMMSG=ALL
Messages are displayed for the system limits and for
the process limits, regardless of which process
reaches a process limit

BPXPRMxx .. LIMMSG=SYSTEM | NONE | ALL
Chapter 8. Managing file systems 443

8.61 Mount limiting corrective action

Figure 8-61 Action to take when mount limit is reached in OMVS couple data set

Mount limit reached action
Corrective action may consist of one of the following procedures:

� Format a new, larger type BPXMCDS. A sample job to create and format a type
BPXMCDS can be found in SYS1.SAMPLIB(BPXISCDS). Once the CDS is defined, it can
be enabled as the ALTERNATE CDS using the following system command:

SETXCF COUPLE,TYPE=BPXMCDS,ACOUPLE=(alternate_name,alternate_volume)

� Switch the alternate CDS to the primary CDS by using the following system command:

SETXCF COUPLE,PSWITCH

Switch to an existing and enabled alternate CDS, which
is defined with more mount entries:

Format a new larger type BPXMCDS by increasing the
mount limits

Once the CDS is defined, it can be enabled as the
alternate CDS using the following command:

SETXCF COUPLE,TYPE=BPXMCDS,ACOUPLE=(alternate_name,alternate_volume)

Finally, switch the alternate CDS to the primary CDS by
using the following command:

SETXCF COUPLE,PSWITCH,TYPE=BPXMCDS

BPXI045I THE PRIMARY CDS SUPPORTS A LIMIT OF 700 MOUNTS AND A LIMIT
OF 50 AUTOMOUNT RULES.
BPXI044I RESOURCE SHORTAGE FOR MOUNT TABLE HAS BEEN RELIEVED.
444 ABCs of z/OS System Programming Volume 9

8.62 Mounting shared sysplex file systems

Figure 8-62 Shared sysplex mounted file systems

Shared sysplex environment
With a shared sysplex environment, sharing HFS and zFS file systems, each system must
have specific HFS data sets for each of these file systems, meaning the two systems each
have HFS data sets for /etc, /tmp, /var, and /dev. The file systems are then mounted under
the system-specific HFS, as shown in Figure 8-62. With shared file system environment
support, one system can access system-specific file systems on another system. For
example, while logged onto SC65, you can gain read-write access to SC64's /tmp by
specifying /SC64/tmp/.

BPXPRMxx PARMLIB specification
You should also be aware that when SYSPLEX(YES) is specified, each FILESYSTYPE in
use within the participating group must be defined for all systems participating in a shared file
system environment. The easiest way to accomplish this is to create a single BPXPRMxx
member that contains file system information for each system participating in a shared file
system environment. If you decide to define a BPXPRMxx member for each system, the
FILESYSTYPE statements must be identical on each system.

The sysplex root provides access to all directories. Each system in a sysplex can access
directories through the symbolic links that are provided. Essentially, the sysplex root provides
redirection to the appropriate directories, and it should be kept very stable; updates and
changes to the sysplex root should be made as infrequently as possible.

XCF

Sysplex Root

Version Root

OMVS CDS

/dev-/tmp-/var-/etc /dev-/tmp-/var-/etc

OWNER
(Coordinator)

SC64 SC65

System Specific System Specific

BPXPRMxx
SYSPLEX=YES

XCF
Chapter 8. Managing file systems 445

Note: The first system that IPLs in the sysplex becomes the owner of the sysplex root.
446 ABCs of z/OS System Programming Volume 9

8.63 Accessing shared sysplex file systems

Figure 8-63 Accessing shared sysplex mounted file systems

Accessing file systems
The intersystem communication required to provide the additional availability and
recoverability associated with z/OS UNIX in a shared file system environment support affects
response time and throughput on R/W file systems being shared in a sysplex.

For example, assume that a user on SC64 requests a read on a file system mounted R/W
and owned by SC65. Using shared file system environment support, SC64 sends a message
requesting this read to SC65 via an XCF messaging function:

SC64 ===> (XCF messaging function) ===> SC65

After SC65 gets this message, it issues the read on behalf of SC64, and gathers the data
from the file. It then returns the data via the same route the request message took:

SC65 ===> (XCF messaging function) ===> SC64

R/W Request

Webserver
Lotus
SAP
Customer data

(digital data, multimedia)
others

SC64 <== (XCF messaging function) <== SC65
SC64 ==> (XCF messaging function) ==> SC65

Sysplex RootVersion Root

OMVS CDS

HFS Data

OWNER
(Coordinator)

XCF

SC64

ls /bin/

SC65
XCF
Chapter 8. Managing file systems 447

8.64 Shared file system AUTOMOVE takeover

Figure 8-64 AUTOMOVE options in a shared sysplex

AUTOMOVE takeover of file systems
File system recovery in a shared file system environment takes into consideration file system
specifications such as AUTOMOVE, NOAUTOMOVE, UNMOUNT, and whether or not the file
system is mounted read-only or read-write.

Generally, when an owning system fails, ownership over its automove-mounted file system is
moved to another system and the file is usable. However, if a file system is mounted
read-write and the owning system fails, then all file system operations for files in that file
system will fail. This happens because data integrity is lost when the file system owner fails.
All files should be closed (BPX1CLO) and reopened (BPX1OPN) when the file system is
recovered.

Read-only file systems
For file systems that are mounted read-only, specific I/O operations that were in progress at
the time the file system owner failed may need to be started again.

Moving file systems
In some situations, even though a file system is mounted AUTOMOVE, ownership of the file
system may not be immediately moved to another system. This may occur, for example,
when a physical I/O path from another system to the volume where the file system resides is
not available. As a result, the file system becomes unowned; if this happens, you will see
message BPXF213E. This is true if the file system is mounted either read-write or read-only.
The file system still exists in the file system hierarchy so that any dependent file systems that

OWNER
(Coordinator)

XCF

SC64

R/W Request

New OWNER

OMVS CDS

Webserver
Lotus
SAP
Customer data

(digital data, multimedia)
others

Sysplex RootVersion Root

ls /bin/

SC65
XCF
448 ABCs of z/OS System Programming Volume 9

are owned by another system are still usable. However, all file operations for the unowned file
system will fail until a new owner is established. The shared file system environment support
will continue to attempt recovery of AUTOMOVE file systems on all systems in the sysplex
that are enabled for a shared file system environment. Should a subsequent recovery attempt
succeed, the file system transitions from the unowned to the active state.

NOAUTOMOVE file systems
File systems that are mounted NOAUTOMOVE or UNMOUNT will become unowned when
the file system owner exits the sysplex. The file system will remain unowned until the original
owning system restarts or until the unowned file system is unmounted. Because the file
system still exists in the file system hierarchy, the file system mount point is still in use.

An unowned file system is a mounted file system that does not have an owner. The file
system still exists in the file system hierarchy. As such, you can recover or unmount an
unowned file system.
Chapter 8. Managing file systems 449

8.65 Moving file systems in a sysplex

Figure 8-65 Command to move a file system in a sysplex environment

Commands to move file systems
You may need to change ownership of the file system for recovery or re-IPLing. To check for
file systems that have already been mounted, use the df command from the shell. The
setomvs command used with the FILESYS, FILESYSTEM, mount point and SYSNAME parameters
can be used to move a file system in a sysplex, or you can use the chmount command from
the shell. However, do not move these two types of file systems:

� System-specific file systems.
� File systems that are being exported by DFS. You have to unexport them from DFS first

and then move them.

Examples of moving file systems are:

� To move ownership of the file system that contains /u/user1 to SC64:
chmount -d SC64 /u/user1

� To move ownership of the payroll file system from the current owner to SC64 using
SETOMVS, issue:

SETOMVS FILESYS,FILESYSTEM='POSIX.PAYROLL.HFS',SYSNAME=SC64

� Assuming the mount point is over directory /PAYROLL:

SETOMVS FILESYS,mountpoint='/PAYROLL',SYSNAME=SC64

� Move the root file system:

SETOMVS FILESYS,FILESYSTEM='OMVS.Z19RA1.ROOT.HFS',SYSNAME=SC64

Need to change ownership for recovery or re-IPL

Use the SETOMVS command with SYSNAME
parameter

Re-IPL SC64 R/W Request

SETOMVS FILESYS,FILESYSTEM='OMVS.Z19RA1.ROOT.HFS',SYSNAME=SC64

Sysplex RootVersion Root

OMVS CDSOWNER
(Coordinator)

XCF

SC64

ls /bin/

SC65
XCF
450 ABCs of z/OS System Programming Volume 9

8.66 Logical file system (LFS)

Figure 8-66 The logical file system

Logical file system (LFS)
The PFS interface is a set of protocols and calling interfaces between the logical file system
(LFS) and the PFSs that are installed on z/OS UNIX. PFSs mount and unmount file systems
and perform other file operations.

LFS changes in z/OS V1R6
A change is being made to LFS termination of a PFS, such as zFS, in order to improve the
availability of file systems on the system where a PFS is terminating.

The old design of PFS termination is that file systems for the terminating PFS, and subtrees
of those file systems, get moved to another system (if locally owned), and then get locally
unmounted and become unavailable on the system where the PFS is terminating. If they
could not be moved, then they become globally unmounted.

The new design is that the ownership of these file systems can be moved to another system
in the sysplex, and then allow for function-shipping requests on the system where a PFS is
terminating and avoid the local unmounts. This provides improved availability of file systems.

read write open close

auto-
mountTFS IP

sockets
Local

sockets
NFS
clientHierarchical

File System
ZFS

HFSVOLHFSVOL ZFSVOLZFSVOL

F
F

/

F
F F

F F

/

F
F F

F

Physical File Systems

z/OS UNIX Callable Services Interfaces

Logical File System
z/OS UNIX-PFS Interface

Kernel
Chapter 8. Managing file systems 451

8.67 Systems accessing file systems

Figure 8-67 zFS environment with three systems accessing two file systems

Example of file access
In Figure 8-67 you see a USS sysplex sharing environment with three systems that share two
zFS file systems. In this example, the following is taking place:

� System SY1 owns the zFS file systems OMVS.TEST1.ZFS (R/W) and OMVS.TEST2.ZFS
(R/O).

� The other two systems, SY2 and SY3, have the R/O zFS file system locally mounted as
read (R/O).

� Any R/W requests from SY2 and SY3 to the R/W file system owned by SY1 must be
passed through the XCF messaging function, which is referred to as function-shipping
requests.

ZFS

SY1
z/OS V1R5

ZFS

SY2
z/OS V1R5

OMVS.TEST2.ZFS

F

/

F
F F

F

 OWNER
(Coordinator)

XCF ZFS

SY3
z/OS V1R5

OMVS.TEST1.ZFS

F

/

F
F F

F

XCF

Function-ships
R/W requests Locally mounted

Read (R/O) Locally mounted
Read (R/O)

R/OR/W

Function-ships
R/W requests

Before z/OS V1R6
452 ABCs of z/OS System Programming Volume 9

8.68 zFS PFS termination on SY1

Figure 8-68 File system takeover after zFS PFS termination

zFS PFS terminates on SY1
When the zFS PFS terminates on system SY1and zFS is no longer operational, the file
systems owned by SY1 in this example are automoved to SY2, as shown in Figure 8-68.

Before the PFS termination, SY2 users had access to the R/W file system via
function-shipping requests to SY1. After the PFS termination and SY2 becoming the new
owner of both file systems, the function shipping requests are no longer needed.

The problem that exists in all systems prior to z/OS V1R6 is that users on SY1 no longer have
access to the two file systems.

Terminating the PFS
The zFS PFS can be terminated by an operator console command or by a zFS PFS abend.
When the zFS PFS terminates, the terminating PFS will attempt to move all the file systems it
owns to another system in the sysplex, since they are mounted as AUTOMOVE.

When the PFS terminates, there is a system prompt message waiting for a reply to be
answered in system SY1, for example:

*015 BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY 'R' WHEN READY TO RESTART.
REPLY 'I' TO IGNORE.

ZFS

SY1
z/OS V1R5

OMVS.TEST2.ZFS

F

/

F
F F

F

ZFS

SY3
z/OS V1R5

OMVS.TEST1.ZFS

F

/

F
F F

F

XCF
ZFS

SY2
z/OS V1R5

Locally mounted
Read (R/O)

Locally mounted
Read (R/O)

XCF

 OWNER
(Coordinator)

R/W R/O

zFS PFS
terminated Function-ships

R/W requests
Function-ships
requests for all
(R/W & R/O)

Before z/OS V1R6
Chapter 8. Managing file systems 453

8.69 LFS sysplex support

Figure 8-69 LFS termination of the zFS PFS

LFS termination of zFS
Currently, the design of PFS termination is that file systems for the terminating PFS, and
subtrees of those file systems, get moved to another system (if locally owned), and then get
locally unmounted and become unavailable on the system where the PFS is terminating. If
they could not be moved, then they become globally unmounted.

LFS sysplex support before z/OS V1R6
Prior to z/OS V1R6, NOAUTOMOVE referred to both AUTOMOVE(NO) and
AUTOMOVE(UNMOUNT). AUTOMOVE(YES), AUTOMOVE(NO),
AUTOMOVE(UNMOUNT), AUTOMOVE(I,…) and AUTOMOVE(E,…), were allowed on any
mounts or chmounts.

AUTOMOVE syslist support was added in z/OS V1R4. AUTOMOVE syslist may be specified
on mount or chmount. For example:

MOUNT FILESYSTEM('POSIX.HFS.MAN') TYPE(HFS) MODE(READ)
MOUNTPOINT(‘/usr/man’) AUTOMOVE(I,SY3,SY2)

This is a prioritized list of systems that should attempt to take over as file system owner if the
current owner leaves the sysplex. The include list is also used when moving a file system to
any target system (SYSNAME=*). Any move during a PFS termination honored
NOAUTOMOVE and AUTOMOVE syslists, even if sysplex-aware.

LFS termination of a PFS, such as zFS

Improves availability of file systems on the system where
a PFS is terminating

Before: PFS termination is that file systems for the
terminating PFS, and subtrees of those file systems, get
moved to another system (if locally owned), and then get
locally unmounted and become unavailable on the
system where the PFS is terminating - If they could not be
moved, then they become globally unmounted.

z/OS V1R6: If ownership of these file systems can be
moved to another system in the sysplex, and then allow
for function-shipping requests on the system where a
PFS is terminating and avoid the local unmounts -This
provides improved availability of file systems
454 ABCs of z/OS System Programming Volume 9

During takeover and move-to-any-target, new owner selection was random, for systems not
in the include syslist.

If a PFS allows a file system to be locally accessed (mounted) on each system in a sysplex
for a particular mode, then the PFS is sysplex-aware for that mode.

z/OS V1R6 design
Under the new design, if the ownership of these file systems can be moved to another system
in the sysplex, then they should be moved, along with function-shipping of the requests to
avoid local unmounts. This would allow improved availability of file systems on the system
where a PFS is terminating.

LFS design changes
All systems must be at z/OS V1R6 for these AUTOMOVE changes to function as
documented. On back level releases, ‘*’ is regarded as an unknown system name, rather
than a wildcard. Our recommendation is to not use wildcards if all systems are not at least at
V1R6.
Chapter 8. Managing file systems 455

8.70 z/OS V1R6 LFS design

Figure 8-70 LFS design changes in z/OS V1R6

LFS design change
Since “member gone” is run independently by each system, AUTOMOVE behavior is not
predictable in a mixed-release sysplex.

Sysplex-unaware
If a PFS requires that a file system be accessed through the remote owning system from all
other systems in a sysplex for a particular mode, then the PFS is sysplex-unaware for that
mode. HFS R/W file systems are sysplex-unaware.

Sysplex-aware
HFS R/O file systems are sysplex-aware.

AUTOMOVE is not meaningful for sysplex-aware file systems since the owner is just a
nominal owner, and does not function as a server (that is, other systems are not
function-shipping). A “move” is just a nominal owner change.

If the file system is sysplex-aware (locally mounted),
but not owned by the system where the PFS is
terminating, then the file system will be converted to
function-shipping to the owner (no move occurs)

Sysplex-aware - Capable of mounting locally on the
systems - For example, R/O on all zFS file systems

Sysplex-unaware - Not capable of mounting locally on
all systems - Function ships the request to owner - For
example, R/W zFS file systems
456 ABCs of z/OS System Programming Volume 9

8.71 Stopping zFS

Figure 8-71 Ways zFS address space stops running

Stopping zFS
zFS can be stopped using the p zfs operator command. zFS file systems should be
unmounted or moved to another sysplex member before stopping zFS. When zFS is stopped,
you receive the following message:

nn BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY 'R' WHEN READY TO RESTART. REPLY
'I' TO IGNORE.

ZFS address space fails
If the ZFS colony address space has an internal failure, it may abnormally terminate and stop.
Normally, the ZFS colony address space will restart automatically. Otherwise, message
BPXF032D (the same message you receive when the p zfs operator command is used) will
be issued and a reply will be requested.

File system status
In either case (or if the p zfs operator command is issued), all ZFS file systems on that
system will be unmounted (or moved if AUTOMOVE in a sysplex is specified). Applications
with an open file on these file systems will receive I/O errors until the file is closed. Once zFS
is restarted, the operator must remount any file systems that were locally mounted (that is, file
systems that were owned by that system and were not moved). This can be done by using
the MODIFY BPXOINIT,FILESYS=REINIT operator command. This causes a remount for
each file system that was mounted through a BPXPRMxx PARMLIB statement.

Use the p zfs operator command

nn BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY 'R' WHEN READY TO

RESTART. REPLY 'I' TO IGNORE.

ZFS address space can have an internal failure

File system status if ZFS address space goes away

All zFS file systems on that system will be unmounted

Or moved if AUTOMOVE in a sysplex is specified
Chapter 8. Managing file systems 457

8.72 Restarting the PFS

Figure 8-72 zFS PFS termination message and operator replies

zFS PFS termination message
When the PFS terminates, there is a system prompt message waiting for a reply to be
answered in system SY1, for example:

*015 BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY 'R' WHEN READY TO RESTART.
REPLY 'I' TO IGNORE.

� If the reply to re-start the PFS is I (do not restart the PFS), then the file systems will be
locally unmounted as before.

� If the reply to re-start the PFS is R, then any sysplex-aware file systems will convert back
from function-shipping to local mount. Sysplex-unaware file systems continue
function-shipping to the current owner.

The SET OMVS= command
This command, available with z/OS V1R7, can be used to start the ZFS PFS if it has not been
started at IPL. It can also be used to redefine it if it has been terminated by replying i to the
BPXF032D operator message (after stopping the ZFS PFS). The suffix SS is a BPXPRMxx
member of PARMLIB that contains the FILESYSTYPE statement for the ZFS PFS.

When the zFS address space stops either by the operator or abnormally and you are not in
sysplex sharing mode, all zFS file systems are unmounted as the aggregates are detached.

Note: Beginning with z/OS V1R8, the p zfs command is only supported in a non-sysplex
sharing mode.

If the reply to re-start the PFS is "I"

(Do not restart the PFS), then the file systems are locally
unmounted as before

If the reply to re-start the PFS is "R"
Then any sysplex-aware file systems converts back from
function-shipping to local mount

Sysplex-unaware file systems remain function-shipping to
the current owner

Restart the zFS PFS with if the "I" option terminates it

 Issue a SET OMVS=SS command
BPXPRMSS contains the FILESYSTYPE statement for zFS

Beginning with z/OS V1R8, the p zfs command is
only supported in a non-sysplex sharing mode
458 ABCs of z/OS System Programming Volume 9

8.73 Mounting file systems with SET OMVS

Figure 8-73 Mounting file systems using the SET OMVS command

BPXPRMSS PARMLIB member
The following BPXPRMSS PARMLIB member is used to restart zFS and mount critical file
systems. The SET OMVS=SS operator command is used to read the member, execute the
mount statements, and start the ZFS PFS following a p zfs command.

FILESYSTYPE TYPE(ZFS) /* Type of file system to start */
 ENTRYPOINT(IOEFSCM) /* Entry Point of load module */
 ASNAME(ZFS) /* Procedure name */
ROOT FILESYSTEM('OMVS.&SYSNAME..&SYSR1..ROOT.ZFS')
 /* z/OS root filesystem */
 TYPE(ZFS) /* Filesystem type ZFS */
 MODE(RDWR) /* Mounted for read/write */
MOUNT FILESYSTEM('OMVS.&SYSNAME..ETC.ZFS')
 /* ZFS for /etc directory */
 MOUNTPOINT('/etc')
 TYPE(ZFS) /* Filesystem type ZFS */
 MODE(RDWR) /* Mounted for read/write */
MOUNT FILESYSTEM('OMVS.&SYSNAME..VAR.ZFS')
 /* ZFS for /var directory */
 MOUNTPOINT('/var')
 TYPE(ZFS) /* Filesystem type ZFS */
 MODE(RDWR) /* Mounted for read/write

The SET OMVS command enables use of a
BPXPRMxx parmlib member without re-IPLing

Allows mounts from a BPXPRMxx member from an
operator console

FILESYSTYPE TYPE(ZFS) /* Type of file system to start */
 ENTRYPOINT(IOEFSCM) /* Entry Point of load module */
 ASNAME(ZFS) /* Procedure name */
ROOT FILESYSTEM('OMVS.&SYSNAME..&SYSR1..ROOT.ZFS')
 TYPE(ZFS) /* Filesystem type ZFS */
 MODE(RDWR) /* Mounted for read/write */
MOUNT FILESYSTEM('OMVS.&SYSNAME..ETC.ZFS')
 MOUNTPOINT('/etc')
 TYPE(ZFS) /* Filesystem type ZFS */
 MODE(RDWR) /* Mounted for read/write */
MOUNT FILESYSTEM('OMVS.&SYSNAME..VAR.ZFS')
 MOUNTPOINT('/var')
 TYPE(ZFS) /* Filesystem type ZFS */
 MODE(RDWR) /* Mounted for read/write */
Chapter 8. Managing file systems 459

8.74 Messages from shutdown of a ZFS single system

Figure 8-74 Shutdown of the ZFS address space

Messages from the restart of zFS
After stopping zFS and issuing the SET OMVS command the following messages are issued:

 P ZFS
 IOEZ00541I 729
 zFS filesystems owned on this system should be unmounted or moved
 before stopping zFS. If you do not applications may fail.
*005 IOEZ00542D Are you sure you want to stop zFS? Reply Y or N
 IEE600I REPLY TO 005 IS;Y
 IOEZ00050I zFS kernel: Stop command received.
 IOEZ00048I Detaching aggregate OMVS.TC7.VAR.ZFS
 IOEZ00048I Detaching aggregate OMVS.TC7.ETC.ZFS
 IOEZ00048I Detaching aggregate OMVS.TC7.TRNRS1.ROOT.ZFS
 IOEZ00057I zFS kernel program IOEFSCM is ending
*006 BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY 'R' WHEN READY TO
 RESTART. REPLY 'I' TO IGNORE.
 IEF352I ADDRESS SPACE UNAVAILABLE
 $HASP395 ZFS ENDED
 $HASP250 ZFS PURGED -- (JOB KEY WAS BE68CA18)
 R 6,I
 IEE600I REPLY TO 006 IS;I
 SET OMVS=SS
 IEE252I MEMBER BPXPRMSS FOUND IN SYS1.PARMLIB
 BPXO032I THE SET OMVS COMMAND WAS SUCCESSFUL.

 P ZFS
 IOEZ00541I 729
 zFS filesystems owned on this system should be unmounted or moved
 before stopping zFS. If you do not applications may fail.
*005 IOEZ00542D Are you sure you want to stop zFS? Reply Y or N
 IEE600I REPLY TO 005 IS;Y
 IOEZ00050I zFS kernel: Stop command received.
 IOEZ00048I Detaching aggregate OMVS.TC7.VAR.ZFS
 IOEZ00048I Detaching aggregate OMVS.TC7.ETC.ZFS
 IOEZ00048I Detaching aggregate OMVS.TC7.TRNRS1.ROOT.ZFS
 IOEZ00057I zFS kernel program IOEFSCM is ending
*006 BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY 'R' WHEN READY TO
 RESTART. REPLY 'I' TO IGNORE.
 IEF352I ADDRESS SPACE UNAVAILABLE
 $HASP395 ZFS ENDED
 $HASP250 ZFS PURGED -- (JOB KEY WAS BE68CA18)
 R 6,I
 IEE600I REPLY TO 006 IS;I
 SET OMVS=SS
 IEE252I MEMBER BPXPRMSS FOUND IN SYS1.PARMLIB
 BPXO032I THE SET OMVS COMMAND WAS SUCCESSFUL.
460 ABCs of z/OS System Programming Volume 9

8.75 Messages for the restart of ZFS

Figure 8-75 Messages during restart of the ZFS address space

ZFS address space restart messages
Reading the BPXPRMSS PARMLIB member uses the FILESYSTYPE statement to start the
ZFS address space. The mount statements in the member are used to start the other file
systems that were stopped when the p zfs command was issued.

$HASP100 ZFS ON STCINRDR
$HASP373 ZFS STARTED
IOEZ00052I zFS kernel: Initializing z/OS zSeries File System
Version 01.07.00 Service Level OA12872 - HZFS370.
Created on Mon Sep 26 16:19:25 EDT 2005.
IOEZ00178I SYS1.TC7.IOEFSZFS(IOEFSPRM) is the configuration dataset
currently in use.
IOEZ00055I zFS kernel: initialization complete.
BPXF013I FILE SYSTEM OMVS.TC7.TRNRS1.ROOT.ZFS 768
WAS SUCCESSFULLY MOUNTED.
BPXF013I FILE SYSTEM OMVS.TC7.ETC.ZFS 769
WAS SUCCESSFULLY MOUNTED.
BPXF013I FILE SYSTEM OMVS.TC7.VAR.ZFS 770
WAS SUCCESSFULLY MOUNTED.

$HASP100 ZFS ON STCINRDR
$HASP373 ZFS STARTED
IOEZ00052I zFS kernel: Initializing z/OS zSeries File System
Version 01.07.00 Service Level OA12872 - HZFS370.
Created on Mon Sep 26 16:19:25 EDT 2005.
IOEZ00178I SYS1.TC7.IOEFSZFS(IOEFSPRM) is the configuration dataset
currently in use.
IOEZ00055I zFS kernel: initialization complete.
BPXF013I FILE SYSTEM OMVS.TC7.TRNRS1.ROOT.ZFS 768
WAS SUCCESSFULLY MOUNTED.
BPXF013I FILE SYSTEM OMVS.TC7.ETC.ZFS 769
WAS SUCCESSFULLY MOUNTED.
BPXF013I FILE SYSTEM OMVS.TC7.VAR.ZFS 770
WAS SUCCESSFULLY MOUNTED.
Chapter 8. Managing file systems 461

8.76 Stopping ZFS with z/OS V1R8

Figure 8-76 z/OS V1R8 support to stop the ZFS address space

New stop command with z/OS V1R8
Prior to z/OS V1R8, there was no way to stop the ZFS address space in a normal way. The
only way to stop the ZFS PFS was the P ZFS command or to cancel the address space. This
caused problems after remounting the zFS file systems. A file system will not be dismounted
correctly and applications may become unstable. In z/OS V1R8, a new command is
introduced to stop the ZFS address space, as follows:

F OMVS,STOPPFS=ZFS

This new operator command allows z/OS UNIX to move file system ownership
(non-disruptively) to another system before the PFS is terminated. This allows applications
that are accessing file systems owned on the system where the zFS PFS is being terminated
to continue to proceed without I/O errors in a shared file system environment.

Figure 8-77 on page 463 shows an example output of stopping the zFS file system. After
receiving the stop command, the system invokes a sync to all local mounted zFS file systems.
Afterward, all zFS file systems are unmounted in a single system. When you are in a shared
file system environment, all AUTOMOVE-defined file systems will be moved to another
system. Before the file system move starts, a new message, BPXI068D, appears to confirm
the file system shutdown.

p zfs command is disruptive

Causes application read and write failures

New command to stop ZFS address space

f omvs,stoppfs=zfs - (If required)

“Are you sure?” prompt

New command allows z/OS UNIX to move file system
ownership (non-disruptively) to another system before
the PFS is terminated

IOEZ00523I zFS no longer supports the stop command.
Please issue f omvs,stoppfs=zfs
462 ABCs of z/OS System Programming Volume 9

Figure 8-77 Example of stopping a zFS file system

 F OMVS,STOPPFS=ZFS
*010 BPXI078D STOP OF ZFS REQUESTED. REPLY 'Y' TO PROCEED. ANY OTHER REPLY WILL
 CANCEL THIS STOP
 R 10,Y
 IEE600I REPLY TO 010 IS;Y
 IOEZ00048I Detaching aggregate LUTZ.ZFS
 IOEZ00048I Detaching aggregate PELEG.ZFS
 IOEZ00048I Detaching aggregate DAURCES.ZFS
 IOEZ00048I Detaching aggregate TEMEL.ZFS
 IOEZ00048I Detaching aggregate VAINI.ZFS
 IOEZ00050I zFS kernel: Stop command received.
 IOEZ00057I zFS kernel program IOEFSCM is ending
 IEF352I ADDRESS SPACE UNAVAILABLE
 IEA989I SLIP TRAP ID=X33E MATCHED. JOBNAME=*UNAVAIL, ASID=0057.
*011 BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY 'R' WHEN READY TO RESTART.

Restriction: The P ZFS command will no longer work in z/OS V1R8. You see the
message:

IOEZ00523I zFS no longer supports the stop command. Please issue f
omvs,stoppfs=zfs
Chapter 8. Managing file systems 463

8.77 Command (f omvs,stoppfs=zfs)

Figure 8-78 Stopping the ZFS address space and the LFS

Stop ZFS command with z/OS V1R8
The operator command P ZFS is a disruptive command. It removes the zFS physical file
system (PFS) out from under z/OS UNIX and the LFS. That causes z/OS UNIX to not know
that the ZFS PFS is going away until the ZFS address space goes away. This allows
in-progress requests to zFS to receive I/O errors.

This new operator command allows the z/OS UNIX LFS to move file system ownership
(non-disruptively) to another system before the ZFS PFS is terminated. This enables
applications that are accessing file systems owned on the system where the ZFS PFS is
being terminated to continue to proceed without I/O errors in a shared file system
environment.

Note: The ZFS PFS is the only PFS that can be specified with this command.

*010 BPXI078D STOP OF <pfsname> REQUESTED. REPLY 'Y' TO
PROCEED. ANY OTHER REPLY WILL CANCEL THIS STOP

The operator must reply Y to proceed

LFS is notified first that a PFS is to be terminated

If shared file system, the LFS moves ownership of file
systems and converts to function-shipping BEFORE
the PFS terminates

The PFS specified must run outside of the kernel and
must support being stopped this way

Wrong PFS specified and message is issued

BPXI077I THE PFS NAME IS INVALID OR THE PFS DOES NOT
SUPPORT STOPPFS OR IS ALREADY STOPPED
464 ABCs of z/OS System Programming Volume 9

8.78 Stopping the ZFS address space

Figure 8-79 Stopping the ZFS address space

Stop the ZFS address space
If the ZFS address space has an internal failure, it will normally not terminate. It may disable
an aggregate. If it does terminate, normally the ZFS address space will restart automatically.

When zFS is stopped using the F OMVS,STOPPFS=ZFS operator command, zFS file
systems will be unmounted or moved to another sysplex member before stopping zFS. When
zFS is stopped, you receive the following message (after replying Y to message BPXI078D):

nn BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY 'R' WHEN READY TO RESTART. R

Otherwise, the BPXF032D message is issued (the same message that is received when the
F OMVS,STOPPFS=ZFS operator command is used) and a reply will be requested.

AUTOMOVE setting
When zFS terminates, all ZFS file systems on that system will be unmounted (or moved if
AUTOMOVE in a sysplex is specified). Applications with an open file on these file systems
will receive I/O errors until the file is closed. Once zFS is restarted, the operator must remount
any file systems that were locally mounted (that is, file systems that were owned by that
system and were not moved). This can be done with the F BPXOINIT,FILESYS=REINIT
operator command, which causes a remount for each file system that was mounted through a
BPXPRMxx PARMLIB statement.

*011 BPXF032D FILESYSTYPE ZFS TERMINATED.
REPLY 'R' WHEN READY TO RESTART.

Expect zFS file systems owned by this system to
have ownership moved to other systems if possible
(depending on AUTOMOVE setting)

Expect this system to then function-ship file requests
to remote owner

Single-system

Termination should continue to work as before, with
zFS file systems and their subtrees being unmounted
Chapter 8. Managing file systems 465

8.79 PFS termination and LFS support for z/OS V1R6

Figure 8-80 Changes to LFS for zFS PFS termination

AUTOMOVE changes with z/OS V1R6
For sysplex-aware file systems (R/O file systems), the behavior in AUTOMOVE situations is
changed with z/OS V1R6. It now has the following characteristics:

� If AUTOMOVE(NO) or if an automove syslist is specified, it changes to AUTOMOVE(YES)
and a new message, BPXF234I is issued.

� A move to any systems in the sysplex (SYSNAME=*) ignores an automove syslist if the
file system is sysplex-aware and considers all systems as move candidates. It has always
ignored AUTOMOVE(NO) and AUTOMOVE(UNMOUNT) if sysplex-aware.

� Dead system recovery and takeover has always ignored AUTOMOVE(NO) and
AUTOMOVE(UNMOUNT) for sysplex-aware, and has still attempted to have all systems
try takeover. But it was honoring the automove syslist regardless of sysplex-awareness. It
now ignores an automove syslist as well if sysplex-aware, and allows all systems to try to
takeover.

� If no system could take it over, AUTOMOVE(UNMOUNT) unmounts the file system and its
subtree—but for AUTOMOVE(NO), or with a syslist, the file system becomes unowned.

Try to move the ownership of file systems owned by
the system where the PFS is terminating to another
sysplex system

Ignore AUTOMOVE(NO), AUTOMOVE(UNMOUNT)
and AUTOMOVE Syslist, if sysplex-aware file systems

If it cannot be moved, then globally unmount it and its
subtree

Function ship the file system requests to the owner of
file systems in the sysplex and avoid local unmounts

If PFS re-starts, then any sysplex-aware file systems
will convert back from function-shipping to local mount
466 ABCs of z/OS System Programming Volume 9

8.80 Systems accessing file systems

Figure 8-81 Multiple systems accessing file systems with z/OS V1R6

Multiple systems accessing file systems with z/OS V1R6
In this example, two file systems are owned by system SY1. One is in READ/WRITE(R/W)
mode and the other is mounted READ only (R/O).

SY2 and SY3 can access the R/O file system directly.

SY2 and SY3 can access the R/W file system owned by SY1 by sending function-ship
requests via XCF.

Therefore, in this shared environment, all systems can access the R/W and R/O file systems
that are owned by SY1.

ZFS

SY1
z/OS V1R6

ZFS

SY2
z/OS V1R6

OMVS.TEST2.ZFS

F

/

F
F F

F

 OWNER
(Coordinator)

XCF ZFS

SY3
z/OS V1R6

OMVS.TEST1.ZFS

F

/

F
F F

F

XCF

Locally mounted
Read (R/O) Locally mounted

Read (R/O)

R/OR/W

Function-ships
R/W requests

Function-ships
R/W requests
Chapter 8. Managing file systems 467

8.81 Accessing file systems when zFS terminates

Figure 8-82 z/OS V1R6 functional changes when zFS PFS terminates

zFS PFS and LFS support in z/OS V1R6
The figure shows that SY2 is now the new owner (coordinator) of the two file systems as
follows:

1. The file systems owned by SY1, OMVS.TEST1.ZFS (R/W) and OMVS.TEST2.ZFS (R/O)
are automoved to SY2. SY2 becomes the new owner.

2. The other two systems, SY2 and SY3, still maintain the R/O zFS file system locally
mounted as read (R/O). SY2 is the new owner of the R/O file system.

3. Any R/W request from SY3 to the R/W file system now owned by SY2 is passed through
the XCF messaging function, which is referred to as a function-shipping request.

4. All users on the SY1 system that were using the (R/O) and (R/W) file systems on SY1 now
have access to them through the XCF messaging function, which is referred to as
function-shipping requests.

ZFS

SY1
z/OS V1R6

OMVS.TEST2.ZFS

F

/

F
F F

F

ZFS

SY3
z/OS V1R6

OMVS.TEST1.ZFS

F

/

F
F F

F

XCF
ZFS

SY2
z/OS V1R6

Locally mounted
Read (R/O)

Locally mounted
Read (R/O)

XCF

 OWNER
(Coordinator)

R/W R/O

zFS PFS
terminated Function-ships

R/W requests
Function-ships
requests for all
(R/W & R/O)
468 ABCs of z/OS System Programming Volume 9

8.82 AUTOMOVE behavior with z/OS V1R6

Figure 8-83 Changed behavior in z/OS V1R6

AUTOMOVE changed behavior in z/OS V1R6
MOUNT allows AUTOMOVE(YES) or AUTOMOVE(UNMOUNT).

� Remount does not change the AUTOMOVE setting. Therefore, a remount from R/W to
R/O when the AUTOMOVE is NO does not change it to AUTOMOVE(YES), even though it
is now sysplex-aware.

� Remount is expected to be used on R/O file systems to temporarily switch to R/W to apply
maintenance, and then back to R/O. AUTOMOVE is not significant for R/O
(sysplex-aware) file systems.

� PFS termination ignores AUTOMOVE(NO) or AUTOMOVE(UNMOUNT) if the file system
is sysplex-aware, and goes ahead and tries to move ownership and then perform a local
to function-ship conversion.

MOUNT allows AUTOMOVE(YES | NO) or

AUTOMOVE(UNMOUNT)

Remount will not change the AUTOMOVE setting -So

a remount from R/W to R/O when the AUTOMOVE is

NO, will not change it to AUTOMOVE(YES), even it is

now sysplex-aware

PFS termination ignores AUTOMOVE(NO) or

AUTOMOVE(UNMOUNT) if sysplex-aware, will go

ahead and try to move ownership and then perform a

local to function-ship conversion
Chapter 8. Managing file systems 469

8.83 z/OS V1R6 AUTOMOVE handling change

Figure 8-84 AUTOMOVE(NO) handling

Changed behavior during move
Move (takeover) of a sysplex-aware file system from a down level system (where it may have
been mounted with AUTOMOVE(NO) or with a syslist) to a V1R6 system will result in
AUTOMOVE being changed to YES.

This will only be true if all systems are at least at V1R6 or higher because down-level systems
will not know to update their AUTOMOVE settings on an xs_newowner.

This will result in the hardcopy message:

BPXF234I FILE SYSTEM X.Y.Z WAS MOUNTED WITH AUTOMOVE(YES).

Dead system takeover
This refers to a system that was the owner of one or more file systems that leaves the
sysplex. The remaining systems run “member gone” and mark those file systems as “in
recovery.” Takeover code may then attempt to take over ownership, depending on
AUTOMOVE and sysplex-awareness.

A sysplex-aware file system owner is only a nominal owner. It does not function as a server
(no function-shipping by other systems, since they have local mounts).

The improved algorithm has a more intelligent choice of an owner.

BPXF234I “FILE SYSTEM OMVS.TEST1.ZFS WAS MOUNTED WITH AUTOMOVE(YES)”

A move of a file system that is either
AUTOMOVE(NO) or has Automove Syslist to a new
z/OS V1R6 owner

Changes to AUTOMOVE(YES), and issue BPXF234I

This is true for manual move and file system Dead
System Recovery and unowned file system takeover
processing
470 ABCs of z/OS System Programming Volume 9

8.84 zFS command changes for sysplex

Figure 8-85 Command changes with z/OS V1R7

zfsadm commands in a sysplex
Previously, zfsadm commands (and the pfsctl APIs) could only display or change information
that is located or owned on the current member of the sysplex. The pfsctl (BPX1PCT)
application programming interface is used to send physical file system specific requests to a
physical file system. zFS pfsctl APIs do not work across sysplex members. zFS pfsctl APIs
can query and set information on the current system only. However, if all systems are running
z/OS V1R7, zFS pfsctl APIs will work across sysplex members.

DFSMS backups
A particular problem is quiescing of a zFS aggregate. When DFSMS is used to back up a zFS
aggregate, the aggregate is quiesced by DFSMS before the backup. Currently, in order for
this quiesce to be successful, it must be issued on the system that owns the aggregate. If it is
issued on any other system in the sysplex, the quiesce fails (and the backup fails). It is a
problem to issue the backup on the owning system because ownership can change at
anytime as a result of operator command or system failure. zfsadm command forwarding
allows the quiesce (or any other zfsadm command) to be issued from any member of the
sysplex beginning with z/OS V1R7. This function is used by:

� DFSMS backup (ADRDSSU)

� ISHELL

� zFS Administrators

Previously, zfsadm commands (and the pfsctl APIs)
could only display or change information that is
located or owned on the current member of the
sysplex

Only issued from the owning system

When DFSMS is used to backup a zFS aggregate,
the aggregate is quiesced by DFSMS before the
backup

In order for this quiesce to be successful, it must be
issued on the system that owns the aggregate

zfsadm commands cannot be routed to
systems not running at z/OS V1R7
Chapter 8. Managing file systems 471

8.85 zfsadm command changes for sysplex

Figure 8-86 Sysplex support for zfsadm commands

zfsadm commands with sysplex sharing
If all systems are running z/OS V1 R7, all zfsadm commands work across sysplex members.
The zfsadm commands act globally and report or modify all zFS objects on any system in the
sysplex.

However, there are configuration dependencies. Whether zfsadm commands act globally
across the sysplex depends on the BPXPRMxx SYSPLEX option. If SYSPLEX(YES) is
specified, then you are in a shared file system environment and zfsadm commands will act
globally. If the IOEFSPRM sysplex=off is specified, or if the BPXPRMxx SYSPLEX option
specifies SYSPLEX(NO), then zfsadm commands will not act globally.

All zfsadm commands that apply to zFS aggregates or file systems work against all
aggregates and file systems across the sysplex. The following zfsadm commands can
optionally direct their operation to a particular member of the sysplex: aggrinfo, attach,
clonesys, config, configquery, define, detach, format, lsaggr, lsfs, and query.

New -system option
The -system system name specifies the name of the system the report request will be sent to,
to retrieve the data requested.

In z/OS V1R7, if you are in a shared file system
environment, zfsadm commands and zFS pfsctl APIs
generally work across the sysplex

There are two main changes:

The zfsadm commands act globally and report or
modify all zFS objects across the sysplex

They support a new –system option that limits output
to zFS objects on a single system or sends a request
to a single system

-system system name

zfsadm commands can now be routed
to systems running z/OS V1R7
472 ABCs of z/OS System Programming Volume 9

8.86 z/OS V1R7 zfsadm command changes

Figure 8-87 New options with the zfsadm configquery command

zfsadm command options
The zfsadm configquery command displays the current value of zFS configuration options.
The value is retrieved from ZFS address space memory rather than from the IOEFSPRM file
or BPXPRMxx PARMLIB member. You can specify that the configuration option query
request should be sent to another system by using the -system option.

The zfsadm configquery command has the following new options:

-system system name Specifies the name of the system the report request will be sent to,
to retrieve the data requested.

-group Displays the XCF group used by ZFS for communication between
sysplex members.

-sysplex_state Displays the sysplex state of ZFS. Zero (0) indicates that ZFS is
not in a shared file system environment. One (1) indicates that ZFS
is in a shared file system environment.

zfsadm configquery command options

 -group

 -system system name

 -sysplex_state

-sysplex_state

Displays the sysplex state of ZFS. Zero (0) indicates that
ZFS is not in a shared file system environment. One (1)
indicates that ZFS is in a shared file system environment

$> zfsadm configquery -sysplex_state
IOEZ00317I The value for configuration option -sysplex_state is 1.
Chapter 8. Managing file systems 473

8.87 Configuration options - z/OS V1R7

Figure 8-88 Examples of new command configuration options for sysplex

Command forwarding with z/OS v1R7
Using the -system system name as a parameter with the zfsadm command, it specifies which
system to route the command to. The following command displays the attached aggregates
on system SC70. The command was issued from system SC65.

PAUL @ SC65:/>zfsadm aggrinfo -system sc70
IOEZ00368I A total of 1 aggregates are attached to system SC70.
ROGERS.HARRY.ZFS (R/W COMP): 3438 K free out of total 3600

Sysplex group
Beginning with z/OS V1 R7, zFS administration commands use XCF communications to
exchange zFS aggregate and file system information between members of the sysplex.
During zFS initialization, zFS must contact each other zFS system that is active in the sysplex
group to announce itself to the other members of the group and to receive information about
attached aggregates from the other members of the group. The zFS group name can be
defined in the IOEFSPRM file or the IOEPRMxx PARMLIB member. The following command
displays the group and IOEZFS is the default if not specified.

PAUL @ SC65:/>zfsadm configquery -group
IOEZ00317I The value for configuration option -group is IOEZFS.

-system system name
Specifies the name of the system the report request will
be sent to, to retrieve the data requested

-group
Display XCF group for communication between members

Default Value: IOEZFS
Expected Value: 1 to 8 characters
Example group: IOEZFS1

PAUL @ SC65:/>zfsadm configquery -group
IOEZ00317I The value for configuration option -group is IOEZFS.

PAUL @ SC65:/>zfsadm aggrinfo -system sc70
IOEZ00368I A total of 1 aggregates are attached to system SC70.
ROGERS.HARRY.ZFS (R/W COMP): 3438 K free out of total 3600
474 ABCs of z/OS System Programming Volume 9

8.88 zFS command forwarding support

Figure 8-89 How commands are processed with command forwarding

Command forwarding
For full sysplex support, zFS must be running on all systems in the sysplex with z/OS V1R7.
You can display and modify zFS aggregates and file systems using zfsadm from any member
of the sysplex regardless of which member owns the aggregate. The zfsadm lssys command
shows the names of the members in a sysplex, as follows:

PAUL @ SC65:/>zfsadm lssys
IOEZ00361I A total of 2 systems are in the XCF group for zFS
SC65
SC70

zfsadm commands in a sysplex
Now, zfsadm subcommands are global to sysplex, as follows:

aggrinfo,clonesys,lsaggr,lsfs

Now, zfsadm commands “go” to the correct system, as follows:

aggrinfo,clone,create,delete,grow,lsfs,lsquota,quiesce,rename,setquota,
unquiesce

Now, zfsadm commands can be limited/directed to a system, as follows:

aggrinfo,attach,clonesys,config,configquery,define,detach,format,lsaggr,lsfs,
query

z/OS V1R7 - Ability to issue zFS file system commands
from anywhere within a sysplex using:

-system system name

Allows quiesce of zFS from any LPAR in a sysplex

zfsadm commands display info on all members
aggrinfo - clonesys - lsaggr - lsfs

zfsadm commands go to the correct system automatically
aggrinfo, clone, create, delete, grow, lsfs, lsquota,
quiesce, rename, setquota, unquiesce

zfsadm commands can be limited/directed to a system

aggrinfo, attach, clonesys, config, configquery, define,
detach, format, lsaggr, lsfs, query
Chapter 8. Managing file systems 475

8.89 Command forwarding support

Figure 8-90 Other functions enhanced by the command forwarding support

Command forwarding
Command forwarding support is an enhancement in z/OS V1R7. This allows zFS commands
to be issued from any system in a sysplex without regard to which system owns the file
system. DFSMS backup (ADRDSSU) now automatically exploits this function. Backups can
now be issued from any member of the sysplex

DFSMS backup with ARDRSSU
If any systems in the sysplex are running a release of z/OS lower than Version 1 Release 7,
the job must be run on the sysplex member where the aggregate(s) is attached. If the job is
not run on the same member of the sysplex, the quiesce will fail and the job will terminate.
However, if all systems in the sysplex are running z/OS Version 1 Release 7, you can run the
backup job on any member of the sysplex.

zfsadm commands will now display and work with
zFS aggregates and file systems across the sysplex

This enhancement is exploited by:

DFSMS backup (ADRDSSU)

Backups can now be issued from any member of the
sysplex when all members are at z/OS V1R7
regardless of which member owns the file system

ISHELL

zFS administrators
476 ABCs of z/OS System Programming Volume 9

8.90 Centralized BRLM support

Figure 8-91 Centralized BRLM support

Centralized BRLM
The byte-range lock manager (BRLM) is used to lock all or part of a file that you are
accessing for read-write purposes.

As a default, the lock manager is initialized on only one system in the sysplex. The first
system that enters the sysplex initializes the BRLM and becomes the system that owns the
manager. This is called a centralized BRLM.

In a sysplex environment, a single BRLM handles all byte-range locking in the shared file
system environment group. If the BRLM server crashes, or if the system that owns the BRLM
is partitioned out of the sysplex, the BRLM is reactivated on another system in the group. All
locks that were held under the old BRLM server are lost. An application that accesses a file
that was previously locked receives an I/O error, and has to close and reopen the file before
continuing.

Lock all or part of a file that you are accessing for:

Read-write purposes

As a default, the lock manager is initialized on only
one system in the sysplex

The first system that enters the sysplex initializes the
BRLM and becomes the system that owns the
manager - This is called a centralized BRLM

If the BRLM server crashes, or owning system
partitioned out of the sysplex

BRLM is reactivated on another system in the group

All locks that were held are lost

An application that accesses a file previously locked
receives an I/O error - must close and reopen the file
Chapter 8. Managing file systems 477

8.91 Distributed BRLM

Figure 8-92 Distributed BRLM

Distributed BRLM
You can choose to have distributed BRLM initialized on every system in the sysplex. Each
BRLM is responsible for handling locking requests for files whose file systems are mounted
locally in that system. Use distributed BRLM if you have applications that lock files that are
mounted and owned locally.

For distributed BRLM to be activated, the z/OS UNIX couple data set (BPXMCDS) must be
updated and the supported code must be installed and running on each system. See APAR
OW52293 for more information.

BRLM with z/OS V1R4
z/OS R1V4 implements the first phase of moveable BRLM in a sysplex. Moveable BRLM
provides the capability of maintaining the byte range locking history of applications, even
when a member of the sysplex dies. This first phase will focus on distributing the locking
history across all members of the sysplex. As a result, many applications that lock files that
are locally mounted will be unaffected when a remote sysplex member dies. Movement away
from a centralized to a distributed BRLM will provide greater flexibility and reliability.

Can have distributed BRLM initialized on every
system in the sysplex

Each BRLM is responsible for handling locking
requests for files whose file systems are mounted
locally in that system

Use distributed BRLM if you have applications that
lock files that are mounted and owned locally

To activate distributed BRLM

z/OS UNIX couple data set (BPXMCDS) must be
updated

Supported code must be installed and running on
each system - See APAR OW52293 for more
information
478 ABCs of z/OS System Programming Volume 9

8.92 Define BRLM option in CDS

Figure 8-93 BRLM and the OMVS couple data set

BRLM and OMVS couple data set
This support allows you to change to using distributed BRLM (rather than a single, central
BRLM) in the sysplex. With distributed BRLM, each system in the sysplex runs a separate
BRLM, which is responsible for locking files in the file systems that are owned and mounted
on that system. Because most applications (including cron, inetd, and Lotus® Domino) lock
local files, the dependency on having a remote BRLM up and running is removed. Running
with distributed BRLM is optional.

OMVS couple data set

ITEM NAME(DISTBRLM) NUMBER(1)
 /*Enables conversion to a distributed BRLM.
 1, distributed BRLM enabled,
 0, distributed BRLM is not enabled during next sysplex IPL
 Default = 0 */

Applications (including cron, inetd, and Lotus Domino)
lock local files

BPXMCDS

See http://www-03.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html
for the rangelks REXX tool to identify currently running lock holders
Chapter 8. Managing file systems 479

8.93 BRLM problems in a sysplex

Figure 8-94 Moving byte range locks in z/OS V1R6

Byte-range locks with z/OS V1R6
With V1R6, the lock manager is initialized on every system in the sysplex. This is known as
distributed BRLM, and it is the only supported byte-range locking method when all systems
are at the V1R6 level. Each BRLM is responsible for handling locking requests for files whose
file systems are mounted locally in that system. Distributed BRLM was an option on previous
levels of z/OS, and central BRLM was formerly the default.

When a system failure occurs, all byte-range locks are lost for files in file systems owned by
that system. To maintain locking integrity for those locked files that are still open on surviving
systems, z/OS UNIX prevents further locking or I/O on those files. In addition, the applications
are signaled, in case they never issue locking requests or I/O. Running applications that did
not issue locking requests and did not have files open are not affected.

If you are already running with a z/OS UNIX CDS indicating that distributed BRLM is enabled,
there is no change required to activate distributed BRLM for V1R6. Likewise, if your sysplex
only has systems at the V1R6 level, there is no change required because distributed BRLM is
the default. V1R6 systems ignore the z/OS UNIX CDS DISTBRLM setting.

However, if you migrate to V1R6 by running mixed levels in a sysplex, you should enable
distributed BRLM before IPLing the V1R6 system because a V1R6 system may attempt to
activate distributed BRLM when the central BRLM server leaves the sysplex, regardless of
the z/OS UNIX CDS setting.

A file system cannot be moved in a sysplex when an

application holds byte range locks in that file system

Moving of locks was not supported with distributed

BRLM

Also, applications holding byte range locks in a

remote file system are exposed when that remote

sysplex member normally terminates

The locks are lost and the application is notified

Solution z/OS V1R6:

Distributed BRLM is enhanced to support moving byte

range locks
480 ABCs of z/OS System Programming Volume 9

8.94 z/OS V1R8 BRLM recovery of locks

Figure 8-95 BRLM recovery of locks

BRLM lock recovery
Management of locks in a z/OS UNIX environment began with OS/390 V2R9 using central
BRLM in a shared HFS sysplex that included support for one BRLM. This implementation
became a single point of failure. z/OS V1R4 offered distributed BRLM, which provided one
BRLM per system in a sysplex where lock commands are routed to the file system owner. In
z/OS V1R6, distributed BRLM with moveable locks was introduced and the locks moved
when the file system moved. Distributed BRLM then became the default in a z/OS V1R6
sysplex.

In z/OS V1R8, the ability to recover file locks when the remote system fails is implemented.
The order for a remote file lock occurs in the following way:

1. An application issues a lock for a file owned by another system.

2. USS forwards the lock to that system’s BRLM.

3. USS forwards the lock to the owner system’s BRLM.

4. …... file owner system fails.

5. USS recovers the file system and declares a new owning system.

6. USS re-issues the lock to the new owner.

Attention: When the file system containing the file is owned remotely, the lock will also be
remote.

When an USS application locks a remote file, the
lock is lost when the remote system is lost

Solution: Back up remote locks locally, and recover
them when a system fails

An application issues a lock for a file owned by
another system

USS forwards the lock to that systems BRLM

USS forwards the lock to the owner systems BRLM

…... file owner system fails

USS recovers the file system and declares a new
owning system

USS re-issues the lock to new owner
Chapter 8. Managing file systems 481

8.95 File system access

Figure 8-96 Accessing file system data from different methods

Accessing file system data
We have seen how we can customize the HFS for use. But who can use the HFS and the
z/OS UNIX? The z/OS UNIX file system can be used or accessed by using any of the
following:

TSO/E TSO/E has commands for browsing and editing HFS files, for copying
data between HFS files and MVS data sets, to mount file systems, to
invoke the z/OS UNIX shell. There is also a command called ISHELL
which provides an ISPF menu-driven interface to the file system.

JCL JCL provides keywords which support the specification of HFS path
names.

REXX REXX has a set of z/OS UNIX extensions (syscall commands) to access
z/OS UNIX callable services.

z/OS UNIX shell The shell is the UNIX interface to the file system. It contains commands
and utilities to access HFS files.

C programs z/OS UNIX supports many C functions to access HFS files.

Shell scripts Shell scripts are similar to REXX execs. UNIX System Services shell
commands and utilities can be stored in a text file which can be executed.

The HFS data set cannot be OPENed by any MVS utilities. Only DFSMSdss can be used to
dump and restore this data set type. The internal structure of an HFS data set is only
accessible via z/OS UNIX System Services.

REXX
execs

Shell
scripts

TSO z/OS Shell

JCL programs

MOUNT
MKDIR
OGET
OPUT

OCOPY
OEDIT
OBROWSE
ISHELL

PATHNAME
PATHDISP
PATHMODE
PATHOPTS
DSNTYPE

open()
read()
write()
close()

ls -l /u/op251
mkdir /u/op251/dir1
cd /u/op251/dir1
oedit 'newfile'
cat newfile

Clists
JAVA
prg.TCP/IP

Dir Dir Dir

F

F

F

F

Dir

F

482 ABCs of z/OS System Programming Volume 9

8.96 File access

Figure 8-97 File system access versus MVS data set access

File access comparison
Figure 8-97 shows corresponding file access methods in z/OS and the POSIX standard.

The big difference is only the file handling. While OS/390 gives you file handle methods (you
do not have to implement this), the POSIX standard does not define the file handling
methods. So any application running on the POSIX standard is responsible for storing and
retrieving data from and to the file.

ALLOCATION
OPEN
GET
PUT
ENQ
CLOSE
UNALLOCATION

Security VIA
DATA SET
PROFILES

EXCP
BDAM
BSAM
ISAM
VSAM

VTAM

z/OS UNIX

open()
read()
write()
fcntl() advisory
locking
close()

permission bits
on each file

RECORD
 ORIENTED

KSDS

ESDS

byte stream
file organization is the
applications resposibility

z/OS
Chapter 8. Managing file systems 483

8.97 List file and directory information

Figure 8-98 Command to access file and directory information

Displaying files and directories
Figure 8-98 shows the output of the ls -alEW command.

� File type describes the type of file (for example, d Directory, l Symbol link, c Character
special file, f Regular file, and so on).

� File permissions are Read Write Execute for user group and other. Sticky Bit.

� Owner audit (f for failed, s for successful access if audit attribute is set).

� Auditor audit is the same as for owner audit.

� External attributes.

� Links are the number of links to the file.

� Owner user ID shows which user ID owns the file or directory.

� Owner Group ID shows the name of the group that owns this file or directory.

� File size is the size of the file in bytes.

� Date and Time shows the date and time of change or creation.

� Name specifies a file name or link pointing to the file name.

GGI:TC4:/:==>ls -alEW
-rw------- fff--- --s 1 OMVSKERN SYS1 43 Jan 28 09:23 .sh_history
drw------- fff--- 2 OMVSKERN SYS1 0 Jan 22 14:34 \TFS
drwxr-xr-x fff--- 4 OMVSKERN OMVSGRP 0 Jul 27 1998 bin
drwxr-xr-x fff--- 2 OMVSKERN OMVSGRP 0 Jul 26 1998 dev
drwxr-xr-x fff--- 9 OMVSKERN OMVSGRP 0 Jan 25 08:40 etc
lrwxrwxrwx fff--- 1 OMVSKERN SYS1 16 Jan 22 14:04 krb5 -> etc/
 dce/var/krb5

File
type

File
permissions

Links

Owner
userid

Owner
groupid

File
size

Date
and
time

Name

Owner
audit
-W

Extended
attributes

- E

Auditor
audit
- W
484 ABCs of z/OS System Programming Volume 9

8.98 File security packet - extattr bits

Figure 8-99 Extended attribute bits in the FSP

extattr bits in the FSP
The extended attributes are kept in the file security packet (FSP). The extended attributes
give special authorities to the files. The extattr command is used to set these attributes.

a When this attribute is set (+a) on an executable program file (load module), it behaves as
if loaded from an APF-authorized library. For example, if this program is exec()ed at the
job step level and the program is linked with the AC=1 attribute, the program will be
executed as APF-authorized. To be able to use the extattr command for the +a option,
you must have at least READ access to the BPX.FILEATTR.APF FACILITY class profile.

l When this attribute is set (+l) on an executable program file (load module), it will be
loaded from the shared library region. To be able to use the extattr command for the +l
option, you must have at least READ access to the BPX.FILEATTR.SHARELIB
FACILITY class.

p When this attribute is set (+p) on an executable program file (load module), it causes the
program to behave as if an RDEFINE had been done for the load module to the
PROGRAM class. When this program is brought into storage, it does not cause the
environment to be marked dirty. To be able to use the extattr command for the +p option,
you must have at least READ access to the BPX.FILEATTR.PROGCTL FACILITY class.

s If the extended attribute for the shared address space is not set, the program will not run
in a shared address space, regardless of the setting of _BPX_SHAREAS. The attribute is
set by extattr +s and reset by extattr -s.

File Permission Bits
File Mode

extattr

(FSP)

File
Owner

UID

File
Owner

GID

S
e
t
U
I
D

S
e
t
G
I
D

S
t
i
c
k
y

r w x r w x r w x

Owner Group Other
extattr File

Owner
 RACF
Auditor

ACLs

extattr bits control the following for files:
APF authorization
Program control
Programs sharing address spaces
Programs sharing libraries

Sticky bit: executable is to be searched
 in z/OS LPA and Libraries
 (STEPLIB, LPA, LNKLST)
SetGID: the effective GID is the file
 owner's GID during execution
SetUID: the effective UID is the file
 owner's UID during execution

p: the executable is
 'program controlled'
a: the executables is
 APF authorized
s: the program does not
 run in shared address
 space if bit is off
l : shared library program

File format (New)

F: File format
Chapter 8. Managing file systems 485

F The extattr command is used to set a file format for a file, but it cannot be set for
symlinks and directories.
486 ABCs of z/OS System Programming Volume 9

8.99 Extended attributes

Figure 8-100 Listing the extended attributes

Extended attributes bits
The extended attributes give special authorities to the files. Four different extended attributes
are defined:

APF Authorized programs The behavior of these programs is the same as other
programs that are loaded from APF-authorized libraries.

Program-controlled program All programs that are loaded into an address space that
requires daemon authority need to be marked as
“controlled.”

Shared AS The program shares its address space with other programs.

Shared library Programs using shared libraries contain references to the
library routines that are resolved by the loader at run time.

File format The file format can now be specified as any of the following
formats: binary data, newline, carriage return, line feed,
carriage return followed by line feed, line feed followed by
carriage return, or carriage return followed by newline.

Extended attribute bits - (ls -E)
The ls -E shell command has an option that displays these attributes:

a Program runs APF-authorized if linked AC=1

p Program is considered program-controlled

APF Authorized

Prg Controlled

 File format
shared library
Shared AS

rwx rwx rwx fff--- a p s l F filename

a
p
s
l

ls -EH

extattr command

F New with
 V1R8
Chapter 8. Managing file systems 487

s Program runs in a shared address space

l Program is loaded from the shared library region

Extended attribute bits - (ls -H)

In Figure 8-101 on page 488 you can see the output of the ls command using the -H option,
which allows the file format to be displayed for a file.

Figure 8-101 Sample output of ls -H

Figure 8-102 Sample output of ls -EH

extattr command
To set the extended attribute bits, the extattr command can be used.

Displaying extended attributes
The status of the extended attributes can be shown with the following commands:

ls Sticky Bit and Set UID/GID Bit

ls -E APF Auth., Program Control, Shared AS, and shared library

ls -W RACF Audit

Setting the extended attributes
With the following commands you can set the different extended attributes:

chmod Sticky Bit, Set UID/GID

mkdir Sticky Bit

extattr Program Control, APF authorized, Shared AS

ROGERS @ SC75:/u/rogers>extattr -F CRLF maxcore
ROGERS @ SC75:/u/rogers>ls -H
total 160
-rwxr-xr-x crlf 1 SYSPROG SYS1 73728 Apr 21 16:08 maxcore
ROGERS @ SC75:/u/rogers>

ROGERS @ SC64:/u/rogers>ls -EH
total 240
-rw-r--r-- --s- nl 1 HAIMO SYS1 1570 Jun 14 2006 CEEDUMP.2006061
4.094113.67305623
-rwxr-xr-x a-s- ---- 1 HAIMO SYS1 0 Aug 17 2005 apf.file
drwxr-xr-x 2 HAIMO SYS1 8192 Feb 28 2006 cache1
drwxr-xr-x 2 HAIMO SYS1 8192 Feb 28 2006 cache2
drwxr-xr-x 2 HAIMO SYS1 8192 Mar 2 2006 cachex
drwxr-xr-x 2 HAIMO SYS1 8192 Mar 2 2006 cachey
-rwx------ --s- nl 1 HAIMO SYS1 729 Aug 2 11:32 cbprnt
drwxr-xr-x 2 HAIMO SYS1 8192 Feb 21 2006 fill
drwxr-xr-x 2 HAIMO SYS1 8192 Feb 21 2006 fill3
drwxr-xr-x 2 HAIMO SYS1 8192 Feb 21 2006 fill4
drwxr-xr-x 2 HAIMO SYS1 8192 Feb 23 2006 fill5
-rwx------ --s- nl 1 HAIMO SYS1 648 Sep 4 01:31 gener
drwxr-xr-x 2 HAIMO SYS1 8192 Feb 8 2006 largezfs
488 ABCs of z/OS System Programming Volume 9

8.100 APF-authorized attribute

Figure 8-103 APF-authorized attribute

APF-authorized bit
The entire HFS is considered as an unauthorized library. You can authorize individual
programs within the HFS as APF-authorized by setting the APF-extended attribute. If a
program running in an APF-authorized address space attempts to load a program from the
HFS that does not have the APF-extended attribute set, the load is rejected. This applies to
non-jobstep exec local spawn, attach_exec, and DLL loads.

In order to activate APF authorization, the RACF profile BPX.FILEATTR.APF must be
defined. The z/OS UNIX administrator must have read access to this profile to execute the
extattr command, as follows:

� To turn on the APF-authorized program bit, issue:
extattr +a filename

� To remove the APF-authorized program bit, issue:
extattr -a filename

You can link-edit the program into an APF-authorized library and turn on the sticky bit in the
HFS. You can use the extattr shell command to set the APF-authorized extended attribute
of the file.

If an APF-authorized program is the first program to be executed in an address space, then
you also need to set the Authorization Code to 1 (AC=1) when your program is link-edited. If
a program is loaded into an APF-authorized address space but is not the first program to be
executed, it should not have the AC=1 attribute set.

SETROPTS RACLIST(FACILITY) REFRESH

RDEFINE FACILITY -
BPX.FILEATTR.APF -
UACC(NONE)

PERMIT BPX.FILEATTR.APF -
CLASS(FACILITY) ID(UNIXSYS) -
ACCESS(READ)

AC=1

extattr +a filename

User: UNIXSYS

extattr +a filename

extext

rwxrwxrwx a--- filename
Chapter 8. Managing file systems 489

8.101 Activate program control

Figure 8-104 Program control extended attribute

Program control attribute bit
All programs loaded into an address space that requires daemon authority need to be marked
as controlled. This means that user programs and any run-time library modules that are
loaded must be marked as controlled.

You can mark programs in HFS files as controlled by turning on the extended attribute that
allows you to run program-controlled. To turn this extended attribute on:

extattr +p filename
extattr +p /user/sbin/proga

Only users with the correct permission can turn on the extended attribute. The example
above shows the RACF command used to give this permission to z/OS UNIX administrator
UNIXSYS. To turn off the extended attribute, use the extattr shell command:

extattr -p filename
extattr -p /user/sbin/su

After a file is marked program-controlled, any activity that can change its contents results in
the extended attribute being turned off. If this occurs, a system programmer with the
appropriate privilege will have to verify that the file is still correct and reissue the extattr
command to mark the file as program-controlled.

All modules loaded from LPA are considered to be controlled.

RACF Security z/OS UNIX

SETROPTS RACLIST(FACILITY) REFRESH

RDEFINE FACILITY -
BPX.FILEATTR.PROGCTL -
UACC(NONE)

PERMIT BPX.FILEATTR.PROGCTL -
CLASS(FACILITY) ID(UNIXSYS) -
ACCESS(READ)

User: UNIXSYS

extattr +p filename rwxrwxrwx -p- filename

extattr +p filename

extext
490 ABCs of z/OS System Programming Volume 9

8.102 Shared address space attribute

Figure 8-105 Shared AS extended attribute

Shared address space attribute bit
To improve the performance in the shell, the extended attribute for shared AS can be set. The
program will share this address space with other programs.

To turn this extended attribute on:

extattr +s filename

To turn off the bit:

extattr -s filename

When this attribute is not set (-s), the _BPX_SHAREAS environment variable is ignored when
the file is spawn()ed. By default, this attribute is set (+s) for all executable files.

To improve performance for all shell users, it is recommended that /etc/profile or
$HOME/.profile set the environment variable.

z/OS UNIX profile

extattr +s filename

User: UNIXSYS

extattr +s filename rwxrwxrwx --s filename

z/OS UNIX

_BPX_SHAREAS=....exattr -s filename

/etc/profile
or $HOME/.profile

 export _BPX_SHAREAS=YES

(2). Set bit

extext

(1). If bit is not set, turn it on
Chapter 8. Managing file systems 491

8.103 Shared library attribute

Figure 8-106 Shared library extended attribute

Shared library attribute bit
When this attribute is set (+l) on an executable program file (load module), it will be loaded
from the shared library region.

To be able to use the extattr command for the +l option, you must have at least READ
access to the BPX.FILEATTR.SHARELIB FACILITY class. For more information, see z/OS
UNIX System Services Planning, GA22-7800.

The BPX.FILEATTR.SHARELIB FACILITY class profile controls who can set the shared
library extended attribute. The following example shows the RACF command that was used
to give READ access to user Ralph Smorg with user ID SMORG:

RDEFINE FACILITY BPX.FILEATTR.SHARELIB UACC(NONE)
PERMIT BPX.FILEATTR.SHARELIB CLASS(FACILITY) ID(SMORG) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

To set the shared library attribute, issue the extattr command with the +l option. In the
following example, proga is the name of the file.

extattr +l /user/sbin/proga

Note: l is a lower case L, not the numeral one or an upper case i.

z/OS UNIX Shell

SETROPTS RACLIST(FACILITY) REFRESH

RDEFINE FACILITY -
BPX.FILEATTR.SHARELIB -
UACC(NONE)

PERMIT BPX.FILEATTR.SHARELIB -
CLASS(FACILITY) ID(UNIXSYS) -
ACCESS(READ)

User: UNIXSYS

extattr +l /user/sbin/proga rwxrwxrwx -l- /user/sbin/proga

extattr +l /user/sbin/proga

extext
492 ABCs of z/OS System Programming Volume 9

8.104 File format attribute

Figure 8-107 Specifying the file format attribute

File format attribute
Prior to z/OS V1R8, there was no supported commands to set the file format from the OMVS
shell. The extattr command is enhanced to accept a –F option with values consistent with
the cp command to indicate the format of the file.

The syntax is as follows:

extattr [+alps] [-alps] [-F] file

Specifying the file format option
The format option can be specified in lowercase, uppercase, or in mixed case. The format
option can also be specified with a space or no space after the file format flag (-F). For
example, by specifying -F with line feed (LF) and carriage return (cr), as follows:

extattr -FLFcr filename

The file format flag (-F) can be used with other extattr flags (+alps/-alps), but it must be
separated by a space or tab. For example:

extattr +aps -F BIN filename (is a valid entry)
extattr -apsF NA filename (is not a valid entry)

So the option -F can have the values shown in Table 8-1 on page 494.

Support the file format from the OMVS shell
extattr command is enhanced to accept a –F option

Values - consistent with the cp command to indicate
the format of the file

extattr –F command from the shell
For format you can specify:

NA - Not specified
BIN - Binary data

Or the following text data delimeters:
NL – New Line
CR - Carriage Return
LF - Line Feed
CRLF - Carriage Return followed by Line Feed
LFCR - Line Feed followed by Carriage Return
CRNL - Carriage Return followed by New Line
Chapter 8. Managing file systems 493

Table 8-1 Possible -F options for extattr

The setting of a file format flag has no impact on the contents of the file. You can easily set
the file format flag as follows:

extattr -F CRLF extattr.test

In this example, the file extattr.test is set as a text file that contains carriage returns and file
feed—also known as a regular text file.

Value Format options

NA Not specified

BIN Binary data file

Value Text data delimeters

NL New line

CR Carriage return

LF Line feed

CRLF Carriage return followed by line feed

LFCR Line feed followed by carriage return

CRNL Carriage return followed by new line
494 ABCs of z/OS System Programming Volume 9

8.105 Extended attribute command example

Figure 8-108 Extended attributes displayed

Display of extended attributes
Setting the file format flag on a file does not modify the data in the file. The file format can be
displayed via the ls -H command.

Figure 8-108 shows a ls -alHE command that displays all five extended attributes. -E
displays the original four attributes.

In the output, --s- is the shared address space attribute for the files.

The file, maxcore, has the attributes --s- crlf, where crlf is the file format carriage return
and line feed.

ROGERS @ SC75:/u/rogers>ls -alHE
total 184
drwxr-x--- 7 SYSPROG SYS1 544 Sep 13 14:15 .
dr-xr-xr-x 7 SYSPROG TTY 0 Sep 13 13:54 ..
-rw------- --s- ---- 1 SYSPROG SYS1 638 Sep 15 13:35 .sh_history
drwxr-xr-x 2 SYSPROG SYS1 256 Sep 13 14:15 00000100
drwxr-xr-x 5 SYSPROG OMVSGRP 1120 Jul 26 21:57 ITSO-link
drwxr-xr-x 2 SYSPROG SYS1 256 Sep 13 14:06 db2
drwxr-xr-x 2 SYSPROG SYS1 256 Sep 13 14:05 echo
drwxr-xr-x 2 SYSPROG SYS1 256 Sep 13 14:15 ims
-rwx------ --s- ---- 1 SYSPROG SYS1 0 Aug 28 09:31 inetd-stderr
-rwx------ --s- ---- 1 SYSPROG SYS1 0 Aug 28 09:31 inetd-stdout
-rwxr-xr-x --s- crlf 1 SYSPROG SYS1 73728 Apr 21 16:08 maxcore

Example shows now both sets of extattr values

extattr -F CRLF maxcore
Chapter 8. Managing file systems 495

8.106 Sticky bit

Figure 8-109 Using the sticky bit

Sticky bit for files
The sticky bit is a file access permission bit that allows multiple users to share a single copy
of an executable file.

For frequently used programs in the HFS, you can use the chmod command to set the sticky
bit. This reduces I/O and improves performance. When the bit is set on, z/OS UNIX searches
for the program in the user's STEPLIB, the link pack area, or the link list concatenation.

Sticky bit for directories
Using the mkdir, MKDIR, or chmod command, you can set the sticky bit “on” in a directory to
control permission to remove or rename files or subdirectories in the directory. When the bit
is set, a user can remove or rename a file or remove a subdirectory only if one of these is
true:

� The user owns the file or subdirectory.
� The user owns the directory.
� The user has superuser authority.

The mkdir command creates a new directory for each named directory argument. The mode
for a directory created by mkdir is determined by taking the initial mode setting of 777 (a=rwx)
or the value of -m if specified and applying the umask to it.

Control File Access Performance
Improvement

Rename or remove
not allowed, unless:

user's STEPLIB
LINK PACK AREA
LINK LIST
Concat.

Searches in:

chmod a+t [file | directory]

mkdir -m a+t directory

The user owns the file
The user owns the directory
The user has superuser
authority

X bit on

X bit off

rwxrw-rw t --- ...filename

rwxrw-rw T --- ...directory
496 ABCs of z/OS System Programming Volume 9

The sticky bit is also set for frequently used programs in the file system, to reduce I/O and
improve performance. When the bit is set on, z/OS UNIX searches for the program in the
user's STEPLIB, the link pack area, or the link list concatenation.

Try the list command: ls -al.

Using the sticky bit
The following two possibilities show how the sticky bit is used:

T This is the same as t, except that the execute bit is turned off. That means 750 has not
turned on the executable bit for others, so Sticky Bit is: T

t Sticky bit is on. That means 755 has all executable bit on, so Sticky Bit is: t

The z/OS UNIX shell program (sh) is a good candidate, as follows:

� As part of the SMP/E install procedure for the shell, the shell program is placed in the root
directory (/bin/sh) and the sticky bit is set.

� The shell program is also placed in SYS1.LPALIB (SH).

� During an IPL with CLPA (create LPA), the shell program will be placed in the LPA.

� Any user that invokes the shell will use the shell module in LPA and save space and I/O,
since the module is not loaded into the user's address space.

If you use the rmdir, rename, rm, or mv utility to work with a file, and you receive a message
that you are attempting an operation not permitted, check to see if the sticky bit is set for
the directory the file resides in.

Note: Only someone with root authority can set the sticky bit.
Chapter 8. Managing file systems 497

8.107 Set the UID/GID bit

Figure 8-110 Using the setuid and setgid bits

Setuid and setgid bits
If one or both of these bits are on, the effective UID and/or GID plus the saved UID and/or GID
for the process running the program are changed to the owning UID, GID, or both, for the file.
This change temporarily gives the process running the program access to data the file owner
or group can access.

Settings for executable files
An executable file can have an additional attribute, which is displayed in the execute position
(x) when you issue ls -l. This permission setting is used to allow a program temporary
access to files that are not normally accessible to other users. An s or S can appear in the
execute permission position; this permission bit sets the effective user ID or group ID of the
user process executing a program to that of the file whenever the file is run. The setuid and
setgid bits are only honored for executable files.

Permission bit settings
These bits are not honored for shell script and REXX execs that reside in the file system.

s In the owner permissions section, this indicates that both the set-user-ID (S_ISUID) bit
is set and the execute (search) permission is set.

In the group permissions section, this indicates that both the set-group-ID (S_ISGID) bit
is set and the execute (search) permission is set.

chmod a+s filename rwSr-sr-x filename

rwSr-sr-x filename

setgid
setuid

User: Paul User: John

Temporarily changing the User ID or Group ID during execution

wants to exec a
program from user John

during program execution the
owning userid (John) is used
for all data access

(Issued by user John)
498 ABCs of z/OS System Programming Volume 9

S In the owner permissions section, this indicates the set-user-ID (S_ISUID) bit is set, but
the execute (search) bit is not.

In the group permissions section, this indicates the set-group_ID (S_ISGID) bit is set,
but the execute (search) bit is not.

Mailx utility example
A good example of this behavior is the mailx utility. A user sending something to another user
on the same system is actually appending the mail to the recipient's mail file. Even though the
sender does not have the appropriate permissions to do this, the mail program does.
Chapter 8. Managing file systems 499

500 ABCs of z/OS System Programming Volume 9

Chapter 9. Overview of TCP/IP

The Internet, the world's largest network, grew from fewer than 6000 participants at the end
of 1986 to millions of networks today. Networks have grown so quickly because they provide
an important service. It is the nature of computers to generate and process information, but
this information is useless unless it can be shared with the people who need it. The common
thread that ties the enormous Internet together is TCP/IP network software. TCP/IP is a set of
communication protocols that define how different types of computers talk to each other.

This chapter explains the basic concepts of TCP/IP, including architecture and addressing,
and describes how to customize TCP/IP to use it with UNIX System Services in z/OS.

9

Note: Many of the figures and examples included in this chapter refer to the lab exercises
for the companion class that is taught periodically. See the IBM Redbooks Web site for
more information about classes offered in your geographic area.
© Copyright IBM Corp. 2006, 2008. All rights reserved. 501

9.1 Introduction to TCP/IP

Figure 9-1 TCP/IP network

A TCP/IP network
In Figure 9-1:

� Host A wants to send an e-mail to Host B.

� Host A wants to transfer data to Host D.

� Host C wants to get a Web page from Host E.

� Host Z also wants access to Host E.

These activities are possible because a public network exists. Public networks are
established and operated by telecommunication administrations or by Recognized Private
Operating Agencies (RPOAs) for the specific purpose of providing circuit-switched,
packet-switched, and leased-circuit services to the public.

TCP/IP protocol suite
The TCP/IP protocol suite is named for two of its most important protocols: Transmission
Control Protocol (TCP) and Internet Protocol (IP). Another name for it is the Internet Protocol
Suite, and this is the phrase used in official Internet standards documents. The more common
term TCP/IP is used to refer to the entire protocol suite.

Internet
(Public network)

Private network

Host B

Host A

Host Z

Host C

Host E

Host D

Private network

Private network
502 ABCs of z/OS System Programming Volume 9

TCP/IP design goals
The first design goal of TCP/IP was to build an interconnection of networks that provided
universal communication services. Each physical network has its own technology-dependent
communication interface, in the form of a programming interface that provides basic
communication functions (primitives). Communication services are provided by software that
runs between the physical network and the user applications and that provides a common
interface for these applications, independent of the underlying physical network. The
architecture of the physical networks is hidden from the user.

The second aim is to interconnect different physical networks to form what appears to the
user to be one large network. Such a set of interconnected networks is called an internetwork
or an Internet.

To be able to interconnect two networks, we need a computer that is attached to both
networks and that can forward packets from one network to the other; such a machine is
called a router. The term IP router is also used because the routing function is part of the IP
layer of the TCP/IP protocol suite.
Chapter 9. Overview of TCP/IP 503

9.2 TCP/IP terminology

Figure 9-2 TCP/IP terminology

TCP/IP terminology
The following terminology is commonly used to describe a TCP/IP environment:

Host In the Internet suite of protocols, this is an end system. The end system
can be any workstation; it does not have to be a mainframe.

Gateway A functional unit that interconnects two computer networks with different
network architectures. A gateway connects networks or systems of
different architectures. A bridge interconnects networks or systems with
the same or similar architectures. In TCP/IP, this is a synonym for router.

Port Each process that wants to communicate with another process identifies
itself to the TCP/IP protocol suite by one or more ports. A port is a 16-bit
number, used by the host-to-host protocol to identify to which higher level
protocol or application program (process) it must deliver incoming
messages. There are two types of ports:

Well-known Well-known ports belong to standard servers, for
example Telnet uses port 23. Well-known port numbers range between 1
and 1023 (prior to 1992, the range between 256 and 1023 was used for
UNIX-specific servers). Well-known port numbers are typically odd,
because early systems using the port concept required an odd/even pair
of ports for duplex operations. Most servers require only a single port.
The well-known ports are controlled and assigned by the Internet central
authority (IANA) and on most systems can only be used by system
processes or by programs executed by privileged users. The reason for

Host: Any systems attached to an IP network

Gateway: Another name for a router

Port: An entrance to or exit from a network.
The part of a socket address that identifies a port
within a host.

Socket: A logical entity used to identify a remote
application - socket = <IP address> + a port number

Router: Connects networks and routes packets
between them
504 ABCs of z/OS System Programming Volume 9

well-known ports is to allow clients to be able to find servers without
configuration information.

Ephemeral Clients do not need well-known port numbers because
they initiate communication with servers and the port number they are
using is contained in the UDP datagrams sent to the server. Each client
process is allocated a port number as long as it needs it by the host it is
running on. Ephemeral port numbers have values greater than 1023,
normally in the range 1024 to 65535.

Socket An endpoint for communication between processes or application
programs. A synonym for port.

Socket address The address of an application program that uses the socket interface on
the network. In Internet format, it consists of the IP address of the
socket's host and the port number of the socket. The application program
is usually not aware of the structure of the address.

Socket interface A Berkeley Software Distribution (BSD) application programming
interface (API) that allows users to easily write their own programs.

Router A router interconnects networks at the internetwork layer level and routes
packets between them. The router must understand the addressing
structure associated with the networking protocols it supports and make
decisions on whether, or how, to forward packets. Routers are able to
select the best transmission paths and optimal packet sizes. The basic
routing function is implemented in the IP layer of the TCP/IP protocol
stack, so any host or workstation running TCP/IP over more than one
interface could, in theory and also with most of today's TCP/IP
implementations, forward IP datagrams. However, dedicated routers
provide much more sophisticated routing than the minimum functions
implemented by IP.
Chapter 9. Overview of TCP/IP 505

9.3 IP addressing

Figure 9-3 IP addressing examples

IP addressing
To be able to identify a host on the Internet, each host is assigned an address, called the IP
address, or Internet address. When the host is attached to more than one network, it is called
multi-homed and it has one IP address for each network interface.

IP address
An IP address is represented by a 32-bit unsigned binary value which is usually expressed in
a dotted decimal format. For example, 9.12.1.43 is a valid Internet address. The numeric form
is used by the IP software. The mapping between the IP address and an easier-to-read
symbolic name, for example myhost.ibm.com, is done by a Domain Name System. We first
look at the numeric form, which is called the IP address.

The Internet Protocol uses IP addresses to specify source and target hosts on the Internet.
Each byte is represented by its decimal form:

9.12.1.43 = 0000 1001 . 0000 1100 . 0000 0001 . 0010 1011

Network and host addresses
Each host must have a unique Internet address to communicate with other hosts on the
Internet. The network address part of the IP address is centrally administered by the Internet
Network Information Center (the InterNIC) and is unique throughout the Internet. Each IP
address is made up of two logical addresses:

IP address = <network address> <host address>

FORMAT

32 bits format 0000 0000 . 0000 0000 . 0000 0000 . 0000 0000

dotted decimal xxx . xxx . xxx . xxx

Host part of address

Network part of address

Example 9.12.1.43

0000 1001 . 0000 1100 . 0000 0001 . 0010 1011
506 ABCs of z/OS System Programming Volume 9

where:

Network address Represents a specific physical network within the Internet.

Host address Specifies an individual host within the physical network identified by the
network address.

For example, 9.12.1.43 is an IP address with 9.12 being the network address and 1.43 being
the host address.

Subnet mask
A subnet mask is used to differentiate the network address and host address.

The first bits of the IP address specify how the rest of the address should be separated into its
network and host part.

The Internet Protocol moves data between hosts in the form of datagrams. Each datagram is
delivered to the address contained in the Destination Address of the datagram's header.
Chapter 9. Overview of TCP/IP 507

9.4 User login to the z/OS UNIX shell

Figure 9-4 Workstation connections to the z/OS UNIX shell

Access to the shell session from workstations
TCP/IP is the transport provider when users rlogin or telnet from a UNIX workstation directly
into the z/OS shell.

Users can rlogin or use telnet to log on to a z/OS UNIX system from a remote system. Two
daemons are used when processing rlogin requests:

� The inetd daemon handles rlogin requests.

� The rlogind and telnetd daemons are the servers that validate the remote login requests
and check the password.

Security checks for login requesters
The system provides security by verifying a user and verifying that a user or program can
access a process or file. It verifies the user IDs and passwords of users when they log on to a
TSO/E session or when a job starts. The rlogin user is authenticated by the rlogind daemon
before entering the shell. The telnet user is authenticated by the telnetd daemon before
entering the shell. The daemons create a process for the user and RACF verifies that the
user is properly defined before the system initializes the process.

z/OS UNIX kernel
TCP/IP

shell

rlogind

shell

telnetd

inetd

WS

WSWS

telnet-C

UNIXUNIX

rlogin-C

WS

 Workstation users
(Appplication development)

RACF
508 ABCs of z/OS System Programming Volume 9

9.5 Configuration files used by TCP/IP

Figure 9-5 Configuration files used by TCP/IP initialization

TCP/IP configuration files
Two configuration files are used by the TCP/IP stack: PROFILE.TCPIP and TCPIP.DATA.
PROFILE.TCPIP is used only for the configuration of the TCP/IP stack. TCPIP.DATA is used
during configuration of both the TCP/IP stack and applications; the search order used to find
TCPIP.DATA is the same for both the TCP/IP stack and applications.

PROFILE.TCPIP
During initialization of the TCP/IP stack, also referred to as the TCP/IP address space,
system operation and configuration parameters for the TCP/IP stack are read from the
configuration file PROFILE.TCPIP.

During TCP/IP address space initialization, a configuration profile data set (PROFILE.TCPIP)
is read that contains system operation and configuration parameters. A sample data set,
TCPIP.SEZAINST(SAMPPROF), can be copied and modified for use as your default
configuration profile.

The PROFILE data set contains the following major groups of configuration parameters:

� TCP/IP operating characteristics
� TCP/IP physical characteristics
� TCP/IP reserved port number definitions (application configuration)
� TCP/IP network routing definitions
� TCP/IP diagnostic data statements

Files used by the TCP/IP stack

PROFILE.TCPIP - used only for the stack

System operation and configuration parameters

A sample data set, hlq.SEZAINST(SAMPPROF),
can be copied and modified for use as your default
configuration

HOME statement is used to identify the IP address of
your assigned system

ROUTE statement - routes to the IP route table

TCPIP.DATA - used by stack and applications

Configuration information used by TCP/IP clients
Chapter 9. Overview of TCP/IP 509

TCPIP.DATA
This file is used during configuration of both the TCP/IP stack and applications. It is used to
specify configuration information required by TCP/IP client programs.

TCPIP.DATA is used by the stack address space as follows:

� The TCP/IP stack's configuration component uses TCPIP.DATA during TCP/IP stack
initialization to determine the stack's HOSTNAME. To get its value, the z/OS UNIX
environment search order is used.

� The TCP/IP stack's TN3270 Telnet server component uses TCPIP.DATA statements to
resolve a client's IP address to a name. To obtain the resolver-related statements for
address resolution, the native MVS environment search order is used.
510 ABCs of z/OS System Programming Volume 9

9.6 Resolver address space

Figure 9-6 Resolver address space support

Resolver overview
A resolver is a set of routines that act as a client on behalf of an application to read a local
host file or to access one or more Domain Name System (DNS) for name-to-IP address or IP
address-to-name resolution. The resolver function allows applications to use names instead
of IP addresses to connect to other partners.

Where the resolver looks for name-address resolution and how it handles requests, is defined
in a file called the resolver configuration file. The resolver can exist on any system that
supports sockets programs, using name resolution.

On a z/OS system, the resolver configuration data is located either in a z/OS data set
(TCPIP.DATA) or in a file (resolv.conf) in the z/OS UNIX file system.

To initiate a request to the resolver in z/OS, an application executes a set of commands
based on the Sockets API Library the application used to generate the socket to connect to
the TCP/IP stack. In a z/OS system, this task is more complex, because the applications can
be built using one of three main groups of sockets API environments:

� Native TCP/IP sockets

� UNIX System Services callable sockets (BPX1xxxx calls)

� Language Environment C/C++ sockets

The various resolver libraries supported by the TCP/IP and LE APIs were consolidated into a
single resolver component. This allowed for consistent name resolution processing across all

Routines that act as a client on behalf of applications

For DNS - name-to-IP or IP-to-name resolution

With z/OS UNIX, Resolver has configuration data sets

resolv.conf

TCPIP.DATA

API environments

Native TCP/IP sockets

UNIX System Services callable sockets

(BPX1xxxx calls)

Language Environment C/C++ sockets
Chapter 9. Overview of TCP/IP 511

applications using the TCP/IP and LE socket APIs. The consolidated resolver is automatically
enabled on z/OS and runs in a separate address space that is automatically started during
UNIX System Services initialization, as shown in the messages during an IPL:

BPXF203I DOMAIN AF_UNIX WAS SUCCESSFULLY ACTIVATED.
BPXF203I DOMAIN AF_INET WAS SUCCESSFULLY ACTIVATED.
BPXF224I THE RESOLVER_PROC, RESOLVER, IS BEING STARTED.
IEF196I 1 //BPXOINIT JOB MSGLEVEL=1
IEF196I 2 //STARTING EXEC BPXOINIT
EZZ9298I DEFAULTTCPIPDATA - None
EZZ9298I GLOBALTCPIPDATA - None
EZZ9298I DEFAULTIPNODES - None
EZZ9298I GLOBALIPNODES - None
EZZ9304I NOCOMMONSEARCH
EZZ9291I RESOLVER INITIALIZATION COMPLETE
512 ABCs of z/OS System Programming Volume 9

9.7 TCPDATA search order

Figure 9-7 Search order for TCPDATA using the resolver address space

Base resolver configuration files
To resolve a query for the requesting program, the resolver can access available name
servers, use local definitions (for example, /etc/resolv.conf, /etc/hosts, /etc/ipnodes,
HOSTS.SITEINFO, HOSTS.ADDRINFO, or ETC.IPNODES), or use a combination of both.
How and whether the resolver uses name servers is controlled by TCPIP.DATA statements
(resolver directives). The resolver address space must be started before any application or
TCP/IP stack resolver calls can occur.

The base resolver configuration file contains TCPIP.DATA statements. In addition to resolver
directives, it is referenced to determine, among other things, the data set prefix
(DATASETPREFIX statement's value) to be used when trying to access some of the
configuration files specified in this section. TCPIP.DATA is used during configuration of both
the TCP/IP stack and applications; the search order to find the TCPIP.DATA data set is the
same for both the TCP/IP stack and applications.

Search order
The search order used to access the base resolver configuration file is as follows:

1. GLOBALTCPIPDATA - If defined, the resolver GLOBALTCPIPDATA setup statement
value is used.

Note: The search continues for an additional configuration file. The search ends with
the next file found.

Common search order for IP address/hostname resolution

Parmlib statement (BPXPRMxx):
RESOLVER_PROC(procname) or

RESOLVER_PROC(NONE) or

RESOLVER_PROC(DEFAULT)

LFS starts procname if INET domain defined in
BPXPRMxx

TCP/IP supplies the:

Default procedure

Search order:

 1. GLOBALTCPIPDATA
2. RESOLVER_CONFIG environment variable
 3. /etc/resolv.conf
 4. SYSTCPD DD-name
 5. userid.TCPIP.DATA
6. jobname.TCPIP.DATA
7. SYS1.TCPPARMS(TCPDATA)
8. DEFAULTTCPIPDATA
 9. TCPIP.TCPIP.DATA
Chapter 9. Overview of TCP/IP 513

2. The value of the environment variable RESOLVER_CONFIG. The value of the
environment variable is used. This search will fail if the file does not exist or is allocated
exclusively elsewhere.

3. /etc/resolv.conf

4. //SYSTCPD DD card

The data set allocated to the DDname SYSTCPD is used. In the z/OS UNIX environment,
a child process does not have access to the SYSTCPD DD. This is because the
SYSTCPD allocation is not inherited from the parent process over the fork() or exec
function calls.

5. userid.TCPIP.DATA, where userid is the user ID that is associated with the current
security environment (address space or task/thread).

6. jobname.TCPIP.DATA, where jobname is from the TCP/IP startup procedure.

7. SYS1.TCPPARMS(TCPDATA).

8. DEFAULTTCPIPDATA - If defined, the resolver DEFAULTTCPIPDATA setup statement
value is used.

9. TCPIP.TCPIP.DATA.

RESOLVER_PROC
z/OS UNIX initialization will attempt to start the resolver unless explicitly instructed not to.
Using z/OS UNIX is the recommended method since it will ensure that the resolver is
available before any applications can make a resolution request.

A BPXPRMxx statement, RESOLVER_PROC, is used to specify the procedure name, if any,
to be used to start the resolver address space. If the RESOLVER_PROC statement is not in
the BPXPRMxx PARMLIB member or is specified with a procedure name of DEFAULT, z/OS
UNIX will start a resolver address space with the assigned name of RESOLVER. The
resolver will use the applicable search order for finding TCPIP.DATA statements, but without
a GLOBALTCPIPDATA specification. If the address space cannot be started, z/OS UNIX
initialization continues.

When z/OS UNIX starts the resolver, it is started so that the resolver does not require JES
(that is, SUB=MSTR is used). For SUB=MSTR considerations, refer to the z/OS MVS JCL
Reference.

BPXPRMxx PARMLIB member
We recommend that you update the BPXPRMxx PARMLIB member and use this to start the
resolver address space. Using the BPXPRMxx member and OMVS initialization to start the
resolver helps ensure that the resolver API is available before any /etc/rc or COMMNDxx
PARMLIB members are executed. The RESOLVER_PROC statement in the BPXPRMxx
PARMLIB member is used to start the resolver during z/OS UNIX System Services
initialization. The statement specifies how the resolver address space is processed during
z/OS UNIX initialization.

RESOLVER_PROC(procname|DEFAULT|NONE)

procname The name of the address space for the resolver and the procedure member
name in SYS1.PROCLIB.

DEFAULT Causes an address space named RESOLVER to start. This also happens if
the RESOLVER_PROC statement is not specified in the BPXPRMxx.

NONE Specifies that no address space is to be started.
514 ABCs of z/OS System Programming Volume 9

9.8 Resolver definitions

Figure 9-8 Resolver definitions

Resolver with global definitions
To set up an environment with global definitions, it is important to understand how these
definitions affect the entire environment, and also which statements must always be defined
once this global environment is created.

In Figure 9-8, the GLOBALTCPIPDATA specified data set will become the first TCPIP.DATA
data set read regardless of the Socket API library being used. Any parameters found in this
data set will be global settings for the TCP/IP stack. If a global TCPIP.DATA data set has
been specified, then all resolver statements defined in it will only be obtained from this data
set.

The search continues beyond the file specified by GLOBALTCPIPDATA, as shown in
Figure 9-7 on page 513, but any of the resolver statements specified in files lower in the
search order will only be used if not specified explicitly in the global statements. Using this
type of global definition allows the system to have a common set of parameters that will not
be changed by any application.

If GLOBALTCPIPDATA is specified, any TCPIP.DATA statements contained in it will take
precedence over any TCPIP.DATA statements found by way of the appropriate
environment’s search order.

//RESOLVER PROC PARMS='CTRACE(CTIRES00)'
//EZBREINI EXEC PGM=EZBREINI,REGION=0M,TIME=1440,PARM=&PARMS
//SETUP DD DSN=SYS1.TCPPARMS(RSSETUP),DISP=SHR,FREE=CLOSE

TCPIPJOBNAME TCPIP
HOSTNAME WTSC30
DOMAINORIGIN ITSO.IBM.COM
DATASETPREFIX TCPIP
MESSAGECASE MIXED
NSINTERADDR 9.12.6.7
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 10
RESOLVERUDPRETRIES1
LOOKUP LOCAL DNS

GLOBAL
9.12.6.7 nameserver
9.67.43.126 RALEIGH
10.10.1.230 tcpipa.itso.ibm.com
1::2 TESTIPV6ADDRESS1
1:2:3:4:5:6:7:8 TESTIPV6ADDRESS2

IPNODES

GLOBALTCPIPDATA('TCPIP.TCPPARMS(GLOBAL)')
GLOBALIPNODES (’TCPIP.TCPPARMS(IPNODES)’)
COMMONSEARCH

RSSETUP
Chapter 9. Overview of TCP/IP 515

9.9 Customize the TCP/IP profile data set

Figure 9-9 Customizing the TCP/IP profile data set

Customize the TCP/IP profile data set
This is a list of PROFILE statements that need to be customized to define your environment.
The IP address of the HOME statement for this host, as well as the GATEWAY value such as
subnet mask, subnet and DEFAULTNET (or default gateway), can be obtained from your
network administrator.

A sample of the PROFILE data sets is provided in hlq.SEZAINST(SAMPPROF), which you
can copy to SYS1.TCPPARMS(PROFILE).

TCP/IP reads the parameters from the TCP/IP profile data set.

The parameters that need to be changed are:

AUTOLOG Uncomment FTPD or any other daemons that need to be activated.

DEVICE Provide the z/OS address network interface. It could be the OSA address,
CTC, IBM 2216 router or any other supported network device.

LINK Provide the description of the network interface.

HOME Specify the IP address of the z/OS system.

Begin route Specify the IP address of the net and subnet to which this host belongs.

Route default Specify the default gateway IP address. Usually, this is the IP address of
the network router to which this host is attached.

Copy hlq.SEZAINST(SAMPPROF) to SYS1.TCPPARMS(PROFILE)

z/OS Host

HOME: 192.168.1.xxx

E20

TCP/IP

CTC

 Ethernet
ETH1

(LCS)DEVICE
LINK

Host

GATEWAY

SUBNETWORK

SUBNETWORK
(Route default)

Reserved ports

Internet
516 ABCs of z/OS System Programming Volume 9

9.10 Customize TCPDATA

Figure 9-10 Customizing the TCPDATA data set

Customizing the TCPDATA data set
Parameters that need to be customized for TCPDATA are indicated in Figure 9-10.

For the DOMAINORIGIN and NSINTERADDR statements, the values can be obtained from
your network administrator.

The SYSTCPD DD explicitly identifies which data set is to be used to obtain the parameters
defined by TCPIP.DATA. The SYSTCPD DD statement should be placed in the TSO/E logon
procedure or in the JCL of any client or server executed as a background task. The data set
can be any sequential data set or a member of a partitioned data set (PDS).

//SYSTCPD DD DSN=SYS1.TCPPARMS(TCPDATA),DISP=SHR

Parameters that need to be changed for the TCPDATA file are:

� TCPIPJOBNAME specifies the TCPIP started task jobname.

� HOSTNAME specifies the hostname (SYSNAME on IEASYSxx) or IEASYMxx.

� DATASETPREFIX specifies the hlq you have selected before.

Other optional parameters are:

� DOMAINORIGIN specifies your domain (ITSO.IBM.COM).

� LOOKUP specifies to search either local host files or the domain name server.

HOSTNAME:
DOMAINORIGIN:
LOOKUP

ITSO.IBM.COM
TEAMx

LOCAL
TCPIPJOBNAME:
DATASETPREFIX:

Copy hlq.SEZAINST(TCPDATA) to SYS1.TCPPARMS(TCPDATA)

z/OS Host

192.168.1.xxx

TCP/IP

TEAMx

TEAMx.ITSO.IBM.COM
(192.168.1.xxx)

/etc/hosts

LOCAL
hlq
Chapter 9. Overview of TCP/IP 517

9.11 z/OS IP search order

Figure 9-11 Search order used during TCP/IP initialization

TCP/IP initialization search order
During initialization of the TCP/IP stack, system operation and configuration parameters for
the TCP/IP stack are read from the configuration file PROFILE.TCPIP. The search order used
by the TCP/IP stack to find PROFILE.TCPIP involves both explicit and dynamic data set
allocation as identified in the following discussion.

Search order
In the TCP/IP procedure in SYS1.PROCLIB, the PROFILE DD statement specifies the data
set containing the TCP/IP configuration parameters. If the PROFILE DD statement is not
supplied, a default search order is used to find the PROFILE data set. A sample profile is
included in member SAMPPROF of the SEZAINST data set. When TCP/IP starts, it looks for
the PROFILE data set in the following order:

� //PROFILE DD explicitly specified in the PROFILE DD statement of the TCP/IP started
task procedure.

� jobname.nodename.TCPIP data set
� hlq.nodename.TCPIP data set
� jobname.PROFILE.TCPIP data set
� hlq.PROFILE.TCPIP data set

The search stops if one of these data sets is found.

//PROFILE DD DSN=xxxx
jobname.nodename.TCPIP
hlq.nodename.TCPIP
jobname.PROFILE.TCPIP
hlq.PROFILE.TCPIP

PROFILE.TCPIP Provides TCP/IP initialization and specification
for network interface and routing

SYS1.TCPPARMS

TCPIP A/S

hlq=TCPIP

z/OS CS
TCP/IP stack
518 ABCs of z/OS System Programming Volume 9

Most PROFILE parameters required in a basic configuration have default values that will
allow the stack to be initialized and ready for operation. There are, however, a few
parameters that must be modified or must be unique to the stack.

Note: Explicitly specifying the PROFILE DD statement in the TCPIP PROC JCL is the
recommended way to specify PROFILE.TCPIP. If this DD statement is present, the data
set it defines is explicitly allocated by MVS and no dynamic allocation is done. If this
statement is not present, the search order continues to use dynamic allocation for the
PROFILE.TCPIP.
Chapter 9. Overview of TCP/IP 519

9.12 z/OS IP search order (2)

Figure 9-12 Search order for z/OS UNIX applications

z/OS UNIX application search order
The CS for z/OS environment consists of the CS for z/OS stack, CS for z/OS applications
(z/OS UNIX System Services applications such as Telnetd, FTPD, and so forth), and the
z/OS TCP/IP native MVS applications.

The TCP/IP stack and set of applications have some common configuration files, but they
also use configuration files that are different.

Different configuration files may be used for a TCP/IP stack where there is a need to
understand the search order for each z/OS UNIX application.

The search order is applied to any configuration file, and the search ends with the first file
found, as follows:

� Explicit Data Set Allocation consists of those data sets that you specify through the use
of DD statements in JCL procedures.

� Dynamic Data Set Allocation consists of multiple versions of a data set, each having a
different high-level qualifier or middle-level qualifier, and some data sets that can only be
dynamically allocated by TCP/IP (they cannot be allocated using DD statements in JCL).

There is a naming convention for dynamically allocated data sets.

Dynamic Data Set Allocation

Data sets search sequence

//PROFILE DD
//SYSTCPD DD

hlq.function.xxxx

All TCP/IP server and client functions

TCPIP A/S

child
process

process program

CS for z/OS
TCP/IP

Explicit Data Set Allocation

SYS1.TCPPARMS
520 ABCs of z/OS System Programming Volume 9

9.13 Customize the TCP/IP procedure

Figure 9-13 Customizing the TCP/IP procedure

TCP/IP procedure
Create the PROCLIB member, as follows:

� TCPIP started task procedure - a sample is provided in hlq.SEZAINST(TCPIPROC)

� EZAZSSI procedure to start TCP Subsystem Interface

Add procedure EZAZSSI to your system PROCLIB. A sample of this procedure is located in
the data set hlq.SEZAINST (where hlq is the high-level qualifier for the TCP/IP product data
sets in your installation).

You can remove the STEPLIB DD if these data sets are defined on LNKLSTxx, as follows:

� Modify your TSO/E logon procedure:

– To include hlq.SEZAHELP in //SYSHELP DD

– To include hlq.SEZAMENU in //ISPMLIB DD

– To include hlq.SEZAPENU in //ISPTLIB DD and //ISPPLIB DD

//EZAZSSI PROC P=''
//STARTVT EXEC PGM=EZAZSSI,PARM=&P
//STEPLIB DD DSN=hlq.SEZALINK,DISP=SHR
// DD DSN=hlq.SEZATCP,DISP=SHR

Update SYS1.PROCLIB

Create TCP/IP started task procedure

Look in TCPIP.SEZAINST(TCPIPROC)

Create EZAZSSI

Look in TCPIP.SEZAINST(EZAZSSI)

Update TSO logon procedure - (not done in lab)

SYSTCPD statement

Place in the TSO/E logon procedure or in the JCL

of any client or server executed as a background

task
Chapter 9. Overview of TCP/IP 521

– Optionally, add a //SYSTCPD DD to point to the TCPDATA data set in order to use
TCP/IP client functions and some administrative functions such as OBEYFILE under
TSO/E.

SYSTCPD explicitly identifies the data set used to obtain parameters defined by
TCPIP.DATA.

SYSTCPD statement
The SYSTCPD statement should be placed in the TSO/E logon procedure or in the JCL of
any client or server executed as a background task. The data set can be any sequential data
set or a member of a partitioned data set (PDS). TSO client functions can be directed against
any of a number of TCP/IP stacks. Obviously, the client function must be able to find the
TCPIP.DATA appropriate to the stack of interest at any one time. Two methods are available
for finding the relevant TCPIP.DATA:

� Add a SYSTCPD DD statement to your TSO logon procedure. The issue with this
approach is that a separate TSO logon procedure per stack is required, and users have to
log off TSO and log on again using another TSO logon procedure in order to switch from
one stack to another.

� Use one common TSO logon procedure without a SYSTCPD DD statement. Before a
TSO user starts any TCP/IP client programs, the user has to issue a TSO ALLOC
command wherein the user allocates a TCPIP.DATA data set to DDname SYSTCPD. To
switch from one stack to another, the user simply has to de-allocate the current SYSTCPD
allocation and allocate another TCPIP.DATA data set.

Combine the first and second methods. Use one logon procedure to specify a SYSTCPD DD
for a default stack. To switch stacks, issue TSO ALLOC to allocate a new SYSTCPD. To
switch back, issue TSO ALLOC again with the name that was on the SYSTCPD DD in the
logon procedure. The disadvantage to this approach is that the name that was on the
SYSTCPD DD is “hidden” in the logon procedure and needs to be retrieved or remembered.
522 ABCs of z/OS System Programming Volume 9

9.14 Customizing PARMLIB members for TCP/IP

Figure 9-14 PARMLIB members to customize for TCP/IP

PARMLIB members to customize
Steps for customizing TCP/IP are as follows:

� Choose a High-Level Qualifier (hlq).
� TCP/IP uses dynamic allocation with this hlq to get parameters from several TCP/IP data

sets. The DATASETPREFIX statement in TCPIP.DATA can be used to override the
default hlq. However, it is used as the last step in the search order for most configuration
files.

� Update the following PARMLIB members:
IEAAPFxx Authorizes the following libraries:
hlq.SEZADSIL
hlq.SEZALOAD - hlq.SEZALNK2
hlq.SEZALPA - hlq.SEZAMIG
PROGxx LNKLST Add Name(LNKLST)

Dsname(TCPIP.SEZALOAD)
LNKLSTxx hlq.SEZALOAD
LPALSTxx hlq.SEZALPA
IECIOSxx Use to disable the MIH processing for communication device used

by TCP/IP
Set MIH TIME=00:00,DEV=(cuu-cuu)
IEFSSNxx Define subsystems to use restartable VMCF and TNF
SUBSYS SUBNAME(TNF)
SUBSYS SUBNAME(VMCF)

Choose a High-Level Qualifier for TCP data set

TCPIP

Update SYS1.PARMLIB members

IEAAPFxx or PROGxx to authorize TCP/IP data set

LNKLSTxx - TCPIP.SEZALOAD

LPALSTxx - TCPIP.SEZALPA

IECIOSxx - Set MIH TIME=00:00,DEV=(cuu-cuu)

IEFSSNxx

TNF - VMCF
Chapter 9. Overview of TCP/IP 523

9.15 PARMLIB members to customize for TCP/IP

Figure 9-15 PARMLIB members to customize for TCP/IP

Updating SYS1.PARMLIB
Update the following PARMLIB members:

COMMNDxx Add the following command to start the SSI

COM='S EZAZSSI,P=sys_name'

Where sys_name is the SYSNAME in IEASYSxx or specified in IEASYMxx
using the SYSDEF statement.

IFAPRDxx Enable TCP/IP base by adding this:

NAME(z/OS) ID(5647-A01)

BPXPRMxx Activate TCP/IP support for transport provider as follows:

FILESYTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
 NETWORK DOMAINNAME(AF_INET)
 DOMAINNUMBER(2)
 MAXSOCKETSR(10000)
 TYPE(INET)

Update SYS1.PARMLIB members

COMMNDxx

Start TCP/IP

IFAPRDxx

Enable TCP/IP

BPXPRMxx

Define PFS
524 ABCs of z/OS System Programming Volume 9

9.16 RACF customization for TCP/IP

Figure 9-16 Customizing TCP/IP with RACF profiles

RACF profiles for TCP/IP
There are additional security concerns when you are loading programs that are considered
trusted into the z/OS UNIX file system. Program control facilities in RACF and z/OS UNIX
provide a mechanism for ensuring that the z/OS UNIX program loading process has the same
security features that APF authorization provides in the native MVS environment.

We recommend that you enable program control in your installation. If you define the
BPX.DAEMON FACILITY class profile, you must enable program control for certain z/OS
Communications Server load libraries. Review the section on program control in z/OS UNIX
System Services Planning to decide whether program control is appropriate for your
installation.

You need to define a RACF user ID with an OMVS segment for TCPIP, PORTMAP, NFS, and
FTPD. You also need to define the following data sets to program control:

� SYS1.LINKIB

� hlq.SEZALOAD

Executable load modules for concatenation to LINKLIB

� CEE.SCEERUN (or Language Environment run-time modules)

Define RACF profile for TCP/IP started task

Define TCPIP userids and groupid

TCPGRP

Define STARTED class profile for TCP/IP

Program control

SETROPTS WHEN(PROGRAM)

Use the following commands to create RACF data
set profiles:

 ADDSD 'CEE.SCEERUN' UACC(READ)
 ADDSD 'SYS1.LINKLIB' UACC(READ)
 ADDSD 'TCPIP.SEZALOAD' UACC(READ)
 ADDSD 'TCPIP.SEZATCP' UACC(READ)
Chapter 9. Overview of TCP/IP 525

RACF program control
In a z/OS UNIX environment, there are additional security concerns related to the HFS and
the loading of programs that are considered trusted. Program control facilities in RACF and
z/OS provide a mechanism for ensuring that the z/OS program loading process has the same
security features that APF authorization provides in the native MVS environment.

We recommend that you enable program control in your installation. If you define the
BPX.DAEMON facility class, then you must enable program control for certain
Communications Server for z/OS load libraries. Review the section on program control in
z/OS UNIX System Services Planning, GA22-7800 to understand that program control is
appropriate for your installation.

When you use program control, make sure that all load modules that are loaded into an
address space come from controlled libraries. If the MVS contents supervisor loads a module
from a noncontrolled library, the address space becomes dirty and loses its authorization. To
prevent this from happening, define all the libraries from which load modules can be loaded
as program-controlled.

Use the following commands:

RDEFINE PROGRAM * ADDMEM('SYS1.LINKLIB'/'volser'/NOPADCHK) UACC(READ)
RDEFINE PROGRAM * ADDMEM('SYS1.SIEALNKE'/'volser'/NOPADCHK) UACC(READ)
RALTER PROGRAM * ADDMEM('CEE.SCEERUN'/'volser'/NOPADCHK) UACC(READ
RALTER PROGRAM * ADDMEM('TCPIP.SEZALOAD'/'volser'/NOPADCHK) UACC(READ)
RALTER PROGRAM * ADDMEM('TCPIP.SEZATCP'/'volser'/NOPADCHK) UACC(READ)
RALTER PROGRAM * ADDMEM('db2.DSNLOAD'/'volser'/NOPADCHK UACC(READ)
RALTER PROGRAM * ADDMEM('db2.DSNEXIT'/'volser'/NPPADCHK UACC(READ)
RALTER PROGRAM * ADDMEM('ftp.userexits'/'volser'/NOPADCHK UACC(READ)

Note: At a minimum, this should include the TCP/IP load libraries SEZALOAD and
SEZATCP, the C run-time library SCEERUN, the system library SYS1.LINKLIB, and any
load libraries containing FTP security exits.

Note: If you define load libraries as RACF program controlled, make sure you do not
specify a universal access (UACC) of NONE for any of the PROGRAM class resources.
Setting a UACC of NONE for a data set such as SYS1.LINKLIB could prevent you from
successfully IPLing your z/OS system. For complete information on the program control
facility, refer to z/OS Security Server RACF Security Administrator's Guide,
SA22-7683-11.
526 ABCs of z/OS System Programming Volume 9

9.17 Customizing TCP/IP

Figure 9-17 HFS data sets to customize for TCP/IP

Data sets for TCP/IP
The z/OS UNIX file /etc/services contains the service names and port assignments of specific
z/OS UNIX applications. The MVS data set ETC.SERVICES can also be used to contain the
same information. The source for this example is shipped in SEZAINST(SERVICES) and
copied to hlq.ETC.SERVICES by the Installation Verification Procedure (IVP). The source is
also installed in /usr/lpp/tcpip/samples/services for use in copying it to /etc/services. It is
important that /etc/services and hlq.ETC.SERVICES be kept identical so that MVS and z/OS
UNIX applications use the same port assignments. The shipped file contains the most current
assignments. The RPC interface enables programmers to write distributed applications using
high-level RPCs rather than lower-level calls based on sockets.

SERVICES and RPC data sets are as follows:

� Copy hlq.SEZAINST(SERVICES) to hlq.ETC.SERVICES. This file specifies the
combination of port and services (UPD or TCP) used by TCP/IP. To establish a
relationship between the servers defined in the /etc/inetd.conf file and specific port
numbers in the UNIX System Services environment, ensure that statements have been
added to ETC.SERVICES for each of these servers. See the sample ETC.SERVICES
installed in the /usr/lpp/tcpip/samples/services directory for how to specify ETC.SERVICE
statements for these servers. An HFS file, /etc/services, could also be created instead of
this file.

� Copy hlq.SEZAINST(ETCRPC) to hlq.ETC.RPC. This file specifies the port mapper,
which used to be called the portmap daemon.

 /etc/services, contains the service names and port
assignments of specific z/OS UNIX applications

RPC interface enables programmers to write
distributed applications using high-level RPCs rather
than lower-level calls based on sockets

Customize the socket and RPC call data sets

Copy the hlq.SEZAINST(SERVICES) to /etc/services

Copy the hlq.SEZAINST(ETCRPC) to /etc/rpc

Start TCP/IP
Chapter 9. Overview of TCP/IP 527

9.18 TCP/IP shell commands

Figure 9-18 Commands issued from the shell for TCP/IP

SHELL commands for TCP/IP
You can use the TSO PING, TRACERTE, NETSTAT, and NSLOOKUP commands from the
UNIX environment.

The z/OS UNIX ping command sends an echo request to a foreign node (remote node) to
determine whether the computer is accessible.

When a response to a ping command is received, the elapsed time is displayed. The time
does not include the time spent communicating between the user and the TCP/IP address
space.

Use the ping command to determine the accessibility of the foreign node.

The z/OS UNIX nslookup command enables you to query any name server to perform the
following tasks from the z/OS UNIX environment:

� Identify the location of name servers

� Examine the contents of a name server database

� Establish the accessibility of name servers

Note: ping is a synonym for the oping command in the z/OS UNIX shell. ping command
syntax is the same as that for the oping command.

UNIX variations of the familiar TSO commands
Executed from the UNIX OMVS Shell or from the ISHELL
Documented in the SecureWay CS IP User's Guide

PING - Is the node specified active
Allows specification of TCP/IP stack name + other options

NSLOOKUP - Used to query a name server
Valuable for testing resolver files (LE vs. MVS)

TRACERT - Used to debug network problems
Can specify a source address
Can specify an interface name as origin
Can specify the TCP/IP stack name
Can specify type of service for testing router configurations

NETSTAT - Display network status of local host
To determine stack component status from UNIX
environment
528 ABCs of z/OS System Programming Volume 9

Chapter 10. TCP/IP applications

This chapter provides information on how to customize z/OS UNIX in order to use TCP/IP. It
also discusses how to enable remote UNIX logins to the z/OS UNIX System Services shell
using rlogin or Telnet, as well as FTP daemon and SYSLOGD daemon.

The chapter begins by describing the remote login procedure and the socket file systems in
BPXPRMxx for z/OS UNIX.

Then it provides the details of how to set up the following z/OS UNIX daemons: inetd, rlogin,
Telnet, FTPD, and SYSLOGD.

Finally, it explains the search sequence for CS TCP/IP.

10
© Copyright IBM Corp. 2006, 2008. All rights reserved. 529

10.1 Overview of z/OS UNIX data access

Figure 10-1 User access to z/OS UNIX overview

z/OS UNIX data set access
To do work in a UNIX system, a user requires a program, and data on which the program is to
operate. The program is represented by a system process, and the data to manipulate
resides in files or streams.

UNIX can use streams to represent many physical data objects:

� Data files stored in the UNIX hierarchical file system

� Special character files which represent physical devices such as printers and terminals,
as well as logical devices such as data pipes

� Sockets or message streams used for Inter Process Communication (IPC)

File descriptors
When an application OPENs any stream to process data, the UNIX OPEN routines return a
file descriptor that is used to identify the stream in future processing calls.

The file descriptor value indexes an entry (file handle or socket handle) stored in a logical
table of file handles for files/streams opened by this program.

When an application starts, default file descriptors are automatically opened for:

� STDIN (FD = 0) - Standard Input - user terminal keyboard
� STDOUT (FD = 1) - Standard program output - to user terminal
� STDERR (FD = 2) - Standard error message output - to user terminal

stdin

*

stdout

stderr

HFS Data
Access

Character
Special Files

SOCKETS IPC

AF_UNIX AF_INET

Logical Data Stream Control

UNIX PROGRAM

open()
read(3,..)..

REMOTE
PROGRAM

LOCAL
PROGRAM

PIPES

0

1
2
3

4

File Descriptor Table

A

A

B
B

B

IPC = INTER PROCESS COMMUNICATION

STREAM API SOCKET API
530 ABCs of z/OS System Programming Volume 9

z/OS UNIX sockets
Sockets come in 2 types:

� AF_UNIX sockets (IPC between programs on same host)
� AF_INET sockets (IPC with remote program over network)

Because handling sockets requires more complex functionality than simple data streams,
UNIX programs typically use a different Application Programming Interface (API) (set of
program calls) to work with sockets.

z/OS UNIX files
STDIN, STDOUT, and STDERR should not be new concepts. However, it is important to
point out that they get their unique attributes from occupying the first three slots in this file
descriptor table (FD=0, FD=1, and FD=2).

For those MVS internals gurus among you, the file descriptor table is similar in concept to the
MVS TIOT (Task Input/Output table).
Chapter 10. TCP/IP applications 531

10.2 Sockets

Figure 10-2 z/OS UNIX sockets overview

z/OS UNIX sockets
This should be a refresher topic. It is intended to stress that sockets (at least in the classic
UNIX interpretation) are not to be treated any differently than ordinary data files insofar as
program logic is concerned. Also, it should be reiterated that sockets are used for local
(intrahost) as well as remote (interhost or network) communication between UNIX processes.

Simply position the concept of an API as being the set of C library service calls used to work
with a particular resource. Although sockets and HFS files are both streams, the complexity
of socket handling requires more powerful syntax and options for handling socket data. This
is relevant in a later discussion where we see that z/OS has perhaps 8 different socket APIs!

A powerful design principle was used in UNIX data processing: any type of data manipulated
by a process can be represented by a standard file/stream structure. Also, a single set of
program calls is used to open streams, read and update data, and close streams, insulating
the program from dealing with the physical origin of stream data.

UNIX technologies
Of course, as with many things in UNIX, this is an idealized picture which fits various
commercial UNIX “flavors” to a greater or lesser extent. The currently available UNIX flavors
are derived from two main UNIX technologies:

� Berkeley Software Division (BSD) - This is UNIX produced by the University of
California. It is the strongest influence in UNIX systems produced by DEC Ultrix,

HOST IP ADDRESS

9.12.14.105
HOST IP ADDRESS

9.12.15.1

APPLICATION
A

APPLICATION
B

APPLICATION
C

TCP/
IP

FTP
SERVER

PORT=1024

PORT=1523

PORT=21

PORT=2009

TCP/
IP

Socket Address = IP Address Port Number

Client Server

*

* = "WELL KNOWN" PORT ADDRESS
532 ABCs of z/OS System Programming Volume 9

SunOS™, HP-UX from Hewlett Packard, and, in the early stages, IBM OpenEdition which
is now named z/OS UNIX.

� AT&T - This is UNIX produced by AT&T, and after that, USL UNIX system laboratories.
The current UNIX version is UNIX System VR4. System VR4 is a major influence in IBM
AIX, and Apple AUX.

In addition to many other differences, the two flavors of UNIX differ in the way that they see
sockets, as follows:

� Berkeley was the original developer of socket protocols, which it connected with TCP/IP
network protocols to provide remote process-to-process communication over the network.
As a new add-in to the UNIX kernel, and because functionality was considerably more
complex in BSD sockets compared to ordinary file handling, BSD sockets use a set of new
program calls to manipulate data over sockets. For example, a program would open a file,
read or write data to it, and close it. To initialize socket processing, on the other hand, the
program issues a socket call, uses send and recv commands to transfer data, and then
will close the socket.

� The AT&T System V approach is more classical. Both files and sockets are opened, data
can be manipulated in both cases using read and write commands, and both are closed to
terminate stream usage. Also, AT&T pioneered the idea of the UNIX-domain or local
socket, used to communicate between two UNIX processes in the same system— what
MVS would call cross-memory communication. A UNIX domain socket is considerably
simpler than a network socket, and can be easily handled with the classic socket
approach.

Other UNIX platforms
In modern UNIX systems, there has been considerable cross-pollination between the two
UNIX flavors, such that, for example, AIX now supports many BSD features, including BSD
sockets. Also, BSD sockets provide both local domain and Internet-type socket support.
However, when porting the C source code for a new application to a UNIX system,
allowances have to be made for the fact that, for example, program calls made to sockets
could be written using either the BSD or the System V approach. To prevent code rewrite,
system compiler and run-time support must be able to handle both flavors of calls. This
principle must apply to z/OS UNIX as well. The original (4.3) approach in OpenEdition was
oriented to BSD socket support rather than to System V.

In the classical (System V) approach, all open streams, whether files, terminals, sockets, and
so on, are pointed to by descriptors (file handles) in the same file descriptor table. The
contents of a socket descriptor will be different from that of a file descriptor in the FDT, but the
index of a socket descriptor is an integer number identical to the type of index pointing to a file
descriptor for a file. So, for example, a program might have an open data file with file
descriptor FD=4, and an initialized socket at socket descriptor SD=5, in consecutive slots of
the table. Obviously, the index numbers cannot be allowed to overlap.
Chapter 10. TCP/IP applications 533

10.3 z/OS Communications Server

Figure 10-3 Overview of the Communications Server

z/OS Communications Server (CS)
Since z/OS V2R5 was shipped, the z/OS Communications Server (CS) has been included as
a base element. The TCP/IP z/OS component, called z/OS CS, is a reconstructed stack that
is able to support both UNIX and non-UNIX socket APIs. It is often called the converged IP
stack.

All the TCP/IP socket APIs that supported HPNS are now transparently redirected by
run-time support to call the UNIX kernel LFS. The REXX socket API has also been directed to
call the kernel. HPNS support is no longer required.

Pascal API
The Pascal API, however, still requires the VMCF/IUCV address space to be started, which
links the API to the new stack. VMCF and TNF do not respond to commands. This is probably
because one or both of the on-restartable versions of VMCF or TNF are still active. To get
them to respond to commands, stop all VMCF/TNF users, FORCE ARM VMCF and TNF,
then use the EZAZSSI procedure to restart.

The Pascal application programming interface enables you to develop TCP/IP applications in
Pascal language. Supported environments are normal MVS address spaces. The Pascal
programming interface is based on Pascal procedures and functions that implement
conceptually the same functions as the C socket interface. The Pascal routines, however,
have different names than the C socket calls. Unlike the other APIs, the Pascal API does not

TCP/IP

 Kernel

z/OS UNIX SOCKETS

TSO
IMS
CICS

TCP/IP SOCKETS

PFSPFS

SNA Net

Hi-Speed
Access

Services

VTAM

CSM

z/OS CS Data Link Controls

VMCF

(Pascal)

User
Appls

User
Appls

z/OS TCP/IP
Servers

z/OS UNIX
Servers

IP Net
534 ABCs of z/OS System Programming Volume 9

interface directly with the LFS. It uses an internal interface to communicate with the TCP/IP
protocol stack.

CS stacks
The SNA and IP networking stacks have been integrated to a considerable extent. Both
stacks use common Data Link Control (DLC) routines to access network hardware, and both
types of protocols can flow over the same hardware link. Also, common service routines such
as Communications Storage Manager (CSM) exploit use of buffers in common storage for
both IP and SNA performance.
Chapter 10. TCP/IP applications 535

10.4 z/OS UNIX sockets support

Figure 10-4 Sockets overview with z/OS UNIX

z/OS UNIX sockets support
Integrated Socket Support was the UNIX socket API supplied with TCP/IP V3.x. This API
makes it transparent to a POSIX process what type of software underpins the C socket calls.

Integrated sockets merged the C run-time library support for TCP/IP (z/OS) and UNIX socket
calls. A read() call is supported by one module for files and sockets.

Two Socket Physical File Systems (PFSs) are part of the z/OS UNIX component. One
supports AF_UNIX local domain sockets, and the other supports TCP/IP AF_INET network
sockets. Both file and socket access are channeled through the standard Logical File System
(LFS) to the relevant PFS. This enables z/OS UNIX to use a single pool of numeric IDs to be
allocated to both file descriptors and socket descriptors, avoiding any confusion.

Statements to define the PFS components, and a NETWORK statement, are coded in the
z/OS UNIX BPXPRMXX PARMLIB member, defining the type of socket support associated
with each file system.

A program that uses files and sockets, and uses identical calls (that is, read() and write() and
so on) to process both resources can be compiled and linked as a single unit.

C
Headers

SOURCE

COMPILE
AND
LINK

open file
read()

open socket
read()

TCP/IP
STACK

z/OS UNIX KERNEL
LFS

ZFS

FDT

POSIX PROGRAM

LFS = LOGICAL FILE SYSTEM
FDT = FILE DESCRIPTOR TABLE

UDS (Local
Sockets)

INET (Inter-
net Sockets)

"AF_UNIX"

"AF_INET"

Physical File
Systems

"AF_INET"

C
RTL
536 ABCs of z/OS System Programming Volume 9

10.5 Customizing sockets

Figure 10-5 Customizing the use of z/OS UNIX sockets

Customizing sockets
This is the first scenario for supporting z/OS UNIX sockets. It assumes a simple environment
with only one TCP/IP stack used for network communication.

The user ID owning the TCP/IP address space (as represented by the name of the TCP/IP
procedure) must be defined as a z/OS UNIX superuser, by inserting UID=0 in the RACF
OMVS segment.

The physical file systems to support socket communication must be defined in the
BPXPRMxx member in SYS1.PARMLIB. Two types of statements are required:

� FILESYSTYPE - Defines a z/OS UNIX PFS:
– TYPE - UDS=local domain sockets, INET=networking sockets
– ENTRYPOINT of z/OS UNIX program supporting PFS - code for IP level:

• BPXTUINT - AF_UNIX (UDS) socket support
• EZBPFINI - IP stack

� NETWORK - Describes a group of sockets allocated to a PFS:

– DOMAINNAME - Name of socket file system domain associated with group - local
(AF_UNIX) or TCP/IP (AF_INET)

– DOMAINNUMBER - Number matches name - 1=AF_UNIX, 2=AF_INET
– MAXSOCKETS - Max sockets supported - default=100, max=64498
– TYPE - INET or UDS - points to related FILESYSTYPE entry

LFS

 KERNEL

AF_UNIX AF_INET

POSIX
PROGRAM

TCPIP01

NET 1

IP = 9.12.15.1

Define USERID of TCP/IP proc as UID = 0

BPXPRMxx

1.

2.

Start TCPIP procedure3.

UDS INET

EZZ4202I z/ OS UNI X - TCP/ I P CONNECTI ON ESTABLI SHED FOR TCPI P01

FILESYSTYPE TYPE(UDS)
 ENTRYPOINT(BPXTUINT)

NETWORK DOMAINNAME(AF_UNIX)
 DOMAINNUMBER(1) TYPE(UDS)
 MAXSOCKETS(10000)

FILESYSTYPE TYPE(INET)
 ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)
 DOMAINNUMBER(2) TYPE(INET)
 MAXSOCKETS(10000)
Chapter 10. TCP/IP applications 537

10.6 Logging in to the z/OS UNIX shell

Figure 10-6 Logging in to the z/OS UNIX shell

Login to z/OS UNIX shell
The following are mechanisms to start a z/OS UNIX shell session:

� Via the TSO OMVS command:

A TSO user, logged in via SNA and VTAM, can issue the OMVS commands directly from
the TSO command line.

� A workstation user can use TCP/IP tn3270 protocol to log on to a TSO user ID via IP
3270(E) Telnet server. From TSO, use OMVS to access the shell.

� Via rlogin done directly from a workstation:

A UNIX/AIX user can use a standard rlogin client to do remote login to z/OS UNIX. A z/OS
UNIX rlogin daemon initiates the shell.

� Via Telnet done directly from a workstation:

Any platform can use a standard Telnet client to do remote login to z/OS UNIX. A z/OS
UNIX Telnet daemon initiates the shell.

� Both direct rlogin/Telnet and CS assisted logins support raw mode.

UNIX Kernel

TCP/IPVTAM

TSO/E

tn3270

3270

"OMVS"

SNA
Network

IP Network

telnet
daemon

rlogin
daemon

Workstation

Workstation

sh
sh sh

logon
tn3270

telnet

rlogin
538 ABCs of z/OS System Programming Volume 9

10.7 Using inetd - master of daemons

Figure 10-7 Overview of the inetd daemon

Customize and start the inetd daemon
The inetd daemon, usually known as inetd or InetD, is a master of other daemons that
execute in z/OS UNIX. The function of inetd is to listen on certain well-known network ports
for a request to run one of a number of daemons. When a request is received, inetd creates a
new socket for remote connection, and then fork()s a new address space and uses exec() to
start the requested daemon program.

The daemon started by inetd relates to the port where the request arrived. The correlation
between port number and daemon is stored in the configuration file /etc/inetd.conf.

The daemons started by inetd include:

� The rlogin daemon starts a shell session for a user rlogin request.
� The telnet daemon starts a shell session for a user Telnet request.
� The rexec daemon executes a single command on z/OS UNIX requested by a remote

user entering a rexec command.
� The rsh daemon starts a shell session and runs a script generated by a remote user

entering an rsh command.

Customization is needed to enable inetd to run on your system. You must decide how to start
it, and what RACF ID it will execute under. If you have implemented enhanced daemon
security with BPX.DAEMON, you must define inetd to the BPX.DAEMON and implement
program control. Finally, you have to configure the relationship between the ports that inetd
listens on and the daemons to be started.

513

23

512

514

rlogin
daemon

otelnet
daemon

rexec
daemon

rsh
daemon

sh

sh

IP inetd
daemon

/etc/services
/etc/inetd.conf

1. Customize inetd
 startup

2. Choose userid
 for inetd

3. Authorize inetd to
 BPX.DAEMON

4. Implement RACF
 program control

5. Configure inetd:
- /etc/services
- /etc/inetd.conf

6. Start inetd

Implementation Tasks

bind
socket
fork +
exec

 rsh

 rexec

telnet

rlogin
Chapter 10. TCP/IP applications 539

10.8 Customize inetd

Figure 10-8 Customizing the inetd daemon

Customize inetd
The inetd daemon program can be found in two places. In the HFS, the program file is
/usr/sbin/inetd, but IBM has set the sticky bit on. A copy of this program is found in
'SYS1.LINKLIB(INETD)', so this is the program that is used. Start from a line in the
initialization script /etc/rc. In this case, use a command similar to the line shown in
Figure 10-8.

The next step is to decide which user ID to associate with inetd. It needs to be a superuser
(UID=0), and to have minimum access to MVS data sets. How you do this depends on start
mode.

When started from /etc/rc, inetd inherits user ID OMVSKERN, which is a superuser. Starting
up via /etc/rc you are effectively locked into using the user ID under which the /etc/rc script is
running, as inetd is forked from that script. The user ID for /etc/rc is the kernel ID
OMVSKERN.

If you have activated the RACF BPX.DAEMON facility, then the INETD user ID must be
authorized to this facility.

_BPX_JOBNAME='INETD' /usr/sbin/inetd /etc/inetd.conf &

1. Start inetd
/etc/rc

2. Establish inetd userid
RDEFINE STARTED INETD.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP)
 TRUSTED(NO))

3. Authorize userid to use BPX.DAEMON
PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSKERN) ACCESS(READ)
540 ABCs of z/OS System Programming Volume 9

10.9 Customize inetd (2)

Figure 10-9 Customizing the inetd daemon

Customize inetd
If you have set up the BPX.DAEMON, then you need to make sure that all programs are
loaded into the inetd address space. At a minimum, you should protect the following
programs:

� SYS1.LINKLIB(INETD).
� CEE.SCEERUN - LE/MVS run time - whole library

There are three configuration files that have to be updated for inetd support:

� The primary file is /etc/inetd.conf, which is the inetd configuration file. There is one entry
(line) in this file for each daemon controlled by inetd. The fields are interpreted as follows:

– Field (1) - Service name - match daemon entry in /etc/services file

– Field (2) - Daemon socket type - stream or dgram

– Field (3) - Daemon socket protocol - TCP or UDP

– Field (4) - Wait_flag - can be wait (single thread server - 1 request at a time) or nowait
(multiple requests queued)

– Field (5) - Login_name - RACF user ID 0nder which daemon will run

– Field (6) - Server_program - name of daemon program in HFS

– Field (7) - Server-arguments - first string is jobname for daemon address space, and
the rest is the parm string to pass to daemon

/etc/inetd.conf
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -l -m
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -LV -r
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -l -v
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

exec 512/tcp
login 513/tcp
shell 514/tcp
...............
otelnet 23/tcp

23 TCP OMVS ; OTelnet Server
512 TCP OMVS ; OREXECD
513 TCP OMVS ; OMVS RLOGIN
514 TCP OMVS ; ORSHD
.........................
623 TCP INTCLIEN ; TELNET

/etc/services - or -
hlq.ETC.SERVICES

"//PROFILE DD" in TCP procedure - (or) -
SYS1.TCPPARMS

5. Configure inetd

4. Switch on Program Control

PARM=/etc/inetd.confINETD
Chapter 10. TCP/IP applications 541

� There is a corresponding entry in /etc/services for each daemon in inetd.conf. The entry
lists the port where inetd listens for daemon requests.

� The TCPIP PROFILE configuration must list the same ports in the PORT section. This
entry identifies the job name authorized to open the socket to this port and the type of
socket allowed.

The two TCP/IP files usually exist already; you must make sure that inetd.conf corresponds
with the values listed. Also, you may want to change the port number for a daemon.

After all configuration is complete, start inetd.
542 ABCs of z/OS System Programming Volume 9

10.10 Login to a Unix system

Figure 10-10 Log into a UNIX system on other platforms

UNIX system login
Let’s look at a real UNIX login approach first for comparison. When a locally attached ASCII
terminal is powered on, an interrupt is generated by the hardware port by which the terminal
is connected. This interrupt is detected by the port monitor software, which then retrieves a
terminal definition file related to that hardware port. It reads terminal characteristics from this
file, initializes a pseudo-TTY terminal interface, and sends the login prompt to the screen.

The user does a login to a locally defined user ID. The port monitor retrieves an account
record related to this user from the /etc/passwd file, which includes the user password. The
monitor then prompts for and validates the user password.

After validation, the terminal monitor sets the user UID and GID from data in the account file.
It then forks a shell process, using the shell program name defined in account data. The
PTTY is now the shell terminal interface.

When the shell initializes, it uses the contents of certain system default files, as well as files in
the user ID home directory, to initialize the shell environment variables. The files used
depend on the type of shell invoked.

In particular, the user may want to set the TERM environment variable in order to define the
type of ASCII terminal that the user has. Also, if the user is using a non-US keyboard, they
will want to automatically issue the chcp (change code page) command to ensure keystrokes
are correctly interpreted.

UNIX Port
Monitor

/dev/ttynn

/etc/passwd

rob

/etc/profile /etc/cshrc

HOME DIR.

.profile
.ksh.env

PTTY

PORT
NN

login> rob
password

Shell

ENVIRONMENT
VARIABLES

SET TERM=VT100
CHCP XXX-123

Korn shell
Bourne shell

C Shell

INITIALIZE

HOME DIR.

.cshrc
.login

==> ls ...
(cmds)

UNIX Host

ASCII terminal

fork()
Chapter 10. TCP/IP applications 543

10.11 rlogin to z/OS UNIX services

Figure 10-11 rlogin to a z/OS UNIX system

rlogin to z/OS UNIX
Figure 10-11 illustrates a similar flow through an rlogin request made through TCP/IP to z/OS
UNIX. Assume that the user has already done a login to the local host as rob. The user issues
rlogin from the shell session. The format will depend on the local host. z/OS UNIX accepts
an rlogin under the current ID (rob) or the new ID (jane).

The AIX/UNIX rlogin client sends the request to port 513 on the host, monitored by the inetd
daemon. inetd forks a new address space and initializes the rlogind server.

The rlogind server uses a z/OS UNIX socket, created by inetd and passed via fork, to
communicate with the rlogin client. The server then proceeds to validate the rlogin request, as
follows:

� It reads the RACF user profile for the rlogin user ID passed (the current or new user ID). It
also reads the contents of the RACF OMVS segment.

� It prompts the remote client for the correct (RACF) password. Note that z/OS UNIX does
not support the use of either /etc/equiv.hosts or $HOME/.hosts files defined in HFS to
bypass authentication.

If authentication is good, rlogind allocates a standard z/OS UNIX pseudo-tty terminal pair,
and then initiates the client shell in one of two ways:

� It creates a child shell process using local_spawn() and the validated user ID.
� It forks a copy of itself in a new address space, uses setuid() and seteuid() commands to

set RACF security to a valid user ID, and then runs an exec() shell program.

rlogin client

"mypc"

$rlogin bigblue
 or
$rlogin -l jane bigblue

login as "rob"

rlogind

"bigblue"

?

Shell
ROB

spawn()

authenticate
via RACF

Shell
ROB

inetd

listen
fork + exec

PORT
513

RACF
Database

/etc/inetd.conf
/etc/services

"terminfo"
Database

fork()

IP SOCKET
CONNECTION
544 ABCs of z/OS System Programming Volume 9

10.12 Activating z/OS UNIX rlogin daemon

Figure 10-12 Activating the rlogin daemon

rlogin daemon
Figure 10-12 illustrates the steps to customize z/OS UNIX for the rlogin daemon, as follows:

1. Go through the steps to customize the z/OS UNIX inet daemon INETD, and test that the
daemon is able to start.

2. Identify the user ID under which rlogind (the login daemon) will run. The rlogind program
as a daemon needs to be a superuser (UID=0), and authorized to access the
BPX.DAEMON RACF facility, if used. The kernel user ID is typically used.

3. Configure parms for starting rlogind as follows:

– Ensure that the TCPIP.ETC.SERVICES file has active entry, as shown in the figure.
This assigns port 513 to the rlogin daemon.

– Update the inetd configuration file, /etc/inetd.conf, to include the entry for the rlogin
daemon.

• login - The ID of the entry for rlogin; must match TCPIP.ETC.SERVICES.

• stream tcp - Identifies the daemon socket protocol (this is required).

• nowait - INETD accepts multiple current connections on behalf of rlogind.

• OMVSKERN - The user ID under which the rlogin daemon runs.

• /usr/sbin/rlogind - Pathname of the rlogin daemon program. Sticky bit on means that
the system actually fetches SYS1.LINKLIB(RLOGIND).

• Remaining string = parameters for rlogin daemon (see the following item).

/etc/inetd.conf

login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

/etc/services or
TCPIP.ETC.SERVICES

login 513/tcp

inetd

listen()

"rlogin bob"

rlogind

 -m?
Y513

z/OS

ShellShell

N

fork()

U=OMVSKERN

U=BOB U=BOB

2. Establish rlogind user id and BPX.DAEMON access
1. Customize inetd for startup

3. Configure parms for rlogin

4. Start inetd
Chapter 10. TCP/IP applications 545

– Parameters in the rlogind parameter string can include:

• rlogind - (jobname) of server process.

• -m - If specified, the shell process shares address space with the rlogin daemon.

• -d - Switches on debug - extra messages are written to the system log.

4. To start rlogind support, you need to start the inetd daemon.

rlogin steps
Let’s walk through the process of doing an rlogin:

� First the inetd daemon starts up, either when the z/OS UNIX kernel is started from the
/etc/rc script, or via a start command and procedure.

� The inetd daemon reads the configuration file and discovers that it must listen on TCP/IP
port 513 for incoming requests for the rlogind daemon (entry login).

� When an incoming request is received on port 513, inetd BINDS a new socket for the
request and then forks inetd copy in a new address space.

� inetd copy sets the jobname for the new address space to RLOGIND (from inet.conf parm
7), does setuid to the user ID for rlogon (OMVSKERN), and then does exec () to call the
rlogind program. It passes the rest of the argument string from inetd.conf as a parameter.

� The rlogind daemon uses the supplied socket to contact the client and validate the
incoming login request. If the client gives a valid ID, rlogind reads the contents of the
OMVS segment for the user ID and allocates a PTY/TTY virtual terminal pair for the
session.

� Then rlogind tests for the -m parameter. If this is supplied, it runs the shell as a child
process in the rlogind address space. Otherwise, rlogind forks a new address space and
execs the shell in that address space. In either case, the shell runs under the client user
ID.
546 ABCs of z/OS System Programming Volume 9

10.13 Comparing shell login methods

Figure 10-13 Comparison of the logins to the shell

Shell login method comparisons
Figure 10-13 compares and contrasts the different methods of accessing the shell, as follows:

� Default code page translation - The OMVS shell interface translates between IBM-037
and IBM-1047. However, it does not handle C square brackets or the accent correctly. All
other logins translate between ISO-8859 ASCII and IBM-1047.

� Changing code page - For OMVS, use the CONVERT option on the OMVS command. For all
other methods, use the chcp shell command after login.

� Number of concurrent logins - OMVS users can only start one shell session at a time.
All asynchronous users can log in to multiple shell sessions concurrently.

� File editors - In OMVS, the ISPF full screen editor can be used via the oedit command.
No asynchronous modes can use ISPF, but they can use the vi full screen editor. ed and
sed line editors are commonly available.

� Shell mode - OMVS can only work in line (canonical) mode. Asynchronous login supports
line mode or raw (non-canonical) mode.

� Toggle to TSO? - Only OMVS shell provides this option.

� Shared address space - Use a single address space to support both terminal I/O and
shell processes. For OMVS, specify the SHAREAS parameter on the OMVS command.
For rlogin, use the -m option on the start command for the lm daemon.

OMVS

rlogin, telnet

Default code-
page Convert

IBM-037 ->
IBM-1047

ISO8859 ->
IBM-1047

Change
codepage?

"CONVERT"
ON OMVS

"chcp"

LOGINS
per ID

1

MULTIPLE

File
Editors

ISPF(oedit),
sed, ed

vi, ed, sed

Toggle
to TSO

YES

NO

Shell
Modes

LINE

LINE, RAW

Shared
Storage

"SHAREAS"
ON OMVS

"-m" OPTION
ON rlogin
Chapter 10. TCP/IP applications 547

10.14 Define TCP/IP daemons

Figure 10-14 Defining the TCP/IP daemons

Defining TCP/IP daemons
The TCP/IP z/OS UNIX Application feature provides several other TCP/IP functions that you
might want to configure, as follows:

TELNET Allows remote users to log in to z/OS using a Telnet client. The z/OS UNIX
Telnet server is started for each user by the INETD listener program.

REXEC Remote execution client and server support the sending and receiving of a
command.

FTP File transfer program supports transfer into and out of the HFS.
RSH Provides remote execution facilities with authentication based on privileged

port numbers, user IDs, and passwords.
SYSLOGD Supplies the logging functions for programs that execute in the z/OS UNIX

environment.

Ports need to be assigned to the functions that you choose to configure. The
hlq.TCPIP.PROFILE data set has an entry for each function and its port and protocol. If you
will be configuring both the z/OS UNIX version and the standard TCP/IP version, you will
need to decide which one will use the well-known port assignment.

The TCP/IP resolver function also needs to have the port assignments. These can reside in
either the TCPIP.ETC.SERVICES data set or the /etc/services file.

Each daemon then has its own configuration information. The inetd program comes with z/OS
UNIX and is the listener program for several of the TCP/IP daemons. The commands inetd
will use to initiate each program are put in the /etc/inetd.conf file.

The SYSLOG and FTP daemons have their own configuration files, /etc/syslog.conf and
/etc/ftpd.data respectively, and each requires a startup procedure.

ftp 21/tcp
otelnet 23/tcp
exec 512/tcp
login 513/tcp
shell 514/tcp
syslog 514/udp

/etc/services or
TCPIP.ETC.SERVICES

21 TCP OMVS ; FTP Server
22 TCP OMVS ; FTP Server
23 TCP OMVS ; OTelnet Server
512 TCP OMVS ; OMVS REXECD
513 TCP OMVS ; OMVS RLOGIN
514 UDP OMVS ; OMVS SYSLOGD
514 TCP OMVS ; OMVS RSHD
623 TCP INTCLIEN ; TELNET Server

hlq.TCPIP.PROFILE

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -l -m
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -d
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -d
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

/etc/inetd.conf

OTELNETD REXEC FTPD RSHD REXECD SYSLOGD
548 ABCs of z/OS System Programming Volume 9

10.15 The syslogd daemon

Figure 10-15 Overview of the syslogd daemon

Syslog daemon
The syslog daemon (syslogd) is a server process that must be started as one the first
processes in your z/OS UNIX environment. CS for z/OS server applications and components
use syslogd for logging purposes and can also send trace information to syslogd. Servers on
the local system use AF_UNIX sockets to communicate with syslogd; remote servers use the
AF_INET socket.

The syslogd daemon reads and logs system messages to the MVS console, log files, other
machines, or users, as specified by the configuration file /etc/syslog.conf. A sample is
provided in /usr/lpp/tcpip/samples/syslog.conf.

If the syslog daemon is not started, the application log may appear on the MVS console. The
syslog daemon must have a user ID; for example, SYSLOGD defined in RACF with UID=0.
The syslogd daemon uses the following files:

/dev/console Operator console
/etc/syslog.pid Location of the process ID
/etc/syslog.conf Default configuration file
/dev/log Default log path for z/OS UNIX datagram socket
/usr/sbin/syslog Syslog server

syslogd can only be started by a superuser. It can be terminated using the SIGTERM signal.
If you want syslogd to receive log data from or send log data to remote syslogd servers,
reserve UDP port 514 for the syslogd job in your PROFILE.TCP/IP data set and enter the
syslog service for UDP port 514 in the services file or data set (for example, /etc/services).

Remote
syslogd

Server
Process 2

Server
Process1

UDP Port 514

/tmp/syslogd/process1.log

MVS Console

/etc/syslog.conf

syslogd daemon

AF_INET socketAF_INET socket

AF_UNIX socket

AF_UNIX socket

Remote
syslogd

/tmp/syslogd/process2.log

/tmp/syslogd/remote.log

/dev/console
Chapter 10. TCP/IP applications 549

10.16 The FTPD daemon

Figure 10-16 Overview of the FTPD daemon

FTPD daemon
File Transfer Protocol (FTP) is used to transfer files between TCP/IP hosts. The FTP client is
the TCP/IP host that initiates the FTP session, while the FTP server is the TCP/IP host to
which the client connects.

The FTP server uses two different ports and manages two TCP connections as follows:

� Port 21 is used to control the connection (user ID and password).

� Port 20 is used for actual data transfer based on the FTP client's requests.

The FTP server in z/OS IP consists of the daemon (the listener) or ftpd and server address
space (or processes). The daemon performs initialization, listens for new connections and
starts a separate server address space for each connection.

When a new client FTP connects to the FTPD daemon process, ftpd forks an FTP server
process; thus, a new jobname is generated by z/OS UNIX System Services.

ftp.data

FTPD

Listener Process

FTPD1

client

fork()

fork()
and
execv()

client

initial connect()

FTPDn

FTPDn

data connection

HFS File

stop or modify
command

(n=1..)

MVS
Data Set
550 ABCs of z/OS System Programming Volume 9

10.17 z/OS IP search order for FTP

Figure 10-17 Search order for the FTPD daemon

FTP search order
FTP.DATA is used to override the default FTP client and server parameters for the FTP
server.

You may not need to specify the FTP.DATA data set if the default parameters are used.

A sample is provided in hlq.SEZAINST(FTPDATA) for the client and
hlq.SEZAINST(FTPSDATA) for the server.

When an FTPD daemon or started task is started, it searches the FTP.DATA file in the
following order:

� //SYSFTPD DD in FTPD started task procedure

� userid/jobname.FTP.DATA

� /etc/ftp.data

� SYS1.TCPPARMS(FTPDATA)

� hlq.FTP.DATA

The search stops if one of these data sets is found.

FTPD
Server/Client

//SYSFTPD DD
userid/jobname.FTP.DATA
/etc/ftp.data
SYS1.TCPPARMS(FTPDATA)
hlq.FTP.DATA

z/OS CS
TCP/IP stack

optional
looking for these data sets at initialization
Chapter 10. TCP/IP applications 551

10.18 z/OS IP search order for /etc/services

Figure 10-18 Search order for /etc/services

Search order for /etc/services
The ETC.SERVICES data set is used to establish port numbers for UNIX application servers
using TCP and UDP. This file or data set is required for any daemon or application that needs
the use of a specific port.

Standard applications, like telnet or FTP, are assigned port numbers in the well-known port
number range. You can assign port numbers to your own server applications by adding
entries to the /etc/services file.

For example, rlogind listens on 513/TCP and telnetd listens on port 23/TCP, while syslogd
listens on port 514/UDP. This specification is provided in the ETC.SERVICES data set.

When TCP/IP and the daemons start, they look for the ETC.SERVICE file or data set in the
following order:

� /etc/services (HFS file)

� userid/jobname.ETC.SERVICES

� hlq.ETC.SERVICES

The search stops if one of these data sets is found.

Server using TCP and UDP port
(rlogind, telnetd,syslogd,rexecd....)

/etc/services
userid/jobname.ETC.SERVICES
hlq.ETC.SERVICES

z/OS CS
TCP/IP stack

Establishes port numbers for servers
using TCP and UDP
552 ABCs of z/OS System Programming Volume 9

10.19 Start the TCP/IP daemons

Figure 10-19 Starting the TCP/IP daemons

Starting TCP/IP daemons
After the configuration files have been completed, the daemons need to be started before any
remote requests can be processed.

The /etc/rc script is a good place to put the start command, as Figure 10-19 shows. In this
case, the daemons will be started during the initialization processing for z/OS UNIX. The
_BPX_JOBNAME environment variable will give the daemon an MVS jobname.

Since inetd is responsible for starting the other daemons (Telnet, rlogin, remote shell and
remote execution), start commands for them are in inetd's configuration file.

In case any of these daemons fail, you should have other procedures created to restart them
since /etc/rc is only used at z/OS UNIX initialization. You could use shell scripts or MVS
procedures for this.

BPX_JOBNAME = 'SYSLOGD' /usr/sbin/syslogd -f /etc/syslog.conf &

BPX_JOBNAME='FTPD' /usr/sbin/ftpd /etc/ftp.data &

BPX_JOBNAME = 'INETD' /usr/sbin/inetd /etc/inetd.conf &

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -l -m
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -d
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -d
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

/etc/inetd.conf

Start Daemons at Initialization /etc/rc

Daemons started by INETD

Daemons started by a BPXBATCH job
Chapter 10. TCP/IP applications 553

10.20 Message integration support

Figure 10-20 Message integration support with Linux®

SYSLOGD message integration
In the current z/OS releases, the syslog daemon (syslogd) is a server process that must be
started as one of the first processes in your z/OS UNIX environment. Communications Server
server applications and components use syslogd for logging purposes and can also send
trace information to syslogd. Servers on the local system use AF_UNIX sockets to
communicate with syslogd; remote servers use the AF_INET socket. The syslogd daemon
reads and logs system messages to the MVS console, log files, other machines, or users, as
specified by the configuration file /etc/syslog.conf. A sample is provided in
/usr/lpp/tcpip/samples/syslog.conf.

With z/OS V1R8, the Communication Server syslog daemon now supports the following
changes:

� Introduce a new filter Hostname/IP address for the syslog daemon. This allows
administrators to limit what remote messages are logged and where.

� Issue a WTO indicating that OPERLOG is not active if OPERLOG is inactive.

� A new file is created, /etc/syslog_net.pid.

The /dev/operlog support provides a much lower path length to /dev/console, and a WTO is
then issued for each message in that file. The resulting messages from /dev/operlog do not
appear on a console or the SYSLOG.

z/OS V1R8 support for logging messages from
multiple source (Linux, z/OS) into one common place

Allows Linux messages to be integrated into z/OS
OPERLOG

 Provides /dev/operlog support

Write messages to OPERLOG without issuing WTOs

Syslog daemon (Communications Server) receives
messages from remote systems, applies a host filter,
translates all text to EBCDIC and writes them to the
/dev/operlog file
554 ABCs of z/OS System Programming Volume 9

10.21 Message routing to z/OS

Figure 10-21 Message routing from Linux to z/OS

Message routing from Linux
Figure 10-21 displays an overview of how the new message routing works. You can use the
message routing from every platform that supports the SYSLOG standards. Shown are the
following:

� Three Linux partitions and z/OS are running on the network.

zSeries customers are deploying functions and workloads on Linux on zSeries. Some of
these functions and workloads may interact with z/OS images or perform functions on
behalf of z/OS. For example:

– Middle-tier servers such as Web servers or application servers

– Communications Controller for Linux (CCL)

In these scenarios it may be desirable to be able to integrate certain key messages from
these Linux hosts into the z/OS environment and allow the z/OS operator to monitor key
events that occur on the Linux hosts that may have an effect on z/OS operations as well.

� For messages from the Linux systems and some of the local z/OS messages, the new
message integration support allows a common logging in z/OS for messages from
multiple systems and provides a quick alternative way to log messages to the OPERLOG.
Normally you would need to go through the system log of each system separately.

� To be able to log messages to OPERLOG, /dev/operlog builds a data block in a 4K
storage area (around 40 lines).

Linux
Partition/

Guest

Support for
/dev/operlog

/dev/operlog
MDB

 USS
File System

Port
514

Text

VIPA

zOS Sysplex

Linux
Partition/

Guest

Linux
Partition/

Guest

Linux
Partition/

Guest

SYSLOG
daemon

/dev/operlog

OPERLOG

Text

Text
Port
514

Port
514
Chapter 10. TCP/IP applications 555

10.22 syslogd command options

Figure 10-22 syslogd command options

syslogd command options
The syslogd command has some new options in z/OS V1R8, as follows:

syslogd [-f conffile] [-m markinterval] [-p logpath] [-c] [-d] [-i] [-n]
[-x] [-u] [-?]

Where:

-i This option starts syslogd in local only mode - old option.

-n This option starts syslogd in network only mode.

-x This option causes syslogd to avoid resolver calls for converting IP addresses to
hostnames.

Using both local and network logging, we recommend that you use two instances of syslogd,
as shown in Figure 10-23 on page 557. This ensures that local syslogd logging is not
adversely affected by the amount of remote messages being forwarded to z/OS.

It is now possible to start two instances of syslogd
One instance in local only mode (-i option)
One instance in network only mode (-n option)

syslogd [-f conffile] [-m markinterval] [-p logpath] [-c
] [-d] [-i] [-n] [-x] [-u] [-?]

-i option starts syslogd in local only mode - old option
-n option starts syslogd in network only mode
-x option causes syslogd to avoid resolver calls for
converting IP addresses to hostnames

Using both local and network logging, recommended
to use two instances of syslogd

This ensures that local syslogd logging is not
adversely affected by the amount of remote messages
being forwarded to z/OS
556 ABCs of z/OS System Programming Volume 9

10.23 syslogd defined instances

Figure 10-23 Flow of syslogd messages to the defined instances

syslogd message flow
Figure 10-23 shows how the Linux messages to be placed into the z/OS OPERLOG are
passed to the defined instance. The normal syslogd messages are passed to the existing
instance.

The ability to receive messages from remote syslogd instances can be very useful in
providing a consolidated log of messages from multiple hosts into a consolidated z/OS
message log. For example, in scenarios where you are running Linux hosts on zSeries
processors, and these Linux hosts are performing processing in cooperation with or on behalf
of z/OS systems, you might want to have certain important messages generated on the Linux
hosts visible from a z/OS system. This capability would enable z/OS operators to be alerted
of specific conditions on the Linux hosts that might require actions to be taken locally or on
the Linux hosts.

When deciding that this remote logging capability is useful in an environment, there are
several configuration considerations that should be examined prior to enabling this function. It
is also important to note that the syslogd remote logging capability can work in both
directions: the z/OS syslogd can forward some of its messages to another remote syslogd
instance, or the z/OS syslogd instance can be the receiver of remote syslogd messages. The
considerations described in this section focus primarily on the latter scenario, where the z/OS
syslogd is the recipient of remote messages.

z/OS System

USS Appl

Other Host
(Linux,etc)

syslogd -i

TCP/IP

z/OS UNIX System Service

Network Log
Messages

Local Log
Messages

UDP
Port514

OPERLOG /etc/syslog.conf

USS Appl

syslogd -n

Other
Host

USS File
System

Chapter 10. TCP/IP applications 557

10.24 syslogd configuration file

Figure 10-24 Defining the Linux message integration in the syslogd configuration file

syslogd configuration file
With z/OS V1R8, the format of the syslog.conf entry is extended. With this change filtering of
messages for specified hosts or networks is possible. This allows administrators to limit what
remote messages are logged and where. You can identify which messages the z/OS syslogd
should process by identifying the known remote syslogd instances from which you expect to
receive messages by defining them in the syslog.conf configuration file, as follows:

� Write all messages with priority crit and higher that arrive from host 192.168.0.6 to the
OPERLOG log stream:

(192.168.0.6).*.crit /dev/operlog

� Write all messages with priority crit and higher that arrive from any host with IP address in
the range 192.168.0.0 to 192.168.0.255 to the OPERLOG log stream:

(192.168.0.6/24).*.crit /dev/operlog

This device file, /dev/operlog, is reserved for syslog daemon use only. However, there is no
way to restrict someone from writing messages directly to /dev/operlog.

Note: If using IP addresses, as shown in previous examples, the IP address can be
followed by an optional forward slash and a number representing the number of significant
bits of the address. This is called the prefix length. The prefix length provides a means to
indicate that a condition applies to all IP addresses that have the bit pattern for the
specified number of bits.

/etc/syslog.conf - configuration file
Write all messages with priority crit and higher that
arrive from host 192.168.0.6 to the OPERLOG log
stream:

(192.168.0.6).*.crit /dev/operlog
Write all messages with priority crit and higher that
arrive from any host with IP address in the range
192.168.0.0 to 192.168.0.255 to the OPERLOG log
stream:

(192.168.0.6/24).*.crit /dev/operlog
Configuration file for syslogd client (Linux)

All messages are routed to z/OS V1R8 system
console

. @10.1.40.4
558 ABCs of z/OS System Programming Volume 9

Customize the parameter file for the syslogd client
The configuration for the syslogd is similar to the server. We used a z/OS V1R7 system to act
as a client in our test scenario. Figure 10-25 shows an example of the client configuration for
syslogd. The meaning of this file is that all messages are routed to the z/OS V1R8 system. At
the z/OS V1R8 system the messages will appear on the system console.

Figure 10-25 Example of syslog.conf for the client

. @10.1.40.4
Chapter 10. TCP/IP applications 559

10.25 Start procedure for syslogd

Figure 10-26 syslogd start procedure

syslogd start procedure
We recommend that the SYS1.PROCLIB procedure that follows be used when specifying
multiple syslogd instances.

//TCPLOG PROC
//TCPSYS EXEC PGM=SYSLOGD,REGION=30M,TIME=NOLIMIT,
// PARM=('POSIX(ON) ALL31(ON)',
// '/-f /etc/operlog.server ')
//SYSPRINT DD SYSOUT=*
//SYSIN DD SYSOUT=*
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//

Now recommended as a started task

Starting syslogd instances

One instance in local mode (-i option)

One instance in network mode (-n option)

//TCPLOG PROC
//TCPSYS EXEC PGM=SYSLOGD,REGION=30M,TIME=NOLIMIT,
// PARM=('POSIX(ON) ALL31(ON)',
// '/-f /etc/operlog.server ')
//SYSPRINT DD SYSOUT=*
//SYSIN DD SYSOUT=*
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//
560 ABCs of z/OS System Programming Volume 9

10.26 syslogd availability considerations

Figure 10-27 syslogd availability considerations

syslogd availability
syslogd availability is important to the logging of both local and remote messages. The
following configuration considerations can help improve the availability of the z/OS syslogd
remote logging services:

� Ensure that there is a process in place to restart a z/OS syslogd after a failure that results
in the termination of syslogd. This can be accomplished by placing syslogd in the
AUTOLOG list in the TCP/IP profile. This enables TCP/IP to initially start the syslogd
instance as a started task, and also enables TCP/IP to monitor whether syslogd has a
socket bound to the syslogd port used for remote message receipt (UDP port 514). This
approach works well for single-stack INET configurations. If multiple TCP/IP stacks are
deployed on a single system (that is, a CINET configuration), you should not use the
AUTOLOG list. Alternatively, an installation can use any available automated operations
software package to automate the start and restart of syslogd. For more information about
the AUTOLOG statement, refer to z/OS Communications Server: IP Configuration
Reference, SC31-8776.

� On MVS systems that are not part of a sysplex and that have TCP/IP stacks with multiple
network interfaces, using a static VIPA address can provide for better availability
characteristics should a specific network interface or network experience an outage. This
involves configuring a static VIPA in the TCP/IP profile or reusing an existing one. No
special configuration of the local syslogd is needed. However, you should configure the
remote syslogd instances to use the static VIPA address as the destination address when
forwarding messages. This can typically be accomplished by either specifying the static

Ensure that there is a process in place to restart a
z/OS syslogd after a failure that results in the
termination of syslogd

This can be accomplished by placing syslogd in the:

 AUTOLOG list in the TCP/IP profile

This enables TCP/IP to initially start the syslogd
instance as a started task

Also enables TCP/IP to monitor whether syslogd has
a socket bound to the syslogd port used for remote
message receipt (UDP port 514)

Note: Use only for single-stack INET configurations.
For multiple stacks, use automation to restart syslogd.
Chapter 10. TCP/IP applications 561

VIPA as the destination address, or specifying a host name that maps to the static VIPA in
the remote syslogd configuration.

� When the recipient syslogd instance is running in a sysplex environment, additional
availability features are available that should be explored. For example, you can use a
multiple application-instance dynamic VIPA (DVIPA) to represent the syslogd instance on
a given system, and the remote syslogd instances are configured to use that DVIPA
address as the destination IP address for the messages they forward. In this configuration,
if a failure to the MVS system or TCP/IP stack on which the syslogd instance is running
occurs, the DVIPA is automatically moved to a predefined backup system that is currently
active. This enables the syslogd instance on that backup system to begin processing
these remote messages in a transparent manner. In this configuration, using the MVS
operations log (OPERLOG) as the destination provides additional benefits, because the
operations log is implemented as a Coupling Facility log stream that any system in the
sysplex can access.
562 ABCs of z/OS System Programming Volume 9

Chapter 11. z/OS UNIX PARMLIB members

This chapter describes the z/OS UNIX PARMLIB members. It explains the differences
between the BPXPRMxx and BPXPRMFS members and defines the UNIX System Service
parameters in each member.

11
© Copyright IBM Corp. 2006, 2008. All rights reserved. 563

11.1 BPXPRMxx PARMLIB member

Figure 11-1 z/OS UNIX BPXPRMxx PARMLIB member

BPXPRMxx PARMLIB member
BPXPRMxx contains the parameters that control the UNIX System Services (z/OS UNIX)
environment.

To specify which BPXPRMxx PARMLIB member to start with, the operator can include
OMVS=xx in the reply to the IPL message or can include OMVS=xx in the IEASYSxx
PARMLIB member. The two alphanumeric characters, represented by xx, are appended to
BPXPRM to form the name of the BPXPRMxx PARMLIB member.

You can use multiple PARMLIB members to start OMVS. This is shown by the following reply
to the IPL message:

R 0,CLPA,SYSP=R3,LNK=(R3,R2,L),OMVS=(AA,BB,CC)

The PARMLIB member BPXPRMCC would be processed first, followed by and overridden by
BPXPRMBB, followed by and overridden by BPXPRMAA. This means that any parameter in
BPXPRMAA has precedence over the same parameter in BPXPMRBB and BPXPRMCC.

You can also specify multiple OMVS PARMLIB members in IEASYSxx. For example:

OMVS=(AA,BB,CC)

To modify BPXPRMxx PARMLIB settings without re-IPLing, you can use the SETOMVS
operator command, or you can dynamically change the BPXPRMxx PARMLIB members that
are in effect by using the SET OMVS operator command.

BPXPRMxx

IEASYSxx

OMVS=xx

R 0,CLPA,SYSP=R3,LNK=(R3,R2,L),OMVS=(AA,BB,CC)
564 ABCs of z/OS System Programming Volume 9

11.2 BPXPRMFS PARMLIB member

Figure 11-2 BPXPRMFS PARMLIB member

BPXPRMFS PARMLIB member
Starting with the OS/390 V2R6 ServerPac, IBM provides a UNIX System Services PARMLIB
member for HFS and socket definitions:

BPXPRMFS

The BPXPRMFS member reflects the restored file system. The BPXPRMFS PARMLIB
member is shipped in CPAC.PARMLIB and contains:

FILESYSTYPE TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(' ')

The ALLOCDS job of the ServerPac allocates HFS data sets as you defined in the installation
variables option of the installation dialog. The RESTFS job MOUNTs the new ROOT file
system and creates mount points for and MOUNTs the additional file systems. The
BPXPRMFS member of CPAC.PARMLIB is updated to reflect the file system structure.

It is up to the customer whether to use this additional PARMLIB member or not. Because you
have to IPL when one of these parameters is changed, you should provide the HFS and
socket information in a separate member.

BPXPRMFS

IEASYSxx

OMVS=FS
Chapter 11. z/OS UNIX PARMLIB members 565

11.3 BPXPRMxx control keywords

Figure 11-3 BPXPRMxx keywords that control z/OS UNIX processing

Using BPXPRMxx PARMLIB members
The BPXPRMxx PARMLIB member contains the parameters that control z/OS UNIX
processing and the file system. The MVS system uses these values when initializing UNIX
System Services.

A sample is shipped in SYS1.SAMPLIB(BPXPRMxx). Copy and rename (if necessary) this
member to PARMLIB. Customize this PARMLIB member according to your installation
requirements.

IBM recommends that you have two BPXPRMxx members, one that specifies system limits
and one that specifies file system setup. This makes it easier to migrate from one release to
another, especially when using the ServerPac method of installation.

You can also define system symbols in the IEASYSxx PARMLIB member to enable common
BPXPRMxx members to be shared by systems. Symbols like system name (&SYSNAME.)
can be used in the BPXPRMxx member, specifically when referring to HFS data set names,
in order to have different HFS data sets mounted as the root on each system in the sysplex.

SYS1.PARMLIB

BPXPRMxx

Processes

Process
Process

Users

Inter Process Communication

Threads

Process Process

KernelKernel
Data Data

SpaceSpace
566 ABCs of z/OS System Programming Volume 9

11.4 BPXPRMxx PARMLIB member

Figure 11-4 BPXPRMxx members that control active processes

Controlling active processes
Figure 11-4 shows all BPXPRMxx PARMLIB member parameters you can set up to influence
user logon, active processes, file handling, and storage requirements.

You should handle these parameters with care because the values you specify for these
statements are interrelated. For example:

� MAXPROCSYS
� MAXPROCUSER
� MAXUIDS

You should always monitor all MAXxxx settings before you change any statements. It makes
no sense to allow more users to access UNIX System Services when you do not provide
enough TTYs. Each user or process entering UNIX System Services needs a
pseudo-terminal (pseudo-TTY).

Beginning in OS/390 V2R8, you can specify the parameters shown in the OMVS segment of
a user profile.

For example, if you specify MAXPROCSYS, that means define the maximum number of
processes that can be active at the same time, using 3000, and in the MAXPROCUSER
statement you allow 200 processes per user and you allow 3000 users to be active at the
same time (MAXUIDS), this would not fit.

{MAXPROCSYS(nnnnn)}
{MAXPROCUSER(nnnnn)}
{MAXUIDS(nnnnn)}
{MAXFILEPROC(nnnnn)}
{MAXTHREADTASKS(nnnnn)}
{MAXTHREADS(nnnnnn)}
{MAXPTYS(nnnnn)}
{MAXRTYS(nnnnn)}
{MAXFILESIZE(nnnnn|NOLIMIT)}
{MAXCORESIZE(nnnnn)}
{MAXASSIZE(nnnnn)}
{MAXCPUTIME(nnnnn)}
{MAXMMAPAREA(nnnnn)}
{MAXSHAREPAGES(nnnnn)}

- Can specify in RACF OMVS segment
- Can specify in RACF OMVS segment

- Can specify in RACF OMVS segment

- Can specify in RACF OMVS segment

- Can specify in RACF OMVS segment

- Can specify in RACF OMVS segment
Chapter 11. z/OS UNIX PARMLIB members 567

11.5 Controlling the number of processes

Figure 11-5 BPXPRMxx members that control the number of processes

Statements controlling processes
The MAXPROCSYS statement specifies the maximum number of processes that z/OS UNIX
will allow to be active at the same time in the system. The range is 5 to 32767; the default is
200. Specify only the maximum number of processes you expect z/OS UNIX MVS to support,
because:

� Some storage allocations in the kernel address space are based on the MAXPROCSYS
value. A larger value means that more pageable storage will be allocated.

� Most z/OS UNIX MVS processes use an MVS address space, which uses storage.
Therefore, avoid specifying a higher value for MAXPROCSYS than the system can
support.

� If MAXPROCSYS is set too high relative to the maximum number of initiators the
Workload Manager (WLM) can provide, response time delays or failures for fork() or
spawn() could occur because users have to wait for initiators.

The MAXPROCUSER statement specifies the maximum number of processes that a single
OMVS user ID (UID) is allowed to have active at the same time, regardless of how the
process became a z/OS UNIX MVS process. The range is 3 to 32767; the default is 25.

If system resources are constrained, setting a low MAXPROCUSER value will limit a z/OS
UNIX user's consumption of processing time, virtual storage, and other system resources.

MAXPROCSYS(200)

MAXPROCUSER(25)

MAXUIDS(200)

z/OS UNIX users

z/OS UNIXz/OS UNIX

Processes

z/OS UNIX user Processes

BPXPRMxx:
568 ABCs of z/OS System Programming Volume 9

The MAXUIDS statement specifies the maximum number of unique OMVS user IDs (UIDs)
that can use z/OS UNIX MVS services at the same time. The UIDs are for interactive users or
for programs that requested z/OS UNIX MVS services. The range is 1 to 32767; the default is
200.

Note: PROCUSERMAX can be specified in the OMVS segment of a user profile to set the
maximum number of processes for this UID:

ALTUSER userid OMVS(PROCUSERMAX(nnnn))
Chapter 11. z/OS UNIX PARMLIB members 569

11.6 Resource limits for processes

Figure 11-6 Keywords that control resource limits for processes

Controlling resource limits
Some of the system resource limits assigned to processes can be modified by a process
using the setrlimit callable service. Only an authorized process can change the limits
beyond what is specified in BPXPRMxx. A resource limit is a pair of values; one specifies the
current (soft) limit and the other a maximum (hard) limit. The values assigned in the
BPXPRMxx which can be changed by the setrlimit callable service.

MAXFILEPROC value
The MAXFILEPROC value specifies the maximum number of files that a single z/OS UNIX
user is allowed to have concurrently active or allocated. The range is 3 to 65535; the default
and the value in BPXPRMXX is 64.

� The minimum value of 3 supports the standard files for a process: stdin, stdout, and stderr.

� The value needs to be larger than 3 to support shell users. If the value is too small, the
shell may issue the message File descriptor not available. If this message occurs,
increase the MAXFILEPROC value.

Use the RACF ADDUSER or ALTUSER command to specify the FILEPROCMAX limit on a
per-user basis as follows:

ALTUSER userid OMVS(FILEPROCMAX(nnnn))

MAXFILEPROC(64)

MAXCORESIZE(4194304)

MAXASSIZE(41943040)

MAXCPUTIME(1000)

MAXPTYS(256)

BPXPRMxx:
570 ABCs of z/OS System Programming Volume 9

MAXCORESIZE value
The MAXCORESIZE value specifies the maximum core dump file size (in bytes) that a
process can create. The default is 4 MB. If 0 is specified, no core files will be created by the
process.

MAXASSIZE value
The MAXASSIZE value indicates the address space region size. The range is from 10 MB to
2 GB. The default is 40 MB. If there are multiple processes within an address space, the
processes share the same limits for MAXASSIZE. Use the RACF ADDUSER or ALTUSER
command to specify the ASSIZEMAX limit on a per-user basis as follows:

ALTUSER userid OMVS(ASSIZEMAX(nnnn)

MAXCPUTIME value
The MAXCPUTIME is the time limit (in seconds) for processes that were created by rlogind
and other daemons. You can set a system-wide limit in BPXPRMxx and then set higher limits
for individual users. Use the RACF ADDUSER or ALTUSER command to specify the
CPUTIMEMAX limit on a per-user basis as follows:

ALTUSER userid OMVS(CPUTIMEMAX(nnnn))

MAXPTYS value
Use MAXPTYS to manage the number of interactive shell sessions, where each interactive
session requires one pseudo-TTY pair. Do not specify an arbitrarily high value for MAXPTYS.
But, because each user may have more than one session, it is recommended that you allow
four pseudo-TTY pairs for each user (MAXUIDS * 4). Specify a MAXPTYS value that is at
least twice the MAXUIDS value.
Chapter 11. z/OS UNIX PARMLIB members 571

11.7 MAXFILEPROC statement

Figure 11-7 New support for the MAXFILEPROC statement

MAXFILEPROC statement
The file descriptor limit is the maximum number of files per process for a z/OS UNIX user. In
some z/OS UNIX environments with very large numbers of clients, the file descriptor limits
are too small. In z/OS V1R6, the limit was increased from 64 KB up to 128 KB. This limit was
increased again in z/OS V1R8 to 512 KB. Also, the performance was improved in this
release.

Use MAXFILEPROC to set the maximum number of file descriptors that a single process can
have open concurrently, such as all open files, directories, sockets, and pipes. By limiting the
number of open files that a process can have, you limit the amount of system resources a
single process can use at one time. The limit that was increased is the limit per user, not the
whole system. The system itself has no limit. There are some ways to define and modify this
limit in your system. The default is set in the BPXPRMxx PARMLIB member with the
MAXFILEPROC parameter. Figure 11-8 on page 573 shows a sample entry from the
BPXPRMxx PARMLIB member.

The default process descriptor limit is set at IPL or on an OMVS restart with the
MAXFILEPROC() keyword of the BPXPRMxx PARMLIB member. The new limits are as
follows:

� The default in z/OS V1R8 for MAXFILEPROC is now 64000.
� The new limit is 524287.

Large servers were approaching the original
descriptor limit of 64K - such as TN3270 - CICS

The limit was raised from 64K to 128K in V1R6 for
short term relief

The limit is being raised from 128K to 512K along
with performance improvements in z/OS V1R8

Default for MAXFILEPROC is now 64000

The new limit is 524287

Descriptor values start at 0, so the highest descriptor
number is 524286

Benefit is constraint relief for servers with very large
numbers of clients
572 ABCs of z/OS System Programming Volume 9

Figure 11-8 Sample of MAXFILEPROC parameter

MAXFILEPROC(300000) /* Allow at most 300000 open files per user
Chapter 11. z/OS UNIX PARMLIB members 573

11.8 Setting file descriptors

Figure 11-9 Commands to set the file descriptors using MAXFILEPROC

Modifying the MAXFILEPROC limit
There are three ways to modify the system limit. The first two choices will dynamically
activate a whole BPXPRMxx PARMLIB member in your system, which means all statements
you place into a BPXPRMxx member specified by the xx in the command will be activated.

1. Use the SET OMVS=xx command with BPXPRMxx MAXFILEPROC(nnnnnn).

2. Use the SETOMVS RESET=(xx) command with BPXPRMxx MAXFILEPROC(nnnnnn).

3. Use the SETOMVS MAXFILEPROC=nnnnnn command.

The third choice just modifies the MAXFILEPROC limit in your system and nothing else. The
following shows the successful activation of a new descriptor limit:

SETOMVS MAXFILEPROC=10000
 BPXO015I THE SETOMVS COMMAND WAS SUCCESSFUL.

When you use a wrong value to modify the descriptor limit, you see an error message as
shown in Figure 11-10 on page 575.

To modify the system lim it, there are three ways:

Use the SET OMVS=xx command with BPXPRMxx
MAXFILEPROC(nnnnnn)

Use the SETOMVS RESET=(xx) command with
BPXPRMxx MAXFILEPROC(nnnnnn)

Use the SETOMVS MAXFILEPROC=nnnnnn
command

The lim it for an individual process can be changed
with:

 SETOMVS PID=pid,MAXFILEPROC=nnnnnn
574 ABCs of z/OS System Programming Volume 9

Figure 11-10 Wrong size to modify MAXFILEPROC

Set limit for a process
If you want to change the descriptor limit for an individual process, this can be done with the
SETOMVS system command. Figure 11-11 shows the z/OS system command to modify the
descriptor limit for a selected process by PID.

Figure 11-11 Modify MAXFILEPROC with the SETOMVS command

SETOMVS MAXFILEPROC=1000000
BPXO006I ERROR IN SETOMVS COMMAND. THE MAXFILEPROC 059
PARAMETER VALUE IS OUT OF THE ALLOWED RANGE OF 3 TO 524287.
BPXO012I ERRORS OCCURRED IN THE PROCESSING OF THE 060
SETOMVS COMMAND; NO VALUES WERE SET.

SETOMVS PID=33555255,MAXFILEPROC=3000
BPXO015I THE SETOMVS COMMAND WAS SUCCESSFUL.
Chapter 11. z/OS UNIX PARMLIB members 575

11.9 Setting file descriptor for a single user

Figure 11-12 Commands to set the file descriptor for a single user or process

Set file descriptor maximum for a single user
Use MAXFILEPROC to set the maximum number of file descriptors that a single process can
have open concurrently, such as all open files, directories, sockets, and pipes. By limiting the
number of open files that a process can have, you limit the amount of system resources a
single process can use at one time.

The following commands modify the system limit:

� Use of the FILEPROCMAX parameter in the users OMVS segment.

� Use scalable services or system APIs.

� Use the SETOMVS system command.

You can set the limit for individual users by modifying their RACF OMVS segment.
Figure 11-13 shows the RACF command to modify the descriptor limit for individual users. In
this example we increase the limit for the user ID LUTZ to 10,000 open objects.

Figure 11-13 Sample command for modifying the limit

Figure 11-14 on page 577 shows the modified OMVS segment for user ID LUTZ.

ALU LUTZ OMVS(FILEPROCMAX(10000))

Use of the FILEPROCMAX parameter in the users
OMVS segment

ALU LUTZ OMVS(FILEPROCMAX(10000))

Use scalable services or system APIs

Use the SETOMVS system command

SETOMVS PID=33555255,MAXFILEPROC=3000

BPXO015I THE SETOMVS COMMAND WAS
SUCCESSFUL.

SETOMVS MAXFILEPROC=10000

 BPXO015I THE SETOMVS COMMAND WAS
SUCCESSFUL.
576 ABCs of z/OS System Programming Volume 9

Figure 11-14 Sample listing of the OMVS segment

LU LUTZ NORACF OMVS
OMVS INFORMATION

UID= 0000001014
HOME= /u/lutz
PROGRAM= /bin/sh
CPUTIMEMAX= NONE
ASSIZEMAX= NONE
FILEPROCMAX= 00010000
PROCUSERMAX= NONE
THREADSMAX= NONE
MMAPAREAMAX= NONE

Note: You can use the USS_MAXSOCKETS_MAXFILEPROC check provided by IBM
Health Checker for z/OS to determine whether the MAXFILEPROC value is set too low.
Chapter 11. z/OS UNIX PARMLIB members 577

11.10 Memory mapped files

Figure 11-15 BPXPRMxx members for memory mapped files

Memory mapped files
Memory mapped files allow multiple processes to share data in a file that is mapped in
storage. Access to the file is through address space manipulation instead of read/write
services. The z/OS UNIX kernel stores the pages of data from the file in a data space. A child
process will inherit the mapping addresses from the parent and thereby have access to the
data. Other processes will need to open the file and can then map to the same data pages in
the data space.

There are two BPXPRMxx parameters which control the use of memory mapped files:

� MAXFILEPROC specifies how many files a user can have open or allocated; it also
controls the number of memory mapped files a user can have open.

� MAXMMAPAREA specifies the maximum amount of data space storage (in pages) that
can be allocated for memory mapped files. Use the RACF ADDUSER or ALTUSER
command to specify the MMAPAREAMAX limit on a per user basis as follows:

ALTUSER userid OMVS(MMAPAREAMAX(nnnn))

Using memory mapped files causes system memory to be consumed. For each page (KB)
that is memory mapped, 96 bytes of ESQA are consumed when a file is not shared with
anybody else. When a file is shared, each additional user causes 32 bytes of ESQA to be
consumed for each shared page. For example, if 4096 pages are used for memory mapped
files, the first user will cause 384 KB (96 * 4000) of ESQA to be consumed. Each additional
user will cause 128 KB (32 * 4000) of ESQA to be consumed. ESQA storage is consumed
when the mmap() function is invoked rather than when the page is accessed.

Kernel Data Space

Process ID 55 Process ID 70 Process ID 92

fd=open()
mmap(fd,..)
fork

Inherits
mapping

fd=open()
mmap(fd,..)

HFS
read

write

BPXPRMxx

MAXMMAPAREA
MAXFILEPROC
578 ABCs of z/OS System Programming Volume 9

11.11 Controlling thread resources

Figure 11-16 Controlling threads

Controlling resources for threads
Threads provide support for multiple separate units of dispatchable work within a process. A
z/OS UNIX thread can be compared with an MVS task. Threads allow for concurrent and
asynchronous processing without the additional overhead associated with creating a new
address space.

The thread support is intended for multitasking server applications that require multiple
concurrent execution streams. A program using threads can have significant performance
benefits in a multiprocessor environment where each thread in a process can run on an
individual processor.

� The MAXTHREADS value specifies the maximum number of pthread_created threads,
including those running, queued, and exited but not detached, that a single process can
have currently active. Specifying a value of 0 prevents applications from using
pthread_create. The range is 0 to 100000; the default is 200.

� The MAXTHREADTASKS value specifies the maximum number of MVS tasks created
with pthread_create (BPX1PTC) that a single user may have concurrently active in a
process. The range is 0 to 32768; the default is 50.

MAXTHREADTASKS lets you limit the amount of system resources available to a single
user process.

Individual processes can alter these limits dynamically if they have sufficient authority.

BPXPRMxx:

MAXTHREADTASKS(50)

Threads

Tasks

MAXTHREADS(200)

ProcessProcess
Chapter 11. z/OS UNIX PARMLIB members 579

MVS tasks and threads
Each thread that is created with pthread_create runs as an MVS subtask of the initial
pthread-creating task (IPT). The IPT is the task that issued the first pthread_create call within
the address space. When all the threads created with pthread_create and the IPT have
ended, the next task in the address space to issue a pthread_create call is made the IPT. The
IPT in the example in Figure 11-16 is the thread running Main.

The difference between these two keywords is that MAXTHREADS specifies the limit for how
many threads a process can have active. This number includes the number of threads that
are executing on MVS tasks and the number that are waiting for execution.
MAXTHREADTASKS specifies the limit for how many MVS tasks can be created per process
to schedule threads. This number limits the number of threads that can be executing at the
same time in a process. In the pictured example, a process has created 5 threads, but only
three MVS tasks, so two threads will be queued until a task becomes available.
580 ABCs of z/OS System Programming Volume 9

11.12 Creating a process using fork()

Figure 11-17 Creating a process using the fork() function

Create a process using fork()
Fork() is a POSIX/XPG4 function that creates a duplicate process referred to as a child
process. The process that issues the fork() is referred to as the parent process.

With z/OS UNIX, a program that issues a fork() function creates a new address space which
is a copy of the address space where the program is running. The fork() function does a
program call to the kernel, which requests WLM to create the child process address space.
The storage contents of the parent address space are then copied to the child address space.

After the fork() function completes, the program in the child AS will start at the same
instruction as the program in the parent AS. Control is returned to both programs at the same
point. The only difference that the program sees is the return code from the fork() function. A
return code of zero is returned to the child after a successful fork(). The return code for the
parent is the child process ID (PID).

Also, any UNIX resources (pipes, sockets, files) accessible via opened File Descriptors in the
parent are propagated to the new address space. z/OS resources such as DD allocations,
cross-memory resources, and ENQ serializations are not propagated to the child address
space.

Program prog1
The program prog1 in the parent AS issues the fork() function, the kernel is called to perform
the action. The kernel calls the Workload Manager (WLM) to create a new address space.

User
Storage

prog1

fork()
......

WLM

Parent Process Child Process

PID = 83
PPID = ..

ASID =428

UNIX
Resrc.

FD

MVS
Resrc. User

Storage

prog1

fork()
......

UNIX
Resrc.

FD

MVS
Resrc.

PROC=
BPXAS

PID = 789
PPID = 83

ASID =527

UNIX
Services
Kernel
Chapter 11. z/OS UNIX PARMLIB members 581

WLM uses the BPXAS procedure from PROCLIB to initialize the address space. WLM
dynamically manages the number of address spaces started for UNIX processes, in order to
meet goals set via ICS/IPS, or WLM policy in goal mode.

Child address space
Once the child address space has been created, the child gets the required storage from a
STORAGE request. The kernel then copies the contents of the parent AS to the child AS
using the MVCL instruction. After some additional setup, the kernel returns codes to both
parent and child programs. The program in the child AS gets control at the same point as the
program in the parent AS. The only difference is the return code from the fork() function.

The child address space is almost an identical copy of the REGION storage in parent address
space. User data, for example private subpools, and system data, like RTM (Recovery
Termination Management) control blocks, are identical.

HFS files are allocated to the kernel and I/O is done by calling the kernel. An open HFS object
(file, pipe, socket) for the parent is represented by an open File Descriptor in the File
Descriptor Table. On a fork(), all open HFS File Descriptors (that is, files) are inherited by the
child address space. The child does not inherit any file locks for the HFS files.

z/OS resources are not propagated to the child address space. Any linkage stack in the
parent is not carried over to the child. Also, data spaces and hiperspaces are not carried over
since access list and access register contents are not copied. Internal timers together with
SMF and SRM accounting data are set to zero in the child address space.

Also, z/OS data sets are allocated to an individual address space, and after a fork() the child
address space does not have access to the z/OS data sets allocated by the parent. Also,
ENQ resources held by the parent are not propagated.
582 ABCs of z/OS System Programming Volume 9

11.13 Values for forked child process

Figure 11-18 Propagation of parameters passed to the child process

Child process propagation of parameters
JOBNAME of the parent is propagated to the child and appended with a numeric value in the
range of 1-9 if the jobname is 7 characters or fewer. If the jobname is 8 characters, it is
propagated as is. Numeric count wraps back to 1 when it exceeds 9.

z/OS accounting data is copied from parent to child. UNIX environment variables are copied
from parent to child. RACF security profile (Userid, UID, GID) is also inherited from the
parent.

The child is allocated a new process ID (PID). Child PPID = parent PID.

The child REGION size is set by the “dub” process. The current REGION size of the parent is
compared with BPXPRMxx MAXASSIZE, and the larger value is set as REGION size.

Child TIME value is also set by the “dub” process. The current TIME for the parent task is
compared with BPXPRMxx MAXCPUTIME, and the larger value is set as the TIME value.

Current working directory and umask value for the parent are propagated to the child.

All resources defined by open file descriptors are propagated to open file descriptors on the
child.

The only z/OS resources that are propagated to the child are the subpools in the parent
REGION area (this includes loaded programs and data), plus the recovery environment for
loaded programs established via ESTAE/ESPIE calls.

Job Name

Accounting Data

Environment Vars.

RACF Userid

RACF UID and GID

UNIX PID and PPID

REGION value

TIME value

Working directory

UNIX "umask"

UNIX Resources
 (file descriptors)

MVS Resources

parent jobname + n (n=1 to 9)

= parent

= parent

= parent

= parent

new PID, PPID = parent PID

larger of dub/parent REGION

larger of dub/parent TIME

= parent

= parent

inherit all open file descriptors
 (files, sockets, pipes)

INHERIT: STORAGE, PROGRAMS IN PRIVATE
 REGION, ESTAE/ESPIE
Subpools: 0-127, 129-132, 251-252
Chapter 11. z/OS UNIX PARMLIB members 583

11.14 Starting a program with exec()

Figure 11-19 Creating a process using the exec() function

Starting a process with exec()
The z/OS UNIX environment provides a family of exec() function calls. These calls load a new
program and transfer execution from the calling program to the new program. The difference
between the exec calls is based on how the pathname of the new program is specified, and
whether the value of environment variables will be passed.

When a program issues an exec() call, it passes these parameters:

� Program name - either partial/full pathname or a file name only
� A series of “arguments” (parameters) to be passed to the new program
� Optionally, an array of environment variables are passed via parm env()

When the kernel receives an exec call, it erases all the current storage contents of the
address space. It also terminates the current process task, and starts a new one. The new
program is loaded from the HFS, and the values of the arguments and optional environment
variables are placed in storage. The new program starts up using only this basic information.

No z/OS resources are propagated from the caller's TCB to the new TCB except JOBLIB,
STEPLIB, and TASKLIB. However, open file descriptors from the exec() caller are
propagated to the new program, giving it access to resources established by the caller.

Child Process before EXEC

User
Storage

prog1

exec(prog2,args,
 [env])

UNIX
Resrc. FD

MVS
Resrc.

PID = 789
PPID = 83

ASID =527

Args
[env]

INIT

JST

Child Process after EXEC

prog2

UNIX
Resrc. FD

PID = 789
PPID = 83

ASID =527

INIT

JST JST

X

Args
[env]

Kernel

Args
[env]

JOBLIB/STEPLIB/TASKLIB
584 ABCs of z/OS System Programming Volume 9

Propagated parameters to the child
An exception to no z/OS resources being propagated is that the caller's task
JOBLIB/STEPLIB/TASKLIB status may be propagated to the new task. This requires the
caller to set the STEPLIB variable before exec(). (We explain more about this later.)

If exec() is used by a process running in an address space created by fork or spawn, the
caller of exec() must be running under the job step task TCB, with no subtasks, and with no
linkage stack. Any other situation will cause an ABEND EC6. For processes created in
multi-task address spaces via attach_exec, execmvs, or attach_execmvs, this restriction is
relaxed.

fork() and exec() calls
The fork() and exec() calls are usually used together to create a new address space running a
child process, and then pass control to a new program in the child. There are some
exceptions to this:

� A C program started from a z/OS batch job could use the exec() call to start a program
from the HFS. The new program would then replace the original C program executed in
batch.

� The BPXBATCH utility can be used to run shell scripts, or C programs resident in the
HFS, as a batch job in a JES initiator. After the BPXBATCH job step program has set up
the support environment, it then issues exec() to replace BPXBATCH with the program or
shell script to be run.

Note: The target of an exec() can be a shell script or REXX exec. In this case, the new
program loaded by the kernel is the SHELL program, and the script or REXX exec is
automatically executed under the shell.
Chapter 11. z/OS UNIX PARMLIB members 585

11.15 Values passed for exec() program

Figure 11-20 Parameters passed to the new process

Parameters passed to process with exec()
Due to the creation of a new process task for the exec() program, the scheduling environment
can change considerably over an exec() call, as follows:

� By default, the address space JOBNAME stays the same. However, an authorized caller
(a superuser running in a forked address space) can set a new name envar
$_BPX_JOBNAME before exec() - this will change the address space JOBNAME.

� By default, account data is inherited. Alternatively, any exec() caller an set envar
$_BPX_ACCT_DATA to new account data prior to issuing a call.

� By default, a new program inherits all caller environment variables. You can use the env()
parameter to pass only chosen values to the new program.

The RACF Userid remains constant over exec(). UID and GID are also constant, unless the
target program has SetUID or SetGID flags set. In this case, the effective UID or GID is
changed for the new program. The PID and PPID values are not changed.

As with fork, REGION and TIME values are first set by “dub” values in BPXPRMxx. The
inherited values related to the exec() caller TASK are then compared to the dub values, and if
inherited values are larger, they override dub.

Working directory and umask are inherited from the caller. All open file descriptors are
passed across to the new program for immediate use, except those previously flagged with
an FD_CLOEXEC flag.

No z/OS resources are inherited, except possibly JOBLIB/STEPLIB.

Job Name

Accounting Data

Environment Vars.

RACF Userid

RACF UID and GID

UNIX PID and PPID

REGION value

TIME value

Working directory

UNIX "umask"

UNIX Resources
 (file descriptors)

MVS Resources

(1) = caller (2) $_BPX_JOBNAME

(1) = caller (2) $_BPX_ACCT_DATA

(1) = caller (2) env parm on exec

= caller

= caller unless target uses SetUID, SetGID

= caller PID, PPID

larger of dub/parent REGION

larger of dub/parent TIME

= caller

= caller

Inherits nothing from calling program, except
Steplib, Joblib, Tasklib

Inherit all open file descriptors (files, sockets,
 pipes) - override with FD_CLOEXEC flag
586 ABCs of z/OS System Programming Volume 9

11.16 z/OS UNIX processes get STEPLIBs

Figure 11-21 The use of STEPLIBs when creating a new process

Propagation of STEPLIBs to a new process
Figure 11-21 illustrates that programs requested by a UNIX application can be loaded from
z/OS program libraries, including STEPLIBs.

For a process that has been created by a fork() request, the child process inherits any active
parent process JOBLIB/STEPLIB concatenation.

When a process wants to use a spawn() or an exec() call, the caller must set the $STEPLIB
envar prior to executing the fork()/spawn() request so that the kernel can control the STEPLIB
allocation. The settings have the following meanings:

� CURRENT - Propagate and reuse JOBLIB/STEPLIB/TASKLIB from task TCB issuing the
exec/spawn to the new process/program.

� NONE - No STEPLIB; do not propagate from the caller if present.

� DSN1:.DSN2: - Set this as STEPLIB concatenation.

If the $STEPLIB variable is not set, the default assumed is CURRENT.

If the target program for the spawn() or exec() function has the SetUID or SetGID flag set, a
further check is made against the sanctioned library list. This list is pointed to by the
BPXPRMxx statement STEPLIBLIST. Libraries in the JOBLIB/STEPLIB list to be propagated
must also be named in the sanction list. If a library is not sanctioned, it will be dropped from
the propagated STEPLIB list.

Created by fork():
Inherit parent process
JOBLIB/STEPLIB/TASKLIB

Created by spawn() or exec():

caller
$STEPLIB

=NONE =CURRENT =DSN1:DSN2: ..

target program flagged
 as SetUID/SetGID?

No set
STEPLIBs

Propagate
from caller

Set up as
per list

STEPLIBLIST
 (/etc/steplib)

BPXPRMxx

/etc/steplib

SYS1.CEE*
DSN2

Y

OSTEPLIB command
(TSO/E)
Builds /etc/steplib
Chapter 11. z/OS UNIX PARMLIB members 587

STEPLIBLIST
STEPLIBLIST specifies the path name of the file in the file system that contains the list of
MVS data sets to be used as step libraries for programs that have the set-user-id and
set-group-id bit set on.

Step libraries have many uses; one is so that selected users can test new versions of
run-time libraries before the new versions are made available to everyone on the system.
Customers who do not put the Language Environment Run-Time Library SCEERUN into the
linklist should put the SCEERUN data set name in this file.

If your installation runs programs that have the setuid or setgid bit turned on, only those load
libraries that are found in the STEPLIBLIST sanction list are set up as step libraries in the
environment that those programs will run in. Because programs with the setuid or setgid bit
turned on are considered privileged programs, they must run in a controlled environment.
The STEPLIBLIST sanction list provides this control by allowing those programs to use only
the step libraries that are considered trusted by the installation.
588 ABCs of z/OS System Programming Volume 9

11.17 Locating programs for z/OS UNIX processes

Figure 11-22 Loading programs for z/OS UNIX processes

Loading programs in z/OS UNIX
The spawn() and exec() calls both request z/OS UNIX to find and load a new HFS program.
Figure 11-22 shows the overall flow. First scan the supplied pathname of the HFS program for
imbedded “/” characters, with the following results:

� First char = “/” - Supplied name is the absolute pathname; search HFS directly.
� Contains one or more “/,” not in position 1. Treat this as a relative pathname by suffixing

with current working directory, then search HFS for full name.
� No “/” - Supplied name is filename; search directory concatenation supplied in $PATH

environment variable, use first object with a matching name.

S1 If the HFS file is located, check permission bits for user execute auth. If access is
granted, check to see if object is an external link. If so, attempt to load the z/OS
program named in the link.

S2 This is a second security access check. It is made based on RACF user ID and the
DSNAME. If the object is not an external link, check to see if the sticky bit is on. If so,
switch to do a z/OS search for the program. Otherwise attempt to load and execute the
HFS object as a program. For a z/OS search, follow the standard search sequence.

S3 Search any JOBLIB/STEPLIB concatenation pointed to by the process task. If an object
is found, make a security check based on RACF user ID and DSNAME before loading
the program.

� Search the LPA areas.
� Search the system LNKLST.

filename
only?

spawn()
exec()

DIRECT
SEARCH

SEARCH
$PATH

HFS file
found?

external
link?

LOAD MVS
PROGRAM

sticky
bit?

Search:
STEPLIB

LPA

LNKLST
LOAD HFS
PROGRAM

S1

S3

S2

Y

Y

Y

YN

N

N

N

PATH=/bin:/usr/sbin:

PATH=$PATH:$HOME:.

START

File not
found msg
Chapter 11. z/OS UNIX PARMLIB members 589

11.18 Shared pages for the fork() function

Figure 11-23 Shared pages for the fork() function

Shared pages function
The shared pages function provides the capability to define virtual storage areas through
which data can be shared by programs within or between address spaces or data spaces.
Sharing reduces the amount of processor storage required and the I/O necessary to support
data applications that require access to the same data.

The z/OS UNIX fork function can use shared pages to improve performance. The keyword
FORKCOPY(COW|COPY) in the BPXPRMxx member specifies how storage is copied from the
parent process to the child during fork.

FORKCOPY(COW) Copy On Write (COW). Storage areas will be shared between the
parent and child, and they will only be copied to the child if they are
modified by either the parent or the child. This requires the
suppression-on-protection (SOP) hardware feature.

FORKCOPY(COPY) All storage areas will be copied from the parent to the child. Shared
pages will not be used.

FORKCOPY(COW) is the default. Figure 11-23 illustrates how the storage area of a parent
process is copied to a child process during a fork operation. For a UNIX system this is not a
big deal, but for an MVS system it is a very costly operation. In most cases where a fork
function is used, it is followed by an exec function in the child. This means that a new program
is started in the child and all the storage areas that were copied from the parent are released.

User Data

System Areas

prog1
............
fork()....
............

Parent Process Child Process

ASID=428 ASID=527

User Data

System Areas

prog1
............
fork()....
............

WLM

Central Storage

ESQAMap
Tables

FORKCOPY (COW/COPY) BPXPRMxx

UNIX
Services
Kernel
590 ABCs of z/OS System Programming Volume 9

11.19 Spawn function

Figure 11-24 The spawn function

Spawn function
Spawn is a combination of fork and exec because spawn will create a new process and start
a new program in the child process.

Spawn can create a child process in the same address space as the parent process or in a
new address space. An environment variable called _BPX_SHAREAS will decide where the
child process will be created.

� _BPX_SHAREAS=YES - The child process will be created in the same address space as
the parent. The benefits of using BPX_SHAREAS=YES are:

– The spawn runs faster

– The child process consumes fewer system resources.

– The system can support more resources.

If YES fails, a new address space is created.

The side effects are:

– When running multiple processes with BPX_SHAREAS=YES, the processes cannot
change identity information. For example, setuid and setgid will fail.

– You cannot run a setuid or setgid program in the same address space for another
process.

– When the parent terminates, the child will terminate because it is a subtask.

ProgX ProgY

ProgY

 spawn (ProgY,
 FD_map, iflag,
 argv, envp)

...................

...................

...................

...................

...................

...................

YES

Parent Process Address Space

WLM Address
Space (BPXAS)

PID=45 PID=56

PID=68

$_BPX_SHAREAS =

REUSE

MUST

$_BPX_SHAREAS=NO

argv envp

argv

envp
Chapter 11. z/OS UNIX PARMLIB members 591

� _BPX_SHAREAS=MUST - MUST specifies that the child process must be created on a
subtask in the parent's address space. If the request cannot be honored, the request will
complete unsuccessfully.

� _BPX_SHAREAS=REUSE - REUSE specifies that the child process is to be created on a
subtask in the parent's address space and when the process terminates, system
structures for the child process are left in place and reused when the parent spawns
another process with _BPX_SHAREAS=REUSE.

Using BPX_SHAREAS_REUSE is similar to specifying YES. In environments where shell
commands are invoked over and over, the REUSE option will perform better.

� _BPX_SHAREAS=NO - The child process will be created in a separate address space.

_BPX_SHAREAS=NO is the default setting for this environment variable.
592 ABCs of z/OS System Programming Volume 9

11.20 Interprocess communication functions

Figure 11-25 Interprocess communication functions

Interprocess communications
Support for XPG4 introduced Interprocess Communication (IPC) functions in z/OS UNIX.
These IPC functions were required by many applications, particularly client/server
applications.

Message queues - Message queues allow a client and a server process to communicate
through one or more message queues in the kernel. A process can create, read from, or write
to a message queue. Multiple client and server processes can share the same queue.

Shared memory - Shared memory provides a method of sharing data in storage between
multiple processes. The shared data is kept in a data space created by the kernel. The data
can be shared between a parent and child process or between unrelated processes.

Semaphores - Semaphores are used for serializing access to shared memory. A program
using shared memory must get a semaphore before it allocates shared memory.

Process ID 55 Process ID 70 Process ID 92

Kernel Data Space

Program A Program B Program C
Chapter 11. z/OS UNIX PARMLIB members 593

11.21 Address Space Memory Map z/OS V1R5

Figure 11-26 64-bit address space with memory sharing support

Memory sharing with z/OS V1R5
Beginning with z/OS V1R5, UNIX applications can obtain memory above the bar in the area
reserved for memory sharing.

To get access to the shared memory object, a program uses the SHAREMEMOBJ service.
An address space can issue more than one SHAREMEMOBJ request for the same memory
object. To separate each of the requests for the same memory object you need to specify a
different user token. You must be executing in AMODE64.

If, while running a 64-bit program, you allocate shared memory segments above the bar by
using the shmget() service, the shared page limit is not affected.

Shared memory examples
UNIX applications can share memory between address spaces with this support. The
following example shows how the first address space creates a shared memory object one
megabyte in size. It specifies a constant with value of one as a user token.

Note: USERTKN=usertoken is a required 8-byte token that relates two or more memory
objects to each other. Associate the user token with the memory object, so later you can
free several shared memory objects at one time.

User Private area

User Private area

Below 2GB0

The bar

(High Non-shared)

(Low Non-shared)

Addressability requires a
Region 1st table (R1T)

Addressability requires a
Region 2nd table (R2T)

Addressability requires a
Region 3rd table (R3T)

16M - Line

642

532
502

422
412

322
312

2T

512T

Area Reserved for
 Memory Sharing
594 ABCs of z/OS System Programming Volume 9

A second address space can then share the obtained storage in the memory sharing part of
storage as follows:

IARV64 REQUEST=GETSHARED,
 SEGMENTS=ONE_SEG,
 USERTKN=USERTKNA,
 ORIGIN=VIRT64_ADDR,
 COND=YES,
 FPROT=NO,
 KEY=MYKEY,
 CHANGEACCESS=LOCAL

IARV64 REQUEST=SHAREMEMOBJ,
 USERTKN=USERTKNS,
 RANGLIST=RLISTPTR,
 NUMRANGE=1,
 ALETVALUE=0,
 COND=YES,
 SVCDUMPRGN=YES
Chapter 11. z/OS UNIX PARMLIB members 595

11.22 Control IPC resources

Figure 11-27 Controlling interprocess communication functions

BPXPRMxx values for IPC functions
Message queues are controlled by the following specifications:

� IPCMSGNIDS - Specifies the maximum number of unique message queues in the
system. The range is from 1 to 20000. The default is 500.

� IPCMSGQBYTES - Specifies the maximum number of bytes in a single message queue.
The range is from 0 to 1048576. The default is 262144.

� IPCMSGQMNUM - Specifies the maximum number of messages for each message
queue. The range is from 0 to 20000. The default is 10000.

Shared memory control:

� IPCSHMNID - Specifies the maximum number of unique shared memory segments in the
system. The range is from 1 to 20000. The default is 500.

� IPCSHMSPAGES - Specifies the maximum number of pages for shared memory
segments in the system. The range is from 0 to 2621440. The default is 262144.

� IPCSHMMPAGES - Specifies the maximum number of pages for a shared memory
segment. The range is from 0 to 25600. The default is 256.

� IPCSHMNSEGS - Specifies the maximum number of shared memory segments attached
for each address space. The range is from 0 to 1000. The default is 10.

IPCMSGNIDS(500)
IPCMSGQBYTES(262144)
IPCMSGQMNUM(10000)

IPCSHMNIDS(500)
IPCSHMSPAGES(262144)
IPCSHMMPAGES(256)
IPCSHMNSEGS(10)

IPCSEMNIDS(500)
IPCSEMNSEMS(25)
IPCSEMNOPS(25)

MAXSHAREPAGES(131072)

Message Queues

Semaphores

Shared Memory

Shared Storage Pages

BPXPRMxx:
596 ABCs of z/OS System Programming Volume 9

Semaphore control:

� IPCSEMNIDS - Specifies the maximum number of unique semaphore sets in the system.
The range is from 1 to 20000. The default is 500.

� IPCSEMNSEMS - Specifies the maximum number of semaphores for each semaphore
set. The range is from 0 to 32767. The default is 25.

� IPCSEMNOPS - Specifies the maximum number of operations for each semaphore
operation call. The range is from 0 to 32767. The default is 25. This is a system-wide limit.

Controlling shared pages
MAXSHAREPAGES specifies the maximum number of shared storage pages that can be
concurrently in use by z/OS UNIX functions. This can be used to control the amount of ESQA
consumed, since shared storage pages cause the consumption of ESQA storage. The
functions that this limit applies to are fork(), mmap(), shmat(), and ptrace(). The range is from
0 to 32768000. The default is 131072 pages.
Chapter 11. z/OS UNIX PARMLIB members 597

11.23 Kernel support for IBM 5.0 JVM

Figure 11-28 Application support with z/OS UNIX with IBM 5.0 JVM™

IBM 5.0 JVM version
The IBM 5.0 JVM version of the JVM is designed to exploit UNIX shared memory. In releases
prior to z/OS V1R8, UNIX shared memory could only be exploited from environments that ran
PSW Key 8. The JVM must now be able to run in the following environments:

� A WebSphere Application Server environment that runs PSW Key 2

� A CICS environment that runs PSW Key 9

z/OS UNIX support for shared memory from Key 2 and Key 9 is now provided with z/OS
V1R8. Additionally, to allow for more efficient sharing in an address space such as CICS that
can run IBM 5.0 JVM in multiple processes, support for enhanced single address space
sharing is provided.

Java applications
With the introduction of the kernel IBM 5.0 JVM support, Java applications are able to run and
exploit the latest features provided by the IBM 5.0 JVM in all z/OS supported environments
that now includes critical environments such as WebSphere Application Server and CICS.
The z/OS V1R8 support provides the following enhancements:

Note: Following are the IBM 5.0 JVM versions:

� IBM 31-bit SDK for z/OS, Java™ 2 Technology Edition, Version 5, product 5655-I98

� IBM 64-bit SDK for z/OS, Java 2 Technology Edition, Version 5, product 5655-I99.

IBM 5.0 JVM - exploits z/OS UNIX shared memory

The JVM must be able to run in these environments:

A Websphere Application Server environment that
runs PSW Key 2

A CICS environment that runs PSW Key 9

Provide ability to use z/OS UNIX shared memory
services from Key 2 and Key 9 environments

Provide enhanced sharing capabilities for address
spaces running multiple processes

z/OS APAR OA11519 available for z/OS R1V6 and
up

Apply to any z/OS system where shared classes are
used
598 ABCs of z/OS System Programming Volume 9

� Ability to use UNIX shared memory services for WebSphere Application Server and CICS
environments

� Enhanced sharing capabilities for address spaces running multiple processes

Using kernel support for IBM 5.0 JVM, applications are able to:

� Get the benefits of the enhanced IBM 5.0 JVM in customer critical environments such as
WebSphere Application Server and CICS

� Run Java applications that exploit the latest features provided by the IBM 5.0 JVM in all
z/OS supported environments, such as:

shmgt, shmat, shmdt, shmctl from Key 9 and Key 2 environments

Request for shared memory segments
The user address space storage request for a shared memory segment, an area shown in
“Address Space Memory Map z/OS V1R5” on page 594 for 64-bit callers, is normally
obtained in storage key 8. In the following special circumstances, the storage key does not
have to be 8:

� The caller creating a shared memory segment is running PSW Key 9 or 2 in 64 -bit
AMODE and the segment is not of type IPC_MEGA and IPC_BELOWBAR.

� The caller creating a shared memory segment is running PSW Key 9 or 2 in 31-bit
AMODE and the shared memory segment is of type IPC_MEGA.

Coexistence support
For z/OS V1R6 and z/OS V1R7, this feature can be exploited by installing APAR OA11519
and APAR PK05350.

Note: In these circumstances, the user address space storage is obtained in the PSW key
of the caller (key 9 or key 2). It is important to note that any subsequent usage of the
segment from any address space causes the user address space storage to be obtained in
the key the segment was initially created in. This is true regardless of the PSW key the
caller is running in at the time of a subsequent attach.

Note: It is strongly recommended that z/OS APAR OA11519, available for z/OS R1V6 and
onwards, is applied to any z/OS system where shared classes are used. This APAR
ensures that multiple shmat requests for the same shared segment will map to the same
virtual address across multiple processes.

Without this APAR, there is a problem with using shared memory when multiple processes
reside in a single address space. Each shmat call consumes a separate virtual address
range. This is not acceptable because shared classes will run out of shared memory pages
prematurely.
Chapter 11. z/OS UNIX PARMLIB members 599

11.24 Interprocess communication signals

Figure 11-29 Interprocess communication signals

Interprocess communication signals
All signal functions are supported when the task is set up for signals, when it is running with
the signal delivery key, and when its current program request block (PRB) is the same PRB
as when the task was set up for signals.

Signal delivery also depends on the signal delivery key. Each process has one signal delivery
key. The signal delivery key is set to the PSW key of the caller of the first z/OS UNIX call that
created the process. A process created by the fork or exec service has key 8.

� Wait and Exit - A parent process can wait on the exit of a child. The wait() function is used
for waiting for any child process, while the waitpid() function is used for waiting for a
particular child process.

Both exit() and _exit() terminate a process and generate status information which is
available for the parent process waiting with wait() or waitpid(). When using exit(), these
cleanup routines are not invoked. Generally, exit() is used for a graceful exit from a
program, while _exit() is used for abnormal terminations.

� Signal() and sigaction() are equivalent functions which are used to catch a signal and
determine what to do with it.

The function for sending signals is called kill(). A process can send a signal to another
process or group of processes if it has permission to do so. A process can also send a
signal to itself.

Parent Process Child Process

Communication
Wait and Exit
Signals
600 ABCs of z/OS System Programming Volume 9

Signals are used for system event notification, or they can be used for process
synchronization. For example, a process might want to wait for a signal to know that
another process has opened a pipe, written a file, or completed a task that the current
process needs to wait for.

A process can choose what to do when it receives a signal:

� Execute a signal handling function.
� Ignore the signal.
� Restore the default action of a signal.

Kill signal
The kill callable service sends a signal to a process, a process group, or all processes in the
system to which the caller has permission to send a signal.

Kill() accepts several different signal codes. Examples are:

� SIGABND - abend
� SIGCHLD - child termination
� SIGKILL - cancel a process
� SIGSTOP - stop a process

From a program's point of view, signals are asynchronous. That means a program can, in
principle, receive a signal between any two instructions.
Chapter 11. z/OS UNIX PARMLIB members 601

11.25 Pipes

Figure 11-30 Using pipes with z/OS UNIX

Pipe function
In z/OS UNIX, pipes are a communication mechanism for sending arrays of data between two
processes. Pipes are conceptually like a sequential file. Processes can write into a pipe and
other processes can read from the pipe.

Pipes exist only during the time they are open. The storage needed for the pipes is obtained
from a data space associated with the kernel address space.

Data can only be read from the beginning of the pipe. You cannot seek in a pipe. Data is
always read from a pipe in the same order it was written into the pipe. The data is discarded
when all the processes that read from the pipe have closed the pipe. There are two types of
pipes:

� Unnamed pipes are used between related processes, for example between a parent and
child process. An unnamed pipe is created by the pipe() function. The pipe function also
opens the pipe for use. No security checking is performed on unnamed pipes since they
are available only to a process and its children.

� Named pipes are also called FIFO. A FIFO resides in the hierarchical file system and can
be referred to by a name; thus it can be used for communication between any two
processes.

Parent Process
PID 38

Child Process
PID 52

pipe()
fork()
write()

read()
Data Space

Data
Data

Kernel

exec()

pipe
buffers
602 ABCs of z/OS System Programming Volume 9

11.26 Other BPXPRMxx keywords

Figure 11-31 Other BPXPRMxx keywords

STEPLIBLST parameter
The STEPLIBLST parameter specifies a pathname of a file in the hierarchical file system.
This file is intended to contain a list of MVS data sets that are sanctioned by an installation for
use as step libraries for programs that have the set-user-ID and set-group-ID permission bits
set.

The TSO/E command OSTEPLIB can be used to build or modify the file which contains the
list of MVS data sets that can be step libraries. Superuser authority is required to run this
command.

The USERIDALIASTABLE statement allows an installation to associate an alias name with
an MVS user ID. If specified, this alias name is used in z/OS UNIX processing for the user IDs
listed in the table. The USERIDALIASTABLE statement specifies the pathname of a
hierarchical file system (HFS) file. This file is intended to contain a list of MVS user IDs and
their associated alias names.

Specifying the USERIDALIASTABLE statement causes poorer performance and increases
systems management costs and complexity. Installations are encouraged to continue using
uppercase-only user IDs.

USERIDALIASTABLE('/system/alias')

STEPLIBLIST('/system/steplib')

MYUSERID MyUserid
K61XDLBC Daniel
OP251 Team1
ROOT root

SYS1.CEE*
CEE..V1R5M0

/system/steplib

/system/alias

SYS1.PARMLIB:BPXPRMxx HFS: Root file
Chapter 11. z/OS UNIX PARMLIB members 603

11.27 More BPXPRMxx parameters

Figure 11-32 More BPXPRMxx parameters

Other BPXPRMxx parameters
The SUPERUSER parameter specifies a superuser name. This will be used when a daemon
task issues a setuid() to set a UID of 0 and the user name is not known. It should be an ID
defined to the security product with no access to MVS resources and a UID of 0. The default
is SUPERUSER(BPXROOT).

TTYGROUP is a group name for the pseudo-terminal files (ptys and rtys) when they are first
opened. This group name should be defined to the security product with a GID, but with no
users in the group. TTY is the default group name.

The STARTUP_PROC(OMVS) is the started JCL procedure that initializes the kernel. If you
change this it must be a single step procedure that invokes the BPXINIT program.

The STARTUP_EXEC is a startup exec that replaces the /etc/init program that BPXOINIT
normally invokes. This is used by installations that want to run with a minimal configuration,
but would like to populate the TFS with some directories or files.

SWA(ABOVE/BELOW) specifies whether SWA control blocks should be allocated above or
below the 16 MB line.

ABOVE All SWA control blocks are to be allocated above the 16 MB line.
BELOW All SWA control blocks are to be allocated below the 16 MB line.

The default is BELOW.

SUPERUSER(BPXROOT)

TTYGROUP(TTY)

STARTUP_PROC(OMVS)

STARTUP_EXEC

SWA (ABOVE | BELOW)

BPXPRMxx:
604 ABCs of z/OS System Programming Volume 9

11.28 FILESYSTYPE statement

Figure 11-33 The FILESYSTYPE statement in the BPXPRMxx member

FILESYSTYPE statements
The following sections explain where the statements FILESYSTYPE, ROOT, MOUNT, and
NETWORK apply.

FILESYSTYPE specifies that:

� A file system program of type HFS is to process file system requests. The system attaches
the GFUAINIT load module during z/OS UNIX initialization.

� A physical file system of type AUTOMNT is to handle automatic mounting and unmounting
of file systems. The system attaches the BPXTAMD load module during z/OS UNIX
initialization.

� A physical file system of type TFS is to handle requests to the temporary file system. The
system attaches the BPXTFS load module during z/OS UNIX initialization.

/***
 FILESYSTYPE TYPE(HFS)
 ENTRYPOINT(GFUAINIT)
 PARM(' ')
/***
 FILESYSTYPE TYPE(AUTOMNT)
 ENTRYPOINT(BPXTAMD)
/***/
 FILESYSTYPE TYPE(TFS)
 ENTRYPOINT(BPXTFS)
 /***/
Chapter 11. z/OS UNIX PARMLIB members 605

11.29 FILESYSTYPE and NETWORK

Figure 11-34 The FILESYSTYPE and NETWORK statements

FILESYSTYPE and NETWORK statements
A physical file system of type UDS is to handle socket requests for the AF_UNIX address
family of sockets. The system attaches the BPXTUINT load module during z/OS UNIX
initialization.

A physical file system of type INET is to handle requests for the AF_INET address family of
sockets. The system attaches the EZBPFINI load module during initialization to start the
AF_INET physical file system. This assumes you are using TCP/IP z/OS UNIX. If you want to
use this, uncomment out the appropriate line in the BPXPRMxx PARMLIB member.

For more information about this, see z/OS UNIX System Services Planning, GA22-7800.

NETWORK
Each NETWORK statement identifies the information needed by the socket physical file
system.

The AF_UNIX statement is used to communicate in the local system and AF_INIT to
communicate with remote systems.

/**/
 FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
 NETWORK DOMAINNAME(AF_UNIX)
 DOMAINNUMBER(1)
 MAXSOCKETS(10000)
 TYPE(UDS)
/**/
 FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
 NETWORK DOMAINNAME(AF_INET)
 DOMAINNUMBER(2)
 MAXSOCKETS(21100)
 TYPE(INET)
/**/
606 ABCs of z/OS System Programming Volume 9

11.30 ROOT and MOUNT statements

Figure 11-35 The ROOT and MOUNT statements in the BPXPRMxx member

ROOT statement
The ROOT statement defines and mounts the root file system for a zFS (ZFS) or hierarchical
file system (HFS).

ROOT identifies and mounts the HFS data set to be used as the root file system.

� TYPE identifies the file system program, which must have been specified on a
FILESYSTYPE statement.

� MODE(RDWR) allows read and write access to the file system.

In the ROOT statement, give the name of the root file system. Figure 11-35 shows:

OMVS.TC1.TRNRS1.ROOT.HFS

MOUNT statement
The MOUNT statement defines the hierarchical file systems to be mounted at initialization
and where in the file hierarchy they are to be mounted. All HFS data sets specified on
MOUNT statements in the BPXPRMxx PARMLIB member must be available at IPL time. If an
HFS data set is migrated by HSM, then the initialization of OMVS and HSM will deadlock.
Neither kernel nor HSM services will be available.

This statement provides a MOUNT statement for each HFS data set to be mounted on the
root file system or on another mounted file system. The pictured example shows the data set
OMVS.TC1.ETC.HFS is to be mounted at directory /etc.

ROOT FILESYSTEM('OMVS.TC1.TRNRS1.ROOT.HFS')
 TYPE(HFS)
 MODE(RDWR)

MOUNT FILESYSTEM('OMVS.TC1.ETC.HFS')
 MOUNTPOINT('/etc')
 TYPE(HFS)
 MODE(RDWR)
Chapter 11. z/OS UNIX PARMLIB members 607

11.31 Examples of MKDIR in BPXPRMxx

Figure 11-36 MKDIR examples in the BPXPRMxx PARMLIB member

Creating directories in the BPXPRMxx member
When using the ROOT and MOUNT statements in the BPXPRMxx member during an IPL,
these PARMLIB mounts can fail if the mountpoint does not exist. With z/OS V1R5, support is
added to the BPXPRMxx PARMLIB member to allow specifying directories to be created
during PARMLIB processing.

You can use multiple MKDIR keywords on the MOUNT statement to define mount points in
the BPXPRMxx PARMLIB member so that one or more directories are created in the
mounted file system during z/OS UNIX initialization.

MKDIR is intended to run during synchronous mounts on the system which is initializing. The
directory may not be created if any of these situations exist:

� The file system is mounted asynchronously, such as with NFS.

� The SYSNAME value identifies a remote system.

� The file system is already mounted on a remote system.

Note: If sharing PARMLIB members between a shared file system environment members,
this keyword should be omitted unless all are running at V1R5 or above. The directory
permissions are set to 755, (rwx r-x r-x).

ROOT
FILESYSTEM('fsroot')
TYPE(type_name)
MODE(access)
PARM('parameter')
SETUID|NOSETUID
AUTOMOVE | NOAUTOMOVE
TAG(NOTEXT | TEXT,ccsid)
MKDIR('pnfs1')

MOUNT
FILESYSTEM('fs1')
MOUNTPOINT('/pnfs1')
TYPE(type_name)
MODE(access)
PARM('parameter')
SETUID | NOSETUID
SECURITY | NOSECURITY
AUTOMOVE | NOAUTOMOVE
AUTOMOVE(Ind,S1,...Sn)
TAG(NOTEXT|TEXT,ccsid)
MKDIR('pnfs2')
MKDIR('pnfs3')
608 ABCs of z/OS System Programming Volume 9

11.32 Allocating SWA above the line

Figure 11-37 Allocating SWA control blocks above the 16 MB line

SWA above the line
Scheduler work area (SWA) control blocks for a USS address space are allocated below the
16 megabyte line. This can cause storage constraints when very large numbers of file
systems are mounted.

BPXPRMxx PARMLIB keyword
z/OS V1R5 provides a BPXPRMxx PARMLIB keyword to control where the SWA control
blocks are allocated, as follows:

SWA(ABOVE | BELOW)

The operator command D OMVS,O displays all the defined PARMLIB members in the
BPXPRMxx PARMLIB members in use.

This keyword can only be changed or specified during an IPL of the system.

SWA control blocks for USS address space are
allocated below the 16 megabyte line causing
storage constraints when very large numbers of file
systems are mounted

New BPXPRMxx PARMLIB keyword to control from
where the SWA control blocks are allocated

New BPXPRMxx keyword SWA(ABOVE | BELOW)

D OMVS,O displays the setting

Only available when starting OMVS during system
initialization
Chapter 11. z/OS UNIX PARMLIB members 609

11.33 z/OS UNIX Web site

Figure 11-38 Contents of the z/OS UNIX Web site

z/OS UNIX Web site
You can use the z/OS UNIX Configuration Wizard, a Web-based tool, to help you set up z/OS
UNIX in full function mode. This wizard begins with a series of interviews in which you will
answer questions about your application environment and intentions regarding use of z/OS
and TCP/IP.

After you finish answering all of the interview questions, you ask the wizard to build the
output. Then the wizard produces a checklist of steps for you to follow, as well as customized
jobs and other data sets for you to use. Specifically, it builds two BPXPRMxx members and
two HFS files and some RACF ALTUSER commands. The checklist of follow-on actions
includes links to sections of z/OS UNIX System Services Planning, GA22-7800 and z/OS
Communications Server: IP Configuration Guide, SC31-8775, thus eliminating the need to
reference multiple documents.

Use this wizard to configure z/OS UNIX for the first time or to check and verify some of your
configuration settings.

The wizard also allows sysplex users to build a single BPXPRMxx PARMLIB member to
define all the file systems used by systems participating in a shared file system environment.

Web site: v1r3/

UNIX Wizard

z/OS UNIX Configuration Assistant

Contains a README file

Button to start the Configuration Assistant

Builds two BPXPRMxx parmlib members

RACF Batch job with commands

HFS files

http://www.ibm.com/servers/eserver/zseries/zos/wizards/unix/unixv1r3
610 ABCs of z/OS System Programming Volume 9

Chapter 12. Maintenance

This chapter provides information about installing maintenance software with components
residing in the z/OS UNIX file system. This chapter discusses the following topics:

� Overview of maintenance issues

� The HFS structure for SMP/E

� The SMP/E DDDEF and MOUNT relationship

� A method to support multiple service levels

12
© Copyright IBM Corp. 2006, 2008. All rights reserved. 611

12.1 Example of SMP/E SMPMCS

Figure 12-1 Example of an SMP/E SMPMCS

SMP/E SMPMCS example
z/OS now includes UNIX components as a standard part of the operating system. Therefore,
it is now mandatory to have z/OS UNIX System Services enabled on any system where
SMP/E maintenance is performed. Other traditional MVS products also now contain UNIX
components; DB2 and NetView® are two such examples. Figure 12-1 shows a typical PTF for
TCP/IP (a component of z/OS). You will notice that it contains typical MCS statements such
as ++ PTF, ++ VER, and ++ MOD. You will also notice the ++ HFS MCS statement, which directs
element EZAFTPSM as a file into the HFS path pointed to by DDDEF SEZAMMSC. In addition, a
hard link (alias name) will be created to EZAFTPSM in the directory one higher in the hierarchy
(indicated by the “..” in the LINK parameter), called ftpdmsg.cat.

In other words, if the path in DDDEF SEZAMMSC points to:

/usr/lpp/tcpip/lib/nls/msg/C/IBM

� Then the element will be written as file:

/usr/lpp/tcpip/lib/nls/msg/C/IBM/EZAFTPSM

� With a hard link defined as:

/usr/lpp/tcpip/lib/nls/msg/C/ftpdmsg.cat

Note how the original file (EZAFTPSM) is written in the /C/IBM subdirectory, while the hard link
(ftpdmsg.cat) is created in the /C subdirectory, one directory higher because of the “..”
specification in the LINK parameter. This type of packaging allows SMP/E unique element
names while also meeting the requirements of UNIX naming conventions.

++ PTF (UQ14899).
++ VER (Z038)
 FMID (JTCP349)
 PRE (UQ12633)
 REQ (UQ14898)
 SUP
(UQ14760,UQ13645,AQ13025,AQ12239,AQ11302).

++ MOD (EZARCDDC) DISTLIB(AEZAMOD1)
 LEPARM
(AMODE=31,RMODE=ANY,REUS,RENT).

++ MOD (EZARSDCC) DISTLIB(AEZAMOD1)
 LEPARM
(AMODE=31,RMODE=ANY,REUS,RENT).

++ HFS (EZAFTPSM) DISTLIB(AEZAXLT3)
 SYSLIB(SEZAMMSC) BINARY
PARM(PATHMODE(0,6,4,4))
 LINK('../ftpdmsg.cat').

/usr/lpp/tcpip/lib/nls/msg/C/IBM (Link is to this path)

z/OS UNIX
HFS
612 ABCs of z/OS System Programming Volume 9

12.2 Active root file system

Figure 12-2 Example of an active root file system

Active root file system
Figure 12-2 shows an example of an active file system. The file system is in use by the active
system (the system you are logged on to), so applying maintenance directly onto the active
file system is undesirable because:

� It could introduce a change which impacts work already running.

� If a problem is encountered during the SMP/E APPLY causing the APPLY to fail, it could
damage the active file system and impact work already running.

� If you need to fall back to the point before the service was applied, the process is greatly
complicated when it is the active file system.

The problems are similar to those concerning z/OS system residence (SYSRES) volumes,
where typically a cloned copy of the active SYSRES is used to receive maintenance, then it is
IPLed. This way, application of maintenance does not affect the active system until an IPL is
performed. If there is a problem with the new maintenance level, fallback is to re-IPL from the
old SYSRES.

//

optopt dev tmp var etc

SYSTEM/

symlinks

dev tmp var etc

samplessamples binbin usrusruu liblib

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.ZFS
Chapter 12. Maintenance 613

12.3 Inactive root file system (clone)

Figure 12-3 Making a clone of the active root file system

Clone the active root file system
To apply maintenance safely without impact to an active system, you need to clone the z/OS
UNIX file system, and work with the inactive copy of the file system. This is the same
technique used for z/OS system residence (SYSRES) volumes, only the method has to vary
because we are only dealing with HFS data sets and not full volumes.

To create a cloned copy of an HFS, DFSMSdss (ADRDSSU) must be used to first DUMP,
then RESTORE with the RENAMEU (RENUNC) parameter, to result in a copied file with a
different name.

Sample JCL to create a clone
An example of the ADRDSSU JCL required to perform HFS cloning is shown in Example 12-1
on page 615.

//

optopt dev tmp var etc

SYSTEM/

symlinks

dev tmp var etc

samplessamples binbin usrusruu liblib

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.ZFS

//

optopt dev tmp var etc

SYSTEM/

symlinks

dev tmp var etc

samplessamples binbin usrusruu liblib

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.CLONE.ZFS

clone

Active

Inactive
614 ABCs of z/OS System Programming Volume 9

Example 12-1 Sample JCL to perform HFS cloning

//DUMPREST JOB ,'DUMP/REST',CLASS=A
//DUMP EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=*
//OUTDD DD DISP=(NEW,PASS),DSN=&&TEMP,
// UNIT=SYSALLDA,
// SPACE=(TRK,(100,100))
//SYSIN DD *
 DUMP DATASET(INCLUDE(OMVS.RESA01.**)) -
OUTDD(OUTDD) -
 CANCELERROR TOL(ENQF)
/*
//*
//*--
//*
//RESTORE EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=*
//INDD DD DISP=(OLD,DELETE),DSN=&&TEMP
//SYSIN DD *
RESTORE DATASET(-
 INCLUDE(- **)) -
 INDD(INDD) -
 RENUNC((OMVS.RESA01.**, OMVS.RESB01.**)) -
 TGTALLOC(SOURCE) -
 TOL(ENQF)
/*
Chapter 12. Maintenance 615

12.4 /SERVICE directory

Figure 12-4 Creating a /SERVICE directory

Create a /SERVICE directory
z/OS UNIX can only access files if the HFS that contains them is mounted into the active file
system. So, the newly created clone file system needs to be somehow connected into the
active file system structure so SMP/E processes can access the data.

The file system could be connected anywhere in the active file system, but the recommended
place to do it is under a directory called /SERVICE. Using this directory will ensure no impact
to other UNIX processing.

If this directory does not exist on your system, you could create it via a TSO command, shell
command, or using the ISHELL. As an example, the TSO command to do this is:

MKDIR '/SERVICE' MODE(7,5,5)

Once the /SERVICE directory has been created, the cloned file system needs to be mounted
there. The mount can happen by specifying the HFS in BPXPRMxx or issuing a TSO MOUNT
command.

//

optopt dev tmp var etc

symlinks

SYSTEM/

dev tmp var etc

samplessamples binbin usrusruu liblib

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.ZFS

//

optopt dev tmp var etc

SYSTEM/

symlinks

dev tmp var etc

samplessamples binbin usrusruu liblib

$SYSNAME/etc
$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var

OMVS.ROOT.ZFS

clone

Active

Inactive

SERVICE
616 ABCs of z/OS System Programming Volume 9

12.5 Sample SMP/E DDDEFs

Figure 12-5 An example of a SMP/E DDDEFs

SMP/E DDDEFs
Once the HFS data sets are cloned into the /SERVICE directory, some decisions need to be
made about the SMP/E configuration that will be used to support the cloned environment.
You could either change the DDDEFs of the old SMP/E configuration (meaning that the active
environment is no longer maintainable), or you could clone the SMP/E CSIs and change the
new CSIs to point to the new HFS.

Although we are mainly talking about HFS data sets in this section, of course you must
ensure the integrity of the SMP/E configuration and make sure that all DDDEFs in the CSIs
point to data sets with contents that match what is recorded in SMP/E. How this is handled
may be different depending on the product and how it is implemented on your system. We
discuss this in more detail in the next few sections.

ZONEEDIT command
Regardless of how you choose to solve the problem of SMP/E integrity, you will still have to
adjust the SMP/E DDDEFs to point to the cloned file system mounted at /SERVICE. The
SMP/E ZONEEDIT command can be used to do this.

Figure 12-5 shows a traditional DDDEF (top box) and an HFS DDDEF (bottom box). The
traditional DDDEF SEZALOAD points to a PDS called SYS1.SEZALOAD on DASD volume
RESB01, while the HFS DDDEF SEZAMMSC points to a path called
/SERVICE/usr/lpp/tcpip/lib/nls/msg/C/IBM/ (note the /SERVICE directory).

Entry Type: DDDEF Zone Name:
OS#250T
Entry Name: SEZALOAD Zone Type: TARGET

DSNAME: SYS1.SEZALOAD

VOLUME: RESB01 UNIT: SYSALLDA DISP: SHR
SPACE : PRIM: SECOND: DIR:
SYSOUT CLASS: WAITFORDSN:
PROTECT:
DATACLAS: MGMTCLAS :
STORCLAS: DSNTYPE :

Entry Type: DDDEF Zone Name:
OS#250T
Entry Name: SEZAMMSC Zone Type: TARGET

 PATH: '/SERVICE/usr/lpp/tcpip/lib/nls/msg/C/IBM/'
Chapter 12. Maintenance 617

12.6 Prepare for SMP/E

Figure 12-6 Preparing for the SMP/E maintenance

Prepare SMP/E maintenance
The preparation for system maintenance should include the following steps:

� Clone the data sets that the SMP/E DDDEFs point to:

– For non-HFS data sets, you would DFSMSdss (ADRDSSU) COPY the active files to
create inactive equivalents. You should consider that:

• SYSRES data sets would have the entire volume copied, such that the inactive data
sets have the same names but are uncataloged. This figure shows active volume
RESA01 being copied to RESB01.

• Non-SYSRES data sets may either be copied to another volume with the same
names, but uncataloged; or they may be copied with other names, allowing them to
be cataloged if you choose.

– For HFS or zFS data sets, you would DFSMSdss (ADRDSSU) DUMP/RESTORE the
active files to create inactive equivalents (as described in previous sections). You
should consider that:

• Data sets that belong to SYSRES products need something in their name to
associate them to the correct SYSRES. For example, say you clone SYSRES
volume RESA01 onto volume RESB01: the HFS data sets that relate to RESB01
should have RESB01 in their name. This allows the use of the &SYSR1. symbol in
the BPXPRMxx member so that the HFS data sets that relate to the IPLed SYSRES
are always correctly selected.

RESA01

Active IPL Volume
Symbol &SYSR1 is
automatically set to

RESA01

RESB01

Inactive IPL Volume

/proda

lpp
binusr

SMS-managed

/proda

lpp
binusr

SMS-managed

OMVS.SC43.RESB01.ROOT.HFS

DFSMSdss
COPY

DFSMSdss
DUMP/RESTORE

with
RENAMEU

COPY
full volume

DUMP/RESTORE
HFS

OMVS.SC43.RESA01.ROOT.HFS
618 ABCs of z/OS System Programming Volume 9

For example, BPXPRMxx contained a reference to HFS data set
OMVS.&SYSNAME..&SYSR1..ROOT.HFS.

• If you IPLed from volume RESA01, symbol &SYSR1. would be substituted with
string RESA01 resulting in a data set name of OMVS.SC43.RESA01.ROOT.HFS.

• If you IPLed from volume RESB01, symbol &SYSR1. would be substituted with
string RESB01 resulting in a data set name of OMVS.SC43.RESB01.ROOT.HFS.

– This technique simplifies moving back and forth between maintenance levels (test
sessions, implementations, and so on).

– Because HFS data sets cannot be shared for write, HFS data set names in a shared
DASD configuration may need a system identifier (&SYSNAME.) in them to
differentiate which system they belong to. This may be more complicated in a shared
DASD configuration where multiple systems are IPLed from the same DASD volume.
In this situation, both &SYSNAME. and &SYSR1. may be needed in the affected HFS
names. For example: OMVS.&SYSNAME..&SYSR1..ROOT.HFS

� Make SMP/E point to the inactive data. You could choose to:

– Change the DDDEFs in the existing SMP/E CSIs to point to the inactive data. This
would result in the active data having no SMP/E CSIs pointing to them, which may be a
problem if an emergency fix needs to be applied to the live system.

– Clone the SMP/E CSIs so the old CSIs continue pointing to the active data, while the
DDDEFs in the new CSIs can be ZONEEDITed to point to the inactive data.

Note: The DFSMSdss COPY function is supported for HFS data sets beginning in z/OS
V1R3.
Chapter 12. Maintenance 619

12.7 SMP/E APPLY process

Figure 12-7 Doing the SMP/E APPLY

SMP/E APPLY process
For the SMP/E APPLY process to work as desired, you should have inactive clones of the
active data sets.

HFS data sets should be mounted into the active file system off the /SERVICE directory. The
data sets could be mounted there permanently via the BPXPRMxx member, or dynamically
via a TSO MOUNT command. For the example shown in Figure 12-7, the following command
could be used:

MOUNT FILESYSTEM('OMVS.SC43.RESB01.ROOT.HFS') +
 TYPE(HFS) MODE(RDWR) MOUNTPOINT('/SERVICE')

If you wanted to dynamically remove the file system after maintenance work has been
performed, the following command could be used:

UNMOUNT FILESYSTEM('OMVS.SC43.RESB01.ROOT.HFS') +
 IMMEDIATE

SMP/E ZONEEDIT command
SMP/E CSIs point to the inactive data sets. No matter how you choose to set up your SMP/E
CSIs as described in the previous section, you will probably need to use an SMP/E
ZONEEDIT command such as the following to get the DDDEFs set correctly:

RESA01

Active IPL Volume
Symbol &SYSR1 is
automatically set to

RESA01

OMVS.SC43.RESA01.ROOT.HFS

/proda

lpp
binusr

SMS-managed

/SERVICE (mount point)

/proda

lpp
binusr

SMS-managed

OMVS.SC43.RESB01.ROOT.HFS

SMP/E DDDEFs
point to

RESB01 IPL volume
and

OMVS.SC43.RESB01.ROOT.HFS
HFS mounted on

/SERVICE

RESB01

Inactive IPL VolumeSMP/E
APPLY
620 ABCs of z/OS System Programming Volume 9

ZONEEDIT DDDEF.
 CHANGE VOLUME(RESA01,
 RESB01).
 CHANGE PATH('/'*,
 '/SERVICE/'*).
 ENDZONEEDIT.
Chapter 12. Maintenance 621

12.8 Supporting multiple service levels

Figure 12-8 Supporting multiple service levels

Support for multiple service levels
Suppose you need to support more than one level of software as you migrate from one level
to the next. Or maybe you work in a large organization and have to support many levels of
software simultaneously. For this, some additional considerations are necessary, particularly
concerning the HFS data sets and file system structure.

Figure 12-8 shows an active z/OS V1R4 system where the SMP/E work is performed to
support z/OS V1R5, V1R6, and V1R7. You will notice there are multiple HFS data sets in
SMS to match all the z/OS levels, and which need to be somehow connected into the file
system. Until now we have only talked about using the /SERVICE directory to support one
inactive file system for maintenance. We could still do this by mounting the correct file system
when doing maintenance, then unmounting it afterwards, but there are better ways than that,
as shown in Figure 12-9 on page 623.

INACTIVE

z/OS
 V1R8

INACTIVE

z/OS
 V1R9

INACTIVE

z/OS
 V1R7

Active
File System

V1R8 Inactive
File System

V1R9 Inactive
File System

Root HFS Root HFS

Root HFS
622 ABCs of z/OS System Programming Volume 9

12.9 Supporting multiple service levels (2)

Figure 12-9 A directory structure for multiple service levels

Multiple service level directory structure
This figure shows a possible directory structure for connecting multiple service levels into the
/ directory. The inactive file systems would be mounted something like this:

� z/OS V1R7 at /service_z07

� z/OS V1R8 at /service_z08

� z/OS V1R9 at /service_z09

There is no problem in doing this as long as the path in the DDDEFs match the directory
structure. So, an SMP/E ZONEEDIT command something like the following may be required
to set the SMP/E DDDEFs correctly:

ZONEEDIT DDDEF.
CHANGE PATH('/'*, '/service_z09’).
ENDZONEEDIT.

/ (root)

service_z07 service_z08 service_z09

OMVS.ROOT.HFS(Production system root)

SAMPLES BIN LIB U USR OPT

LPP

OMVS.SERVICE.Z08.HFS
Chapter 12. Maintenance 623

12.10 ISHELL display of root

Figure 12-10 An ISHELL display of the root directory

Display the root directory using ISHELL
This figure shows the ITSO system where maintenance is done. It shows the directories that
were added to the root for each of the system levels of z/OS supported and the individual
products where maintenance is applied.

Select one or more files with / or action codes. If / is used also select an
action from the action bar otherwise your default action will be used. Select
with S to use your default action. Cursor select can also be used for quick
navigation. See help for details.
EUID=0 /
 Type Filename Row 101 of 191
_ Syml service_z07_Z07RA1
_ Syml service_z07_Z07RB1
_ Syml service_z07_Z07RC1
_ Syml service_z07_Z07RD1
_ Syml service_z07_Z07RE1
_ Syml service_z07_Z07RF1
_ Syml service_z08
_ Syml service_z08_MXARX1
_ Syml service_z08_MXARY1
_ Syml service_z08_Z08RA1
_ Syml service_z08_Z08RB1
_ Syml service_z08_Z08RC1
_ Syml service_z08_Z08RD1
_ Syml service_z08_Z08RE1
_ Syml service_z09
_ Syml service_z09_Z19RA1
_ Syml service_z09_Z19RB1
_ Syml service_z09_Z19RC1
624 ABCs of z/OS System Programming Volume 9

12.11 The chroot command

Figure 12-11 Using the chroot command

The chroot command
The chroot command allows the system programmer to test fixes and new releases easier
and faster. This command is not part of the XPG4 or UNIX98 standard. The externals are
somewhat modeled on AIX externals.

Directory path
The directory path name is always relative to the current root. If a nested chroot command is
in effect, the directory path name is still relative to the current (new) root of the running
process.

Command syntax
In order for your process to operate properly after chroot is issued, you need to have in your
new root all the files that your program depends on. For example, if your new root is /tmp and
you issue an ls, you will get a not found error. To use ls with /tmp as your new root, you
need a /tmp/bin with ls in it before you issue the chroot command. The directory path name
is always relative to the current root. After chroot is issued, your current working directory is
the new root (directory).

chroot user authority
If you have appropriate privileges, the chroot command changes the root directory to the
directory specified by the directory parameter of a specific command. You must either be a
superuser (UID=0), or be a member of the BPX.SUPERUSER facility class.

Provides a way to test fixes applied to the root HFS

Get into production faster

chroot command allows changing the root HFS

Changes to root directory for execution of a command

chroot Command syntax

chroot directory command

Must be a superuser to issue command
Chapter 12. Maintenance 625

12.12 Testing a root file system

Figure 12-12 Testing the updated clone of the root file system

Testing the clone after maintenance
Figure 12-12 shows the new inactive root file system mounted on the /SERVICE directory in
the active root file system.

The chroot service changes the root directory from the current one to a new one. The root
directory is the starting point for path searches of pathnames beginning with a slash. The
working directory of the process is unaffected by chroot().

active root file system /

SERVICE

SAMPLES BIN LIB U USR OPT

LPP
Cloned root file system
inactive root file system

SAMPLES BIN LIB U USR OPT

LPP

/

626 ABCs of z/OS System Programming Volume 9

12.13 Testing the updated root

Figure 12-13 Testing the updated root with the chroot command

Testing the root using chroot
If you have appropriate privileges, the chroot command changes the root directory to the
directory specified by the directory parameter of a specific command. The new root directory
will also contain its children.

The directory path name is always relative to the current root. If a nested chroot command is
in effect, the directory path name is still relative to the current (new) root of the running
process. chroot does not change environment variables. In order for the command to operate
properly after the chroot is issued, you need to have all the files in the new root directory that
the command depends on.

For example, if your new root is /SERVICE and you issue an ls, you will get a not found
error. To use ls with /SERVICE as your new root, you need a /SERVICE/bin with ls in it
before you issue the chroot command.

TEST Root HFS
Data Set 2

Directory bin

Directory Directory Directory

File

File

File

File

File
File
File

File
ls

File

chroot /SERVICE/bin ls

PROD Root HFS
Data Set 1

bin SERVICE

 /

Directory Directory Directory

File

File

File
File

File
File
File

File
File

File

UID=0 or BPX.SUPERUSER
Chapter 12. Maintenance 627

12.14 Dynamic service activation

Figure 12-14 Using dynamic service activation

Dynamic service activation
You can dynamically activate and deactivate service items (PTFs, ++APARS, ++Usermods)
that affect the UNIX System Services component modules without having to re-IPL. This
capability is primarily intended to allow an installation to activate corrective service to avoid
unplanned re-IPLs of your systems. Additionally, this capability can be used to activate a
temporary patch that can be used in gathering additional documentation for a recurring
system problem. Although this capability can be used to activate preventive service on an
ongoing basis, it is not intended for this purpose as a replacement for the regular application
of service that does require a re-IPL.

Identified PTFs
Those PTFs that are capable of being activated dynamically are identified by ++HOLD
REASON(DYNACT) data inside their PTFs. In order to properly activate the PTF, whatever
instructions that are included with this hold data must be followed.

BPXPRMxx PARMLIB changes
Service items are activated from service activation libraries that have been identified via the
SERV_LPALIB and SERV_LINKLIB parameters in the BPXPRMxx PARMLIB member.

Previously, you could not activate maintenance for
z/OS UNIX without taking a system outage

z/OS V1R7 - provide ability to activate maintenance
on a running system in a non-disruptive manner

Minimize number of planned and unplanned outages

Provide higher level of system availability

Only PTFs with ++HOLD REASON (DYNACT) data
will be capable of dynamic activation

New BPXPRMxx PARMLIB parameters
SERV_LPALIB and SERV_LINKLIB need to be setup
to enable the supportSERV_LPALIB('dsname','volser')

SERV_LINKLIB('dsname','volser')
628 ABCs of z/OS System Programming Volume 9

12.15 Dynamic service activation commands

Figure 12-15 Dynamic service activation commands

F OMVS,ACTIVATE=SERVICE
To activate the component service items, issue:

F OMVS,ACTIVATE=SERVICE

If a fix capable of dynamic activation is found that cannot be activated due to back-level
service found on the active system or missing parts in the target activation libraries, the
activation fails.

F OMVS,DEACTIVATE=SERVICE
You can back off a set of dynamically activated service items, if you need to. This may be
necessary if, for example, a problem is encountered with a dynamically activated service item
or if a particular service item is no longer necessary. To deactivate the service items, issue:

F OMVS,DEACTIVATE=SERVICE

Only the service items that were activated when F OMVS,ACTIVATE=SERVICE was last
issued are backed off. You will see a list of service items to be deactivated and you will be
asked whether the deactivation should proceed.

D OMVS,ACTIVATE=SERVICE
Use this command to display all of the service items that were dynamically activated using F
OMVS,ACTIVATE=SERVICE. It displays only those service items that are currently active

 To activate service at any time

F OMVS, ACTIVATE=SERVICE

 To deactivate service

F OMVS,DEACTIVATE=SERVICE

 To retrieve dynamic service activation information

D OMVS,ACTIVATE=SERVICE

 Support to retrieve new PARMLIB settings

D OMVS,O

C/C++ API get_system_settings()
Chapter 12. Maintenance 629

dynamically. Once a fix has been deactivated, it no longer shows up in this command's
display output.

Additionally, D OMVS,ACTIVATE=SERVICE reports the library and volume where each set
of fixes was activated from and the amount of ECSA and OMVS address space storage that
is being consumed for all dynamically activated fixes. The amount of storage consumed will
not decrease when a deactivation is done, because the new modules must remain in storage
indefinitely.
630 ABCs of z/OS System Programming Volume 9

12.16 Using the new service

Figure 12-16 Activating PTFs

Activating service
To ensure that you activate only those service items that are of interest, it is recommended
that you additionally install these service items into a separate load library from the LPALIB or
LINKLIB libraries that are used for your normal install process. This would then be the load
library that is regularly used to dynamically activate service on your systems. Although the
dynamic service activation feature can be used to activate most UNIX System Services
component PTFs, it is not intended to be used as a way to activate a large set of maintenance
for preventive purposes.

Only those service items found in the target libraries that are identified internally by UNIX
System Services as capable of being dynamically activated are activated. Service items that
are not explicitly identified as such cannot be activated. If a fix capable of dynamic activation
is found that cannot be activated due to back-level service on the active system or missing
parts in the target activation libraries, the activation will fail.

Some UNIX System Services modules and csects will not be capable of dynamic activation
due to their location or when they are run. As a result, they still require ++HOLD for IPL
documentation in their PTFs (as almost all UNIX System Services PTFs do currently). It is
expected that a very small percentage of PTFs will be affected by this limitation.

The set of service items to be activated and the amount of ECSA and OMVS address space
storage consumed for those service items are indicated in messages displayed by the F
OMVS,ACTIVATE=SERVICE command. The issuer of the command is then prompted
whether to proceed with the activation based on this information.

Stay fairly current on service to best be able to exploit
this feature

Determine the selected PTFs you are interested in
activating dynamically for corrective purposes

Not intended to be used as a complete replacement
for regular preventative maintenance application

BPXM061I THE FOLLOWING SERVICE ITEMS WILL BE ACTIVATED:
 OA09999 OA08888

 ECSA STORAGE BYTES: 24576 AND OMVS PRIVATE STORAGE BYTES: 12468
 WILL BE CONSUMED FOR THIS ACTIVATION.

*06 BPXM061D REPLY "Y" TO CONTINUE. ANY OTHER REPLY ENDS THE COMMAND.

F OMVS, ACTIVATE=SERVICE
Chapter 12. Maintenance 631

12.17 Deactivate service

Figure 12-17 Command to deactivate service

Displaying deactivated service
You can back off a set of dynamically activated service items, if you need to. This may be
necessary if, for example, a problem is encountered with a dynamically activated service item
or if a particular service item is no longer necessary.

This capability can be used to activate a temporary patch that can be used in gathering
additional documentation for a recurring system problem. Although this capability can be
used to activate preventive service on an ongoing basis, it is not intended for this purpose as
a replacement for the regular application of service that does require a re-IPL.

The amount of storage consumed will not decrease when a deactivation is done, because the
new modules must remain in storage indefinitely.

The service items are listed in groups based on when they were activated. All service items
activated by a given F OMVS,ACTIVATE=SERVICE command are listed together as one set
of activated service items. The most recently activated set of service items is listed first,
followed in descending order by the next most recent activation set, and so on. The most
recent set of service items consists of the only service items that are deactivated if a F
OMVS,DEACTIVATE=SERVICE command is issued.

F OMVS,DEACTIVATE=SERVICE

Enables the backing off of the last set of service
items that were activated dynamically

Intended for removal of temporary service activated
for problem determination, etc. or problematic
service

Backs off service items but modules remain in
storage

Prompts user to verify deactivation

BPXM063I THE FOLLOWING SERVICE ITEMS WILL BE DEACTIVATED:
 OA09999 0A08888

 *07 BPXM063D REPLY "Y" TO CONTINUE. ANY OTHER REPLY ENDS THE COMMAND.
.
632 ABCs of z/OS System Programming Volume 9

12.18 Display service

Figure 12-18 Displaying the activated service items

Display activated service items
Use the D OMVS,ACTIVATE=SERVICE command to display all of the service items that
were dynamically activated using F OMVS,ACTIVATE=SERVICE. It displays only those
service items that are currently active dynamically. Once a fix has been deactivated, it no
longer shows up in this command's display output.

Additionally, D OMVS,ACTIVATE=SERVICE reports the library and volume that each set of
fixes was activated from, and the amount of ECSA and OMVS address space storage that is
being consumed for all dynamically activated fixes. The amount of storage consumed will not
decrease when a deactivation is done, because the new modules must remain in storage
indefinitely.

D OMVS,ACTIVATE=SERVICE

Provides the display of all sets of service items that
are currently activated dynamically

Shows the most recently activated set of service items
to the oldest set activated

 BPXO059I 08.51.42 DISPLAY OMVS 284
 OMVS 000E ACTIVE OMVS=(6D)

 DYNAMIC SERVICE ACTIVATION REPORT
 SET #2:

 LINKLIB=SYS1.DYNLIB.PVT VOL=BPXLK1
 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1

 OA02001 OA02002 OA02003 OA02004
 SET #1:
 LINKLIB=SYS1.LINKLIB VOL=Z17RS1

 LPALIB=SYS1.LPALIB VOL=Z17RS1
 OA01001 OA01002 OA01003
 ECSA STORAGE: 68496 OMVS STORAGE: 268248 .
Chapter 12. Maintenance 633

634 ABCs of z/OS System Programming Volume 9

Chapter 13. z/OS UNIX operations

This chapter provides an overview of UNIX System Services operations. It provides details
about:

� z/OS UNIX operator commands

� z/OS UNIX abends and messages

� Sources of debugging information for z/OS UNIX

13
© Copyright IBM Corp. 2006, 2008. All rights reserved. 635

13.1 Commands to monitor z/OS UNIX

Figure 13-1 Commands used to monitor z/OS UNIX

Monitoring z/OS UNIX
There are many different reasons to monitor z/OS UNIX, for example:

� To kill a process

� To see how much space a directory needs

� To activate a new configuration for z/OS UNIX

� To find a file located in the HFS

� To change your local directory

Therefore, you need to know which commands show the information that you want, and
which commands provide useful information without incurring too much overhead.

Commands can be divided into two sections: commands you issue from a console, and
commands you issue from the z/OS UNIX shell.

z/OS console commands
The following commands are z/OS (MVS) commands that are issued from MCS or EMCS
consoles:

D OMVS,A=ALL Displays the information about all running processes

D OMVS,O Displays the information defined in the BPXPRMxx

D OMVS,F Displays the information about the mounted HFS

D OMVS,F

df -P

ps -efD OMVS,A=ALL

find / -name setup.sh

F BPXOINIT,FORCE,PID=<PID>

D A,OMVS

SET OMVS=xx

D OMVS,O

pwd

D OMVS,PID=<PID>

man ls
ls -alWE

chmod

mkdir

kill
636 ABCs of z/OS System Programming Volume 9

D OMVS,PID=<pid> Displays the information about the process ID

D A,OMVS Displays the information about kernel and data spaces

F BPXOINIT,FORCE,PID=<PID> Forces a process ID to end

SET OMVS=xx Sets a new configuration of BPXPRMxx member and makes a
syntax check

z/OS UNIX shell commands
The following commands are issued from the OMVS shell:

pwd Displays the current pathname

ls -alWE Displays the contents and extended attributes of the current
directory

ps -ef Displays the information about all running processes

man ls Displays information about syntax and use of the command ls

df -P Displays the information about the mounted HFS

find / -name setup.sh Searches the HFS from the root to find the file specified
Chapter 13. z/OS UNIX operations 637

13.2 Display summary of z/OS UNIX

Figure 13-2 Command to display the status of z/OS UNIX

Displaying the status of z/OS UNIX
The D OMVS command with no parameters displays the status of z/OS UNIX (hopefully always
ACTIVE), and which BPXPRMxx member was defined during IPL. The value 000E shown in
Figure 13-2 is the address space identifier (ASID) of the kernel address space.

The status of z/OS UNIX can be:

ACTIVE z/OS UNIX is currently active

NOT STARTED z/OS UNIX was not started

INITIALIZING z/OS UNIX is initializing

TERMINATING z/OS UNIX is terminating

TERMINATED z/OS UNIX has terminated

ETC/INIT WAIT z/OS UNIX is waiting for the /etc/init or /usr/sbin/init program to
complete initialization

D OMVS
BPXO042I 13.31.39 DISPLAY OMVS 908
OMVS 000E ACTIVE OMVS=(00,FS)
638 ABCs of z/OS System Programming Volume 9

13.3 Display z/OS UNIX options

Figure 13-3 Command to display the z/OS UNIX options defined in the BPXPRMxx member

Displaying the BPXPRMxx PARMLIB definitions
The D OMVS,OPTIONS command displays the same information as the D OMVS command,
but in addition, all the option settings that were defined in BPXPRMxx.

This command displays the current settings of the options that were:

� Set during initialization in the PARMLIB member BPXPRMxx

� Set by a SET OMVS or SETOMVS command after initialization, and that can be altered
dynamically by these commands

You can use this command to display address space information for a user who has a
process that is hung. You can also use the information returned from this command to
determine how many address spaces a given TSO/E user ID is using, whether an address
space is using too many resources, and whether a user's process is waiting for a z/OS UNIX
kernel function to complete.

D OMVS,OPTIONS
BPXO043I 13.21.39 DISPLAY OMVS 923
OMVS 000E ACTIVE OMVS=(3C)
CURRENT UNIX CONFIGURATION SETTINGS:
MAXPROCSYS = 4096 MAXPROCUSER = 32767
MAXFILEPROC = 65535 MAXFILESIZE = NOLIMIT
MAXCPUTIME = 2147483647 MAXUIDS = 200
MAXPTYS = 800
MAXMMAPAREA = 4096 MAXASSIZE = 2147483647
MAXTHREADS = 100000 MAXTHREADTASKS = 32767
MAXCORESIZE = 4194304 MAXSHAREPAGES = 331072
IPCMSGQBYTES = 262144 IPCMSGQMNUM = 10000
IPCMSGNIDS = 20000 IPCSEMNIDS = 20000
IPCSEMNOPS = 32767 IPCSEMNSEMS = 32767
IPCSHMMPAGES = 524287 IPCSHMNIDS = 20000
IPCSHMNSEGS = 1000 IPCSHMSPAGES = 2621440
SUPERUSER = BPXROOT FORKCOPY = COW
STEPLIBLIST = /usr/lpp/IMiner/steplib
USERIDALIASTABLE= /etc/ualiastable
PRIORITYPG VALUES: NONE
PRIORITYGOAL VALUES: NONE
MAXQUEUEDSIGS = 100000 SHRLIBRGNSIZE = 67108864
SHRLIBMAXPAGES = 3145728 VERSION = Z08RD1
SYSCALL COUNTS = NO TTYGROUP = TTY
SYSPLEX = YES BRLM SERVER = SC04
LIMMSG = SYSTEM AUTOCVT = OFF
RESOLVER PROC = DEFAULT
AUTHPGMLIST = NONE
SWA = BELOW
SERV_LINKLIB = SYS1.LINKLIB Z18RS1
SERV_LPALIB = SYS1.LPALIB Z18RS1
Chapter 13. z/OS UNIX operations 639

13.4 Display BPXPRMxx limits

Figure 13-4 Command to display the limits specified in the BPXPRMxx member

Display BPXPRMxx member limits
Using the D OMVS,LIMITS command, you can display information about current system-wide
PARMLIB limits, including current usage and high-water usage.

An asterisk (*) displayed after a system limit indicates that the system limit was changed via a
SETOMVS or SET OMVS command.

The display output shows for each limit the current usage, high-water (peak) usage, and the
system limit as specified in the BPXPRMxx PARMLIB member. The displayed system values
may be the values as specified in the BPXPRMxx PARMLIB member, or they may be the
modified values resulting from the SETOMVS or SET OMVS commands.

You can also use the D OMVS,LIMITS command with the PID= operand to display
information about high-water marks and current usage for an individual process.

The high-water marks for the system limits can be reset to 0 with the
D OMVS,LIMITS,RESET command. Process limit high-water marks cannot be reset.

D OMVS,LIMITS
BPXO051I 17.50.39 DISPLAY OMVS 356
OMVS 000F ACTIVE OMVS=(4A)
SYSTEM WIDE LIMITS: LIMMSG=NONE
 CURRENT HIGHWATER SYSTEM
 USAGE USAGE LIMIT
MAXPROCSYS 50 51 300
MAXUIDS 0 0 50
MAXPTYS 0 0 256
MAXMMAPAREA 3572 3572 4096
MAXSHAREPAGES 4516 4516 32768000
IPCMSGNIDS 10 10 20000
IPCSEMNIDS 0 0 20000
IPCSHMNIDS 0 0 20000
IPCSHMSPAGES 0 0 2621440
IPCMSGQBYTES --- 0 262144
IPCMSGQMNUM --- 0 10000
IPCSHMMPAGES --- 0 25600
SHRLIBRGNSIZE 11534336 11534336 67108864
SHRLIBMAXPAGES 472 472 4096
640 ABCs of z/OS System Programming Volume 9

13.5 Display address space information

Figure 13-5 Command to display information about the active processes

Display z/OS UNIX address spaces
To display information about all users of z/OS UNIX, use the following command:

D OMVS,ASID=ALL

This will show all z/OS UNIX processes with MVS job name and address space ID (ASID).
Information about a specific address space can be displayed by:

D OMVS,ASID=31

The first line of the display shows the status of z/OS UNIX (Active) and the name of the
BPXPRMxx PARMLIB member in use (BPXPRM00). The following status can be displayed:

ACTIVE OMVS is currently active.

NOT STARTED OMVS was not started.

INITIALIZING OMVS is initializing.

TERMINATING OMVS is terminating.

TERMINATED OMVS has terminated.

ETC/INIT WAIT OMVS is waiting for the /etc/init or /usr/sbin/init program to complete
initialization.

The remaining information shown about each z/OS UNIX user is:

USER The user ID of the process.

D OMVS,ASID=ALL
BPXO040I 16.20.09 DISPLAY OMVS 737
OMVS 000F ACTIVE OMVS=(8A)
USER JOBNAME ASID PID PPID STATE START CT_SECS
OMVSKERN BPXOINIT 0025 1 0 MRI 08.01.38 2.946
 LATCHWAITPID= 0 CMD=BPXPINPR
 SERVER=Init Process AF= 0 MF=00000 TYPE=FILE
STC NFSCLNT 0028 16777219 1 1R 08.01.54 1.749
 LATCHWAITPID= 0 CMD=BPXVCLNY
 TCPIPOE TCPIPMVS 0053 29 1 MR 08.02.22 19950.289
 LATCHWAITPID= 0 CMD=EZBTTMST
STC RMFGAT 0059 33554462 1 1R 08.03.20 60749.552
 LATCHWAITPID= 0 CMD=ERB3GMFC
STC EJWSBKR 0058 31 1 1FI 08.03.18 1.796
 LATCHWAITPID= 0 CMD=EJWSCOM
OMVSKERN INETD1 001D 32 1 1FI 08.03.18 1.512
 LATCHWAITPID= 0 CMD=/usr/sbin/inetd /etc/inetd.conf
STC PMAPOE1 0022 34 1 1FI 08.03.28 1.657
 LATCHWAITPID= 0 CMD=OPORTMAP
STC PORTMAP 005B 35 1 1FI 08.03.28 1.832
 LATCHWAITPID= 0 CMD=PORTMAP
STC RXPROC 005C 36 1 1FI 08.03.28 1.813
 LATCHWAITPID= 0 CMD=RSHD
FTPDOE FTPDOE1 001E 39 1 1FI 08.03.29 1.684
 LATCHWAITPID= 0 CMD=FTPD
Chapter 13. z/OS UNIX operations 641

JOBNAME The job name of the process.

ASID The address space ID for the process address space.

PID The process ID, in decimal, of the process.

PPID The parent process ID, in decimal, of the process.

STATE The state of the process or of the most recently created thread in the
process. The codes on the figure have the following meanings:

1 Process state is for a single thread process.

F File system kernel wait.

I Swapped out.

K Other kernel wait (for example, pause or sigsuspend).

M Process state is for multiple threads and pthread_create was not
used to create multiple threads. Process state is obtained from the
most recently created thread.

R Running (not kernel wait).

For all other state codes, see MVS/ESA System Messages, Volume 2
for information about the BPXO001I message.

START The time, in hours, minutes, and seconds, when the process was
started.

CT_SECS The total execution time for the process in seconds in the format
ssssss.hhh. After approximately 11.5 days, this field will overflow. When
an overflow occurs, the field is displayed as ******.***

LATCHWAITPID= Either zero or the latch process ID, in decimal, for which this process is
waiting.

CMD= The command that created the process. Truncated to 40 characters and
converted to uppercase.

SERVER= The name of the server process.

AF= The number of active server file tokens.

MF= The maximum number of active server file tokens allowed.

TYPE= One of the following:

FILE A network file server

LOCK A network lock server

SERVERLOCKS= The number of active lock processes for this server.

SERVERMAXLOCKS= The maximum number of active lock processes for this server
allowed.
642 ABCs of z/OS System Programming Volume 9

13.6 Display process information

Figure 13-6 Command to display a specific process

Display a specific process
The operator can display the status of a particular OMVS process and its threads with
command:

D OMVS,PID=xxxxxx

This will show information about each thread of a multi-threaded application. The thread ID
would be needed to cancel an individual thread.

The first line of the display shows the status of z/OS UNIX (Active) and the name of the
BPXPRMxx PARMLIB member in use (BPXPRM00). The following information about the
threads is displayed:

THREAD_ID The thread ID, in hexadecimal, of the thread.

TCB@ The address of the TCB that represents the thread.

PRI_JOB The job name from the current primary address space if different from the
home address space, otherwise blank. This is only accurate if the thread is
in a wait, otherwise it is from the last time that the status was saved.

USERNAME The username of the thread if a task level security environment created by
pthread_security_np exists, otherwise blank.

ACC_TIME The accumulated TCB time in seconds in the format ssssss.hh. When this
value exceeds 11.5 days of execution time this field will overflow. When an
overflow occurs, the field is displayed as ******.***.

D OMVS,PID=16777394
BPXO040I 16.32.57 DISPLAY OMVS 753
OMVS 000F ACTIVE OMVS=(8A)
USER JOBNAME ASID PID PPID STATE START CT_SECS
NICHOLS NICHOLS 01F7 16777394 1 1RI 14.17.11 1.443
 LATCHWAITPID= 0 CMD=EXEC
 THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
 0BA6C1A000000000 007F3338 .022 NOP Y
 0BA6D96000000001 007E3460 .138 LST Y
Chapter 13. z/OS UNIX operations 643

SC The current or last syscall request.

STATE The state of the thread as follows.

A Message queue receive wait
B Message queue send wait
C Communication system kernel wait
D Semaphore operation wait
E Quiesce frozen
F File system kernel wait
G MVS Pause wait
K Other kernel wait (for example, pause or sigsuspend)
J The thread was pthread created rather than dubbed
N The thread is medium weight
O The thread is asynchronous and medium weight
P Ptrace kernel wait
Q Quiesce termination wait
R Running (not kernel wait)
S Sleeping
U Initial process thread (heavy weight and synchronous)
V Thread is detached
W Waiting for child (wait or waitpid callable service)
X Creating new process (fork callable service is running)
Y Thread is in an MVS wait
644 ABCs of z/OS System Programming Volume 9

13.7 Display the kernel address space

Figure 13-7 Command to display the OMVS (kernel) address space

Display the kernel address space
The operator can display the kernel address space and its associated data spaces with the
command:

D A,OMVS

Kernel dataspaces
The display output shows the kernel address space identifier (ASID) as A=nnnn, where nnnn is
the hexadecimal ASID value.

The display output shows the data space names associated with the kernel address space as
DSPNAME=BPX... or DSPNAME=SYS.... The system uses these data spaces as follows:

BPXSMBITS For shared memory, memory map, and large message queue buffers.
BPXSMBITS should be dumped when you dump BPXD data spaces for
these components.

BPXDQxxx For message queues (where xxx can be the number 1 through 9)

BPXDSxxx For shared memory

BPXDOxxx For outboard communications server (OCS)

BPXDMxxx For memory map

BPXFSCDS For couple data set (CDS)

SYSZBPX1 For kernel data (including CTRACE buffers)

IEE115I 10.21.16 2000.157 ACTIVITY 973
 JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM OAS
00011 00034 00001 00030 00038 00001/00050 00023
 OMVS OMVS OMVS NSW * A=000F PER=NO SMC=000
 PGN=N/A DMN=N/A AFF=NONE
 CT=023.135S ET=00122.24
 WKL=SYSTEM SCL=SYSSTC P=1
 RGP=N/A SRVR=NO QSC=NO
 ADDR SPACE ASTE=3132C3C0
 DSPNAME=BPXDS003 ASTE=5F324C00
 DSPNAME=SYSIGWB1 ASTE=4D6EE380
 DSPNAME=SYSZBPXC ASTE=52BAD300
 DSPNAME=SYSZBPXU ASTE=52BAD280
 DSPNAME=HFSDSP04 ASTE=03A31500
 DSPNAME=HFSDSP03 ASTE=03A31C00
 DSPNAME=HFSDSP02 ASTE=03A31E00
 DSPNAME=HFSDSP01 ASTE=03A31C80
 DSPNAME=HFSDSPS1 ASTE=03A31B80
 DSPNAME=BPXDA002 ASTE=03A31E80
 DSPNAME=SYSZBPX3 ASTE=03A31D80
 DSPNAME=BPXFSCDS ASTE=04099A00
 DSPNAME=BPXDX001 ASTE=03ED2780
 DSPNAME=SYSZBPX2 ASTE=04099980
 DSPNAME=BPXSMBIT ASTE=03A31480
 DSPNAME=SYSZBPXX ASTE=03ED2400
 DSPNAME=SYSZBPX1 ASTE=03ED2380
 DSPNAME=BPXLATCH ASTE=04099400

D A,OMVS
Chapter 13. z/OS UNIX operations 645

SYSZBPX2 For file system data

SYSZBPX3 For pipes

SYSIGWB1 For byte-range locking

SYSGFU01 For DFSMS file system

SYSZBPXC For Converged INET sockets

SYSZBPXL For local INET sockets

SYSZBPXU For AF_UNIX sockets

Include dataspaces in a dump
These data spaces will need to be included in a dump if they have information that could be
useful in analyzing a problem.

The kernel data space, SYSZBPX1, is always needed. Dump other data spaces if there is
reason to believe they contain data that could be useful in analyzing a problem.
646 ABCs of z/OS System Programming Volume 9

13.8 z/OS V1R7 command options

Figure 13-8 Commands to display mount failure messages

Mount failure messages
Failures from prior MOUNT or MOVE file system commands, of any form, will be
remembered and the pertinent information is available for display or application retrieval.

This includes, for instance, mounts issued from TSO, ISHELL, those from BPXPRMxx during
system startup, and sysplex mounts.

Also, file system new owner failures (Move commands) that occur during setomvs, chmount,
shutdown, and member gone event processing will be saved.

To check move and mount file system failures use the following display commands:

� D OMVS,MF displays the last 10 (or less).

� D OMVS,MF=A or D OMVS,MF=ALL displays up to 50 failures.

� D OMVS,MF=P or D OMVS,MF=PURGE deletes the failure information log.

D OMVS,MF - displays the last 10 (or less) failures

D OMVS,MF=A - displays up to 50 failures

D OMVS,MF=ALL

D OMVS,MF=P - deletes the failure information log

D OMVS,MF=PURGE
Chapter 13. z/OS UNIX operations 647

13.9 Mount error messages displayed

Figure 13-9 Mount failure messages displayed

Displaying failure messages for mounts
The D OMVS,MF command displays information about move or mount failures:

� Enter MF to display information about the last 10 or less move or mount failures.

� Enter MF=ALL or MF=A to display information about the last 50 or less move or mount
failures.

The system issues message BPXO058I to display the information about mount failures.

 D OMVS,MF
 BPXO058I 16.05.10 DISPLAY OMVS 356
 OMVS 0011 ACTIVE OMVS=(7B)
 SHORT LIST OF FAILURES:
 TIME=16.02.09 DATE=2005/08/16 MOUNT RC=007A RSN=052C018F
 NAME=HAIMO.ZFS
 TYPE=ZFS
 PATH=/SC70/tmp/bpxwh2z.HAIMO.16:01:56.zfs
 PARM=AGGRGROW
 TIME=10.57.24 DATE=2005/08/15 MOUNT RC=0079 RSN=5B220125
 NAME=OMVS.TCPIPMVS.HFS
 TYPE=HFS
 PATH=/u/tcpipmvs
648 ABCs of z/OS System Programming Volume 9

13.10 Mount failure messages

Figure 13-10 Mount failure messages

Mount failure messages
Using D OMVS,MF=ALL or D OMVS,MF=A, displays information about the last 50 or less
move or mount failures.

The system issues message BPXO058I to display the information about mount failures.

Using D OMVS,MF=PURGE or D OMVS,MF=P allows you to purge the saved information
mount failures displayed in message BPXO058I.

Once you have purged the messages and then issued a D OMVS,MF, there are no
messages to display.

D OMVS,MF=A
BPXO058I 13.26.37 DISPLAY OMVS 974
OMVS 0011 ACTIVE OMVS=(TT)
LAST PURGE: TIME=08.49.43 DATE=2005/05/11
ENTIRE LIST OF FAILURES:
TIME=09.36.41 DATE=2005/05/13 MOUNT RC=0081 RSN=EF096055
 NAME=HFS.TEST.MOUNT4
 TYPE=ZFS
 PATH=/TEST/TSTMOUNTZ
 PLIB=BPXPRMTT
(...up to 50 failures)
D OMVS,MF=P
BPXO058I 13.30.25 DISPLAY OMVS 010
OMVS 0011 ACTIVE OMVS=(TT)
PURGE COMPLETE: TIME=13.30.25 DATE=2005/05/13
D OMVS,MF
BPXO058I 13.42.45 DISPLAY OMVS 041
OMVS 0011 ACTIVE OMVS=(TT)
LAST PURGE: TIME=13.30.25 DATE=2005/05/13
NO MOUNT OR MOVE FAILURES TO DISPLAY
Chapter 13. z/OS UNIX operations 649

13.11 Stopping BPXAS address spaces

Figure 13-11 Command to shut down all BPXAS address spaces

Shut down all BPXAS address spaces
When closing down a system prior to IPL, the F BPXOINIT,SHUTDOWN=FORKINIT
command should be issued prior to stopping JES2. This is because the WLM BPXAS
address spaces remain active for 30 minutes after use, and could therefore delay JES2
shutdown for an unacceptable period. The F BPXOINIT,SHUTDOWN=FORKINIT command
terminates inactive BPXAS address spaces prematurely.

Attempting to shut down active BPXAS address spaces will result in the following message:

BPXM037I BPXAS INITIATOR SHUTDOWN DELAYED

F BPXOINIT,SHUTDOWN=FORKINIT
BPXM036I BPXAS INITIATORS SHUTDOWN.
$HASP395 BPXAS ENDED

Attempting to shut down active BPXAS address spaces
will result in the following message:

BPXM037I BPXAS INITIATOR SHUTDOWN DELAYED
650 ABCs of z/OS System Programming Volume 9

13.12 LFS soft shutdown

Figure 13-12 A command to unmount all file systems

LFS soft shutdown
A function to do a soft shutdown for mounted file systems is provided through the MVS
operator console MODIFY command, as follows:

F BPXOINIT,SHUTDOWN=FILESYS

This command terminates UNIX activity on the system. The command also provides a
method for unmounting all file systems and hardening the cached buffers to disk.

Other UNIX applications
Many of the different products running under z/OS UNIX System Services, like NFS for z/OS
and Communication Server, have their own shutdown procedures. These procedures should
be used first to shut down the different products, before any z/OS UNIX System Services
termination commands are used.

The distinction between the shared file system environment, file systems in a sysplex, and
non-sysplex file systems is based on whether SYSPLEX(YES) is specified in the BPXPRMxx
PARMLIB member, and the systems are participating in a shared file system environment.

If it is a non-sysplex environment, all file systems will be unmounted with the FORCE
operand. In a sysplex environment, all automounted file systems and file systems mounted
on the system you shut down will be unmounted. For file systems mounted with AUTOMOVE
parameter set, the ownership is moved to another system in the sysplex. The remaining file
systems will be unmounted FORCE.

F BPXOINIT,SHUTDOWN=FILESYS

Unmounts file systems prior to re-IPL

Cached buffers synched to disk

Non-Sysplex:

Unmount Force all file systems

Sysplex:
Unmount automounted file systems & file systems
mounted on them

Move Automove(Yes) file systems to other systems

Unmount Force remaining file systems
Chapter 13. z/OS UNIX operations 651

13.13 z/OS V1R8 file system shutdown

Figure 13-13 File system shutdown with z/OS V1R8

Preventing mounts during file system shutdown
Prior to z/OS V1R8, as part of a planned shutdown, you needed to prepare the file systems
before shutting down z/OS UNIX by issuing one of these commands:

F BPXOINIT,SHUTDOWN=FILEOWNER
F BPXOINIT,SHUTDOWN=FILESYS

This synchronizes data to the file systems and possibly unmounts or moves ownership of the
file systems. If you use SHUTDOWN=FILEOWNER, the system is disabled as a future file
system owner via move or recovery operations until z/OS UNIX has been restarted.

In the previous versions of z/OS UNIX, mounts are permitted to occur during shutdown
processing and after file system shutdown has completed. One problem that exists today is
that there are file systems still owned by the system that is being shut down.

Functional changes in z/OS V1R8
z/OS V1R8 provides the following solutions for this problem:

� Automounted file systems will not be mounted during or after the file system shutdown
processing. Using the following command, that limits additional file systems from being
mounted on the system where the command is executed, and changes to the output of the
command summarize the number of file systems that are still owned by the system:

F BPXOINIT,SHUTDOWN=fileowner
BPXM048I BPXOINIT FILESYSTEM SHUTDOWN INCOMPLETE.

Automounted file systems are now not mounted
during the processing of or after the completion of

F BPXOINIT,SHUTDOWN=FILEOWNER

Unanticipated automount mounts can be prevented

File systems can only be mounted on this system
by an explicit mount command

Filtering capability has been added to D OMVS,F
that can limit the output display of file systems

Pertinent filesystem information is displayed when
using:

D OMVS,F with new operands

NAME - OWNER - EXCEPTION - TYPE
652 ABCs of z/OS System Programming Volume 9

 3 FILESYSTEM(S) ARE STILL OWNED BY THIS SYSTEM.
 2 FILESYSTEM(S) WERE MOUNTED DURING THE SHUTDOWN PROCESS.

After the SHUTDOWN=fileowner has been issued, automount-managed file systems will
no longer be mounted. File systems can only be mounted on this system by an explicit
mount command.

The file system display is easier to use by providing only the specific information that is
needed to prepare for a file system shutdown.

� A filtering capability has been added to provide a limit to the message responses of the
following command:

D OMVS,F

New filtering capability added to shutdown process
There are no messages issued when using the F BPXOINIT,SHUTDOWN=fileowner
command if an automount was attempted. However, an appropriate error return and reason
code will be issued for the mount request. Explicit mounts are still accepted during and after
the fileowner shutdown processing.

Behavior for the F BPXOINIT,SHUTDOWN=filesys command is not affected by this change.
Automount-managed file systems can be mounted during and after the shutdown process.
However, the resulting message, BPXM048I, uses the new format with the additional line that
summarizes new mounts that occurred during the shutdown process.

When either shutdown commands are accepted, a timestamp is taken. If the system that is
being shut down becomes the owner of a newly mounted file system or one that was acquired
due to a move operation (only for SHUTDOWN=filesys) before the command completes, a
console message is issued that includes the number of file systems that were acquired during
this time frame.
Chapter 13. z/OS UNIX operations 653

13.14 Options with the D OMVS,F command

Figure 13-14 Options on the D OMVS,F command

Command change benefits
You can benefit from these changes to the operator commands as follows:

� Preventing unanticipated automount-managed mounts.

� Displaying pertinent file system information using the D OMVS,F command and providing
only the specific information to prepare for a file system shutdown, as shown in
Figure 13-14.

� Limiting additional file systems from being mounted on the system where the command
was executed.

� Filtering the output display to a particular file system.

After the SHUTDOWN=fileowner has been issued, file systems can only be mounted on this
system by an explicit mount command.

NAME or N=filesystem Displays information about the specified file system or file
systems. You can use one wildcard character (*) in the file
system specified. For example, ZOS18.*.HFS or ZOS.L*.HFS.
Specifying D OMVS,F,NAME=* results in the system
displaying all file systems, which is the same output as if you
specified D OMVS,F.

OWNER or O=systemname Displays information for the file systems owned by the
specified system name. Specifying D OMVS,F,OWNER
displays all the file systems that are owned by this system.

D OMVS,F,name=nn or D OMVS,F,n=nn

(where nn is the name of a file system) displays
information about the specified file system(s) - One
wildcard (*) is permitted in the name and displays all
file systems whose names match that template

 D OMVS,F,name=* or D OMVS,F,n=*

Displays all file systems (same as ‘D OMVS,F’)

 D OMVS,F,owner=xx or D OMVS,F,o=xx

(where xx is a system name) displays all file
systems owned by system xx
654 ABCs of z/OS System Programming Volume 9

13.15 Options with the D OMVS,F command

Figure 13-15 Options on the D OMVS,F command

Command change benefits
These new options display a list of file systems that z/OS UNIX System Services is currently
using, including the following:

� The status of each file system

� The date and time that the file system was mounted

� The latch number for the file system

� The quiesce latch number for the file system, or 0 if the file system has never been
quiesced by UNIX System Services

OWNER or O=systemname Displays information for the file systems owned by the
specified system name. Specifying D OMVS,F,OWNER
displays all the file systems that are owned by this system.

EXCEPTION or E Displays file systems in an exception state, such as a file
system that is quiesced, unowned, or in recovery.

TYPE or T=type Displays all file systems of the specified PFS type.

D OMVS,F,owner or D OMVS,F,o

Displays all file sytems that are owned by the
system where the command was executed

 D OMVS,F,exception or D OMVS,F,e

Displays all file systems in an exception state (e.g.
quiesced, unowned, in recovery)

 D OMVS,F,type=xx or D OMVS,F,t=xx

(where xx is a PFS type) displays all file systems of
the type xx
Chapter 13. z/OS UNIX operations 655

13.16 New command examples

Figure 13-16 D OMVS,F,N examples

Using the file system name example
Figure 13-16 shows examples of using the file system name as a filter to display mounted file
systems. The use of wildcards is permitted with the file system name.

D OMVS,F,NAME=BECKER.ZFS
BPXO045I 12.51.23 DISPLAY OMVS
OMVS 000E ACTIVE OMVS=(00,FS)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
ZFS 14 ACTIVE RDWR 05/22/2006 L=30
 NAME=BECKER.ZFS 12.35.23 Q=0
 PATH=/u/becker
 AGGREGATE NAME=BECKER.ZFS

D OMVS,F,N=*.ETC
BPXO045I 13.04.42 DISPLAY OMVS 399
OMVS 000E ACTIVE OMVS=(00,FS)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
HFS 2 ACTIVE RDWR 05/19/2006 L=14
 NAME=OMVS.SC75.ETC 11.43.25 Q=0
 PATH=/etc
656 ABCs of z/OS System Programming Volume 9

13.17 New command examples

Figure 13-17 D OMVS,F with filters for owner and exceptions

Using filters for owner and exceptions
The new commands shown in Figure 13-17 provide filtering syntax for the D OMVS,F
command for the file system owner and when file systems have exception conditions.

D OMVS,F,O=SC75
BPXO045I 12.57.04 DISPLAY OMVS 388
OMVS 000E ACTIVE OMVS=(00,FS)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
AUTOMNT 6 ACTIVE RDWR 05/19/2006 L=20
 NAME=*AMD/u 11.43.27 Q=0
 PATH=/u
TFS 5 ACTIVE RDWR 05/19/2006 L=17
 NAME=/TMP 11.43.25 Q=0
 PATH=/SYSTEM/tmp
 MOUNT PARM=-s 100

D OMVS,F,E
BPXO045I 11.22.25 DISPLAY OMVS 832
OMVS 000E ACTIVE OMVS=(00,FS)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
ZFS 9 DRAIN UNMOUNT RDWR 05/15/2006 L=25
 NAME=LUTZ.ZFS 10.52.37 Q=0
 PATH=/u/lutz
 AGGREGATE NAME=LUTZ.ZFS
Chapter 13. z/OS UNIX operations 657

13.18 New command examples

Figure 13-18 D OMVS,F commands with filter of type

Using the type filter
Figure 13-18 displays the filtering by type of file systems, either HFS or zFS.

D OMVS,F,T=HFS
BPXO045I 13.01.48 DISPLAY OMVS
OMVS 000E ACTIVE OMVS=(00,FS)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
HFS 4 ACTIVE RDWR 05/19/2006 L=16
 NAME=OMVS.SC75.VAR 11.43.25 Q=0
 PATH=/var
D OMVS,F,T=ZFS
BPXO045I 10.16.14 DISPLAY OMVS
OMVS 000E ACTIVE OMVS=(8B)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
ZFS 43 ACTIVE RDWR 09/14/2006 L=60
 NAME=HERING.ZFS 11.56.13 Q=0
 PATH=/u/hering
 AGGREGATE NAME=HERING.ZFS
 OWNER=SC74 AUTOMOVE=Y CLIENT=N
ZFS 42 ACTIVE RDWR 09/13/2006 L=59
 NAME=ROGERS.ZFS 13.54.10 Q=0
 PATH=/u/rogers
 AGGREGATE NAME=ROGERS.ZFS
 OWNER=SC75 AUTOMOVE=Y CLIENT=N
658 ABCs of z/OS System Programming Volume 9

13.19 z/OS UNIX shutdown

Figure 13-19 Commands to shut down and restart z/OS UNIX without re-IPL

Shut down z/OS UNIX without IPL
z/OS UNIX provides the possibility to shut down and reinitialize the z/OS UNIX environment
without the need to IPL the system. This OMVS option will shut down z/OS UNIX and all the
processes that are running under it.

OMVS shutdown allows you to do some reconfiguration that would otherwise have required
an IPL, for example:

� If you do a reconfiguration of a system to go from a non-shared file system environment
system to a shared file system environment system

� When you implement a new file structure

Restrictions and limitations
There are some restrictions and limitations that are not allowed with the OMVS shutdown. In
these cases, you will need to IPL the system as usual. These limitations include:

� During the cleanup of the resources for z/OS UNIX as part of the shutdown process, some
internal failures cannot be resolved using this support due to their severity.

� OMVS shutdown support cannot be used to install maintenance against z/OS UNIX
because some of the modules are maintained across the shutdown and restart process.

� Installations should avoid using the OMVS restart support as a way to shutdown the
system with one single command. This will cause some unexpected abnormal

OMVS restart

Provides shutdown and restart capability of
UNIX System Services (USS) environment

Like prior P OMVS and S OMVS support with some
additional capabilities

Does not resolve ALL system outage conditions
involving UNIX System Services

Do not use to install maintenance for USS

More than one command to shut down the system

Shutdown and restart commands

F OMVS,SHUTDOWN

F OMVS,RESTART
Chapter 13. z/OS UNIX operations 659

terminations of address spaces using UNIX System Services that are not shut down in the
manner they recommend.

� OMVS restart support is not intended to be used in an unlimited manner to shut down and
restart, because some system resources can be lost during the shutdown phase and due
to the disruption it causes to the system.

New operator commands
In order to support OMVS shutdowns, there is a new Modify command; support for the OMVS
address space has been introduced to provide the ability to shut down and then restart the
z/OS UNIX environment with the following commands:

F OMVS,SHUTDOWN
F OMVS,RESTART
660 ABCs of z/OS System Programming Volume 9

13.20 Recommended shutdown procedures

Figure 13-20 Recommended procedures to shut down OMVS

Shutdown procedures
Quiesce your batch and TSO workloads. Having batch jobs and TSO users running during
the shutdown may cause these jobs to experience unexpected signals or abends.
Additionally, these jobs and users may end up being hung, waiting for z/OS UNIX services to
be restarted, if they first access z/OS UNIX services during a shutdown.

Quiesce those application and subsystem workloads using z/OS UNIX services in the
manner that each application or subsystem recommends. Doing so will allow subsystems
such as DB2, CICS, and IMS™, and applications like SAP®, Lotus Domino, NetView, and
WebSphere to be quiesced in a more controlled manner than this facility will provide.

Unmount all remotely mounted file systems such as those managed by NFS. Doing so will
prevent these file systems from losing data.

Terminate all file system address spaces, such as TCP/IP and DFSS, using their
recommended shutdown methods. If you do not shut them down before issuing
F OMVS,SHUTDOWN, these system functions may terminate abnormally when the
shutdown takes place. Existing colony PFS address spaces will be shut down. This may
include NFS, for example.

Note: You can use the D OMVS,A=ALL operator command to determine which
applications, if any, require quiescing.

Quiesce batch and interactive workloads

Quiesce major subsystem and application

workloads using UNIX System Services

DB2, CICS and IMS, and applications such as SAP,

Lotus Domino, NetView, and Websphere

Shut down PFS address spaces (NFS and zFS)
Chapter 13. z/OS UNIX operations 661

13.21 Application registration

Figure 13-21 Processes register for shutdown processing

Applications register for shutdown
New registration support has been introduced to allow an application to request special
treatment when a shutdown is initiated, and to request to receive a new SIGDANGER signal
as a warning that shutdown has been initiated and is imminent.

The registration support allows requesting of special treatment in case of shutdown. Different
kinds of registrations can be implemented, as follows:

� A process or job registered as “permanent” is not taken down across the shutdown and
restart process. Its process-related resources are checkpointed at shutdown time and
reestablished at restart time, so the registered permanent process or job can survive the
shutdown.

� A process or job registered as “blocking” delays shutdown until it de-registers or ends.
This gives the ability for an application to quiesce itself in a more controlled manner before
UNIX System Service starts taking down all processes.

� A process or job registered for “notification” is notified that the shutdown process is being
planned via a SIGDANGER signal.

The following command has been modified to include information about what type of
registration a specific process has:

D OMVS,A=ALL

Shutdown Registration support to request special
treatment at shutdown time

Applications, jobs, processes, subsystems register as:

Permanent

Blocking

SIGDANGER signal to warn of imminent shutdown

Signal sent to the registered

Who is registered - D OMVS,A=ALL

 Enhanced to indicate shutdown/restart status
662 ABCs of z/OS System Programming Volume 9

13.22 Display application registration

Figure 13-22 Command to display registered processes

Display of registered processes for shutdown
Issue the normal command to display active BPXAS address spaces.

As shown in the figure, a character P or B, indicating permanent or blocked, has been
included on the STATE field.

D OMVS,A=ALL
BPXO040I 10.02.18 DISPLAY OMVS 543
OMVS 000F ACTIVE OMVS=(3A)
USER JOBNAME ASID PID PPID STATE START CT_SECS
OMVSKERN BPXOINIT 003C 1 0 MRI--- 07.58.59 .18
 LATCHWAITPID= 0 CMD=BPXPINPR
 SERVER=Init Process AF= 0 MF=00000 TYPE=FILE
STC MVSNFSC5 003B 16908290 1 1R---- 07.59.13 .06
 LATCHWAITPID= 0 CMD=GFSCMAIN
STC MVSNFSC5 003B 50462724 1 1R---- 07.59.12 .06
 LATCHWAITPID= 0 CMD=BPXVCLNY
STC MVSNFSC5 003B 50462728 1 1A---- 07.59.14 .06
 LATCHWAITPID= 0 CMD=BPXVCMT
OMVSKERN SYSLOGD5 0041 131081 1 1FI--- 07.59.06 .13
 LATCHWAITPID= 0 CMD=/usr/sbin/syslogd -f /etc/syslog.conf
STC RMFGAT 0046 84017164 1 1R---P 08.00.01 83.91
 LATCHWAITPID= 0 CMD=ERB3GMFC
TCPIPMVS TCPIPMVS 0043 131085 1 MR---B 08.00.06 8.35
 LATCHWAITPID= 0 CMD=EZBTCPIP
TCPIPMVS TCPIPMVS 0043 131086 1 1R---B 08.00.12 8.35
 LATCHWAITPID= 0 CMD=EZBTTSSL
TCPIPMVS TCPIPMVS 0043 131087 1 1R---B 08.00.12 8.35
Chapter 13. z/OS UNIX operations 663

13.23 F OMVS,SHUTDOWN

Figure 13-23 Issuing the shutdown command

Shutdown of OMVS
The shutdown starts by issuing the F OMVS,SHUTDOWN command and then the following
steps are done:

� Once the shutdown command has been accepted, a BPXI055I is issued:
*BPXI055I OMVS SHUTDOWN REQUEST ACCEPTED

� SIGDANGER signals are sent to all processes registered for receiving the SIGDANGER
signal.

If any blocking processes are found, shutdown is delayed until these processes end or
deregister as blocking, or if a F OMVS,RESTART command is issued to restart. If these
blocking processes do not end or deregister in a reasonable amount of time, message
BPXI064E is displayed to the console, indicating shutdown is delayed. In our tests, 12 seconds
after the shutdown command was accepted, the BPXI064E message was issued. Message
BPXI060I was also issued for each process found to be holding up the shutdown. This
message identified the job and address space involved.

Attention: Use the F OMVS,SHUTDOWN command carefully because this method will
take down other system address spaces. As a result, some system-wide resources may
not be completely cleaned up during a shutdown and restart. Do not use this command to
shut down and restart the z/OS UNIX environment on a frequent basis. (If you do so, you
will eventually have to do a re-IPL.)

Initiates shutdown of the UNIX System Services
environment

*BPXI055I OMVS SHUTDOWN REQUEST
ACCEPTED

SIGDANGER signal sent to registered parties to warn
of imminent shutdown

Shutdown delayed if any blocking processes exist

*BPXI064E OMVS SHUTDOWN REQUEST DELAYED
BPXI060I TCPIPMVS RUNNING IN ADDRESS SPACE 0043 IS BLOCKING SHUTDOWN OF OMVS
BPXI060I TCPIPOE RUNNING IN ADDRESS SPACE 0044 IS BLOCKING SHUTDOWN OF OMVS
BPXI060I TCPIPB RUNNING IN ADDRESS SPACE 0052 IS BLOCKING SHUTDOWN OF OMVS
664 ABCs of z/OS System Programming Volume 9

13.24 Blocking processes completion

Figure 13-24 Messages when blocking processes complete

Applications that block shutdown
Some applications may register to block a shutdown, which delays the shutdown request until
the blockers end or unblock. Also, an application exit can be set up to be given control when
a shutdown request is initiated in order to allow specific shutdown actions to be taken. This
may include initiating the shutdown of the application or sending messages that indicate the
specific steps that are required to shut down the application.

If any blocking jobs or processes are active when a shutdown request is initiated, the
shutdown is delayed until all blocking jobs or processes either unblock or end. If the delay
exceeds a certain time interval, you will receive messages telling you that the shutdown is
delayed and which jobs are delaying the shutdown. At this point, you can either attempt to
terminate the jobs that are identified as blocking shutdown or issue F OMVS,RESTART to
restart the z/OS UNIX environment, which will cause the shutdown request to be terminated.

Once all blocking processes have ended or deregistered as blocking, the shutdown follows by
sending a SIGTERM signal to each non-permanent process found and the following
messages are received, as shown in the figure.

Once blocking processes have ended or deregistered

SIGTERM signal sent

BPXP010I THREAD 10652BA800000000, IN PROCESS 67239946, WAS 684
TERMINATED BY SIGNAL SIGTERM, SENT FROM THREAD
1065383000000000, IN PROCESS 1, UID 0.
BPXP018I THREAD 1067C3D000000000, IN PROCESS 131109, ENDED 685
WITHOUT BEING UNDUBBED WITH COMPLETION CODE 04EC6000,
AND REASON CODE 0000FF0F.
BPXP018I THREAD 1067AAC000000000, IN PROCESS 131107, ENDED 686
Chapter 13. z/OS UNIX operations 665

13.25 Shutdown processing completion

Figure 13-25 Steps to terminate active processes

Shutdown processing complete
The best way to end a process is to issue the kill command. Use the D OMVS operator
command or the ps command to display all the active processes. Then issue the kill
command, specifying the signal and the PID (process identifier) for the process.

� Start by sending a SIGTERM signal:
kill -s TERM pid

where pid is the process identifier.

� If that does not work, try sending a SIGKILL signal:
kill -s KILL pid

where pid is the process identifier.

If some of the processes still exist after both of these signals are sent, they are terminated
with a 422-1A3 ABEND.

If after all of these steps, some non-permanent processes still exist, the shutdown request is
aborted and a BPXI061E message is issued:

BPXI061E OMVS SHUTDOWN REQUEST ABORTED

IEF450I STEVEZ IKJACCT IKJACCNT - ABEND=S422 U0000 REASON=000001A3 952
 TIME=07.58.28

For processes that do not terminate after SIGTERM

Send process a SIGKILL signal

BPXP010I THREAD 106C2BA000000002, IN PROCESS 131198, WAS 789
TERMINATED BY SIGNAL SIGKILL, SENT FROM THREAD
1065383000000000, IN PROCESS 1, UID 0.
BPXP010I THREAD 1066EEC800000000, IN PROCESS 84017176, WAS 792
TERMINATED BY SIGNAL SIGKILL, SENT FROM THREAD
1065383000000000, IN PROCESS 1, UID 0.

For processes that still exist

Process terminated with a 422-1A3 ABEND

IEF450I STEVEZ IKJACCT IKJACCNT - ABEND=S422 U0000 REASON=000001A3 952
 TIME=07.58.28

BPXI061E OMVS SHUTDOWN REQUEST ABORTED
666 ABCs of z/OS System Programming Volume 9

13.26 Shutdown for permanent processes

Figure 13-26 Permanent processes termination

Shutdown of permanent registered processes
After non-permanent processes have been taken down, the shutdown process continues
trying to checkpoint all the permanent processes. A permanent process cannot be
checkpointed, however, if it is using any of the following resources:

� Shared libraries

� Memory mapped file services

� Map services

� SRB services

� Semaphore services

� Message queue services

� Shared memory services

A permanent process found using any of these resources will cause shutdown to be aborted
and message BPXI060I is issued indicating what resource for which job is causing the
problem.

Shutdown processing checkpoints processes

Processing aborted if processes using:

Shared libraries

Memory mapped file services

Map services

SRB services

Semaphore services

Message queue services

Shared memory services

BPXI060I message
Chapter 13. z/OS UNIX operations 667

13.27 Shutdown processing final cleanup

Figure 13-27 Final cleanup of shutdown processing

Cleanup of shutdown processing
After all non-permanent processes have ended, BPXOINIT is taken down with a 422-1A3
abend.

File systems on the system where the shutdown was issued are immediately unmounted;
data is synched to disk as a result.

For a shared file system environment, one of the following actions is taken on the file systems
that are owned by the system where the command was issued:

� Unmount if automounted or if a file system was mounted on an automounted file system.
� Move to another system if an AUTOMOVE(YES) was specified.
� Unmount for all other file systems.

File systems that are not owned by the system on which the shutdown was issued are not
affected. The shutdown should be done prior to an IPL. It replaces BPXSTOP.

On the system that you are preparing to shut down, issue the following command:

F BPXOINIT,SHUTDOWN=FILESYS

All file systems are unmounted and potentially moved to another system. If for some reason it
is not possible to unmount some file systems, a BPXI066E message is issued and shutdown
will proceed to the next phase.

Take down BPXOINIT after all non-permanent

processes have ended

Unmount and move all file systems - equivalent to:

F BPXOINIT,SHUTDOWN=FILESYS

 Clean up most kernel and LFS resources

Issue message BPXI056E when shutdown completes

and wait for restart

*BPXI056E OMVS SHUTDOWN REQUEST HAS COMPLETED SUCCESSFULLY

BPXN001I UNIX SYSTEM SERVICES PARTITION CLEANUP IN PROGRESS FOR SYSTEM SC64
668 ABCs of z/OS System Programming Volume 9

13.28 F OMVS,RESTART

Figure 13-28 Command to restart z/OS UNIX

Restart z/OS UNIX command
The F OMVS,RESTART command restarts the z/OS UNIX environment. This involves the
following:

1. Once the restart command has been accepted, indicated by the following message:

*BPXI058I OMVS RESTART REQUEST ACCEPTED

the first step in the restart process is to re-initialize the kernel and LFS. This includes
starting up all physical file systems.

2. BPXOINIT is restarted and it will re-establish itself as process ID 1.

3. BPXOINIT re-establishes the checkpointed processes as follows:

All checkpointed processes that are still active are re-established and those that are not
found are not re-established and will have their checkpointed resources cleaned up.

4. After BPXOINIT completes its initialization, it will restart /etc/init or /usr/sbin/init to begin
full function initialization of the z/OS UNIX environment. /etc/init performs its normal
startup processing, invoking /etc/rc.

5. After /etc/init has completed full function initialization, a BPXI0041 message is issued
indicating z/OS UNIX initialization is complete.

BPXI004I OMVS INITIALIZATION COMPLETE

Restart UNIX System Services environment

Can optionally specify OMVS=(xx,yy,...) parameter to
change PARMLIB

Redrive normal kernel and LFS initialization

 Start up BPXOINIT address space

Reestablish checkpointed processes, if possible

Start up /etc/init or /usr/sbin/init to begin full function
initialization

Reissue BPXI004I message when restart is complete

DOM all prior shutdown messages
 BPXI004I OMVS INITIALIZATION COMPLETE
Chapter 13. z/OS UNIX operations 669

13.29 Display information about processes

Figure 13-29 Displaying information about active processes

Display active processes from the OMVS shell
To get information about z/OS UNIX processes, the shell command ps can also be used. An
z/OS UNIX user can use this command to display information about all active processes.

A superuser can display information about all the processes in the system by using the
command ps -A.

Figure 13-29 shows an example of a superuser issuing the command ps -A to get information
about all the active z/OS UNIX processes. This is an alternative to using the D OMVS
command. If there is a problem with a process, the user or system administrator will first try to
stop the process using shell commands. To get the PID of the process, the ps command is
used.

From the example, you can see that there are three shell sessions because there are three
different ttyp000x (1, 2, and 3). There are two process IDs that is using the same pseudo-TTY
(ttyp0002). The reason for this is that the ps command (/bin/ps) is running in a subshell, but is
using the same terminal for output as the shell session (/bin/sh) where the command was
issued from. These two PIDs belong to the superuser that issued the ps -A command.

ps -A
 PID TTY TIME CMD
 1 ? 0:00
 196610 ? 0:20
 65539 ? 0:01
 262148 ttyp0001 0:00 /bin/sh
 1310725 ? 0:00 /usr/sbin/rlogind
 1114118 ? 0:03 /usr/sbin/rlogind
 1179655 ? 0:00 /usr/sbin/inetd
 1048584 ttyp0000 0:00 /bin/sh
 327689 ttyp0002 0:04 /bin/sh
 458762 ? 0:01
 393227 ttyp0002 0:00 /bin/ps

Superuser shell session:
670 ABCs of z/OS System Programming Volume 9

13.30 Stop a process

Figure 13-30 Different commands to stop a process

Commands to stop a z/OS UNIX process
There are four ways to stop a z/OS UNIX process:

1. The operator MODIFY command. The TERM option will allow a signal interface routine to
receive control before termination. The FORCE option prevents the signal interface routine
from receiving control before the process is terminated.

2. The kill shell command can be used to cancel a process. A user can cancel his/her own
processes, or a system administrator (superuser) has authority to kill other user's
processes. TERM sends a SIGTERM signal and KILL sends a SIGKILL signal.

The kill command sends a signal to a process. One of the signals that can be sent is the
kill signal, and that is the reason why kill is used twice in the command. The system
administrator can use the ps command to find the PID of the process. The PID is needed
to identify the process in the kill command.

3. The ISHELL k line command of the Work with Processes menu. You can get to this from
the Tools pull-down menu in the ISHELL.

4. The MVS CANCEL command can be used to cancel an address space that contains a
z/OS UNIX process. If the address space contains multiple processes, CANCEL will
cause all of them to terminate. CANCEL is an operator command.

==> kill -s kill 327689Use shell command:

D OMVS,U=WELLIE5
BPXO001I 13.17.46 DISPLAY OMVS 178
OMVS ACTIVE BPXPRM00
USER JOBNAME ASID PID PPID STATE START CT_SECS
WELLIE5 WELLIE5 0045 524298 1 1R 13.17.29 6.441

CANCEL WELLIE5,A=45

Use MVS
cancel
command:

Use MVS
modify
command:

F BPXOINIT,TERM,PID=327689
F BPXOINIT,FORCE,PID=327689

 Work with Processes

Select one or more processes with an action code.
 A=Attributes... K=Kill S=Signal...

 Process_ID State TTY Time Command
K 419430404 RUN 101.9 EXEC

Use ISHELL:
Chapter 13. z/OS UNIX operations 671

13.31 Superkill function

Figure 13-31 Superkill function

Superkill command with z/OS V1R6
USS processes that use MVS services can defer USS signal processing. Even though these
restrictions are documented, a hung process can cause other problems if it cannot be
terminated. Therefore, USS processes that become hung and cannot be terminated via the
kill() service require MVS operator intervention to cancel the address space containing the
USS process.

Therefore, a new superkill function was created that does the following:

� Cancels hung USS processes using UNIX semantics.

� Cancels their own hung processes from the shell.

� Uses the enhanced console support to give operators and automated console applications
additional flexibility.

The advantages of this function are that it allows an override of the current restrictions of
signal delivery and it provides the ability to use the PID instead of an ASID.

The -K option sends a superkill signal to force the ending of a process or job that did not end
as a result of a prior KILL signal. The process is ended with a non-retryable abend. The
regular KILL signal must have been sent at least 3 seconds before the superkill signal is sent.
The superkill signal cannot be sent to a process group (by using pid of 0 or a negative
number) or to all processes (by using a pid of -1).

USS processes that become hung and cannot be
terminated via the kill() service

Requires MVS operator intervention to CANCEL the
address space containing the USS process

Using SUPERKILL
Cancel hung USS processes using UNIX semantics
Cancel their own hung processes from the shell
Enhanced console support to give operators and
automated console applications additional flexibility

BPX1KIL/BPX4KIL - USS callable assembler service
__superkill() - C/C++ service
kill –K [pid ...][job-identifier ...] - new shell command
F BPXOINIT,SUPERKILL=pid – new console
command
672 ABCs of z/OS System Programming Volume 9

13.32 Superkill example

Figure 13-32 Using the superkill function

Superkill command example
Superkill is a non-posix interface and is really being geared to provide an unauthorized
interface to cancel-like logic. The APIs are fitted around tradition signal interfaces for usability
reasons as well as some functionality reasons. The posix and shell APIs will allow users to
invoke the superkill interface as they would the other signal interfaces. Also, certain signal
logic is used for the authorization checks and delivery mechanisms.

The restrictions have been put in place to ensure that the asynchronous nature of the abend
is limited to processes that are truly hung. Limiting the abend to a single process at a time
also avoids abusive use.

The procedural flow of a superkill would be as follows:

Send a regular KILL signal by issuing, kill -s KILL pid

Wait 3 seconds

Then send a superkill to force termination - kill -K pid
Chapter 13. z/OS UNIX operations 673

13.33 Changing OMVS parameter values

Figure 13-33 Commands to dynamically change BPXPRMxx values

Commands to change BPXPRMxx values
You can change the setting of some of the BPXPRMxx values dynamically using the
SETOMVS or SET OMVS commands.

The SET OMVS command lets you dynamically reconfigure the z/OS UNIX system services
by specifying one or more BPXPRMxx PARMLIB members to switch to. You can have
multiple PARMLIB members stored and use them to establish a new configuration. You can
only change the values in the list below.

SETOMVS lets you change specific values independently of others stored in the same
PARMLIB member.

Changes to system limits take place immediately (for example, MAXPROCSYS). Changes to
user limits (for example, MAXTHREADS) are set when a new user enters the system and
they last for the length of the user's connection to z/OS UNIX. Values that can be changed
are:

MAXPROCSYS - MAXPROCUSER - MAXFILEPROC - MAXFILESIZE - MAXCPUTIME MAXUIDS -
MAXPTYS - MAXRTYS - MAXTHREADTASKS - MAXTHREADS - MAXMMAPAREA -
MAXSHAREPAGES - MAXCORESIZE - MAXASSIZE - All IPC values FORKCOPY - STEPLIBLIST
- USERIDALIASTABLE - PRIORITYPG - PRIORITYGOAL

SET OMVS=(00,FS)

SETOMVS MAXPROCUSER=8

SETOMVS RESET=(00)

BPXPRMxx

SYS1.PARMLIB
674 ABCs of z/OS System Programming Volume 9

13.34 Manage interprocess communication

Figure 13-34 Command to display interprocess communication information

Display interprocess communication information
Figure 13-34 shows an example of the output from an IPCS command. The -w option adds
information about wait status for message queues and semaphores to the output.

The z/OS UNIX Interprocess Communication (IPC) functions are:

� Shared memory
� Message queues
� Semaphores

Users may invoke applications that create IPC resources and wait for IPC resources. IPC
resources are not released when a process terminates or a user logs off. Therefore, it is
possible that an IPC user may need assistance to:

� Remove an IPC resource using the shell's ipcrm command
� Remove an IPC resource using the shell's ipcrm command to release a user from an IPC

wait state

The ipcs shell command can be used to display the IPC resources in a system, which users
own the resources, and which users are waiting for a resource.

You can remove a message queue by using the ipcrm command. For example, to remove the
message queue with KEY=0x00003ae8, which belongs to user NANCY (see the figure), use the
command:

ipcrm -Q 0x00003ae8

ROGERS @ SC43:/>ipcs -w

IPC status as of Wed Nov 29 15:17:42 EDT 2003
T KEY OWNER GROUP RCVPID RCVTYP SNDPID SNDLEN
q 0x4107001c OMVSKERN PRINTQ 1234567890 0x12345678 1234567890 1000000
 3 0x00000000 4 10000
 5 90000
 4 0xc3c8c1c4
q 0x00003ae8 NANCY TEST
Shared Memory:
T KEY OWNER GROUP
m 0x0d07021e OMVSKERN SYSTEM
m 0x0d08c984 OMVSKERN SYSTEM
Semaphores:
T KEY OWNER GROUP WTRPID WTRNM WTROP AJPID AJNUM AJVAL
s 0x6208c8ef OMVSKERN SYSTEM
s 0x00000000 OMVSKERN SYSTEM 2 2 1
s 0x0108c86e OMVSKERN SYSTEM 1234567890 12345 -12345 1234567890 12345 2
 1 3 -1 1 1 1
 1 4 -1 2 2 1
s 0x00bc614e XLIN VENDOR
s 0x00000058 XLIN VENDOR

ipcrm -Q 0x00003ae8 - remove message
Chapter 13. z/OS UNIX operations 675

13.35 System problems

Figure 13-35 Where to find information to solve problems

Problem solving information
If a problem occurs with z/OS UNIX System Services, the system writes an SVC dump and
may issue messages. The SVC dump can be formatted and analyzed using IPCS. Messages
referring to problems with z/OS UNIX kernel services will have the prefix BPX, shell messages
will have the prefix FSUM, dbx messages will have the prefix FDBX, and messages relating to
the hierarchical file system will have the prefix GFU. Problems with z/OS UNIX can be
analyzed using the IPCS OMVSDATA keyword.

Problems with the z/OS UNIX shell and z/OS UNIX dbx are treated as application problems. If
a SYSMDUMP data set is allocated for the TSO/E session, the system will create a core
dump in an HFS file. The core dump must be copied to an MVS data set, and the dump can
be formatted and analyzed using IPCS.

For debugging reasons, it is important to have a powerful trace facility. The CTRACE function
in z/OS provides support for z/OS UNIX. The resulting trace data can be analyzed using
IPCS.

z/OS

z/OS UNIX dbx

z/OS UNIX Shell

z/OS UNIX

Messages

Abends &
Dumps

Trace
Data

IPCS
676 ABCs of z/OS System Programming Volume 9

13.36 z/OS UNIX abends and messages

Figure 13-36 Understanding z/OS UNIX abends and messages

z/OS UNIX abends and messages
If there is a problem in the z/OS UNIX shell or debugger, the system will treat it as an
application program. If a shell user has allocated a SYSMDUMP data set for the TSO/E
session, the system will write a core dump in the user's working directory called
coredump.pid.

In the example of stopping z/OS UNIX, we saw that abend 422 was issued for the BPXOINIT
process. This is normal. All 422 abends and some EC6 abends may not be accompanied by
an SVC dump because the IBM-supplied IEASLP00 PARMLIB member contains SLIP
commands to suppress the dumps.

The IPCS command OMVSDATA can be used to analyze a dump from z/OS UNIX. The
abend codes are documented in z/OS MVS System Codes, SA22-7626. Reason codes can
be found in an appendix of z/OS UNIX System Services Programming: Assembler Callable
Services Reference, SA22-7803.

The reason codes and their descriptions can be found in z/OS UNIX System Services
Messages and Codes, SA22-7807. Reason codes are listed both alphabetically, by name,
and numerically, by value. The value is the lower half of the reason code. Messages with the
following prefixes are issued from z/OS UNIX:

� FDBX and FSUM - z/OS UNIX dbx and shell messages. For an explanation of the
messages, z/OS UNIX System Services Messages and Codes, SA22-7807.

� IGD - DFSMS messages for the hierarchical file system.

EC6
422

BPX OMVS Component

FDBX dbx Debugger

FOM Application Services

FSUM Shell and Utilities

IGD DFSMS: HFS

IOEZ zFS

z/OS UNIX messages:

z/OS UNIX
abend codes:

IPCSIPCS
OMVSDATAOMVSDATA

SYS1.DUMPxx

.

Chapter 13. z/OS UNIX operations 677

13.37 USS errors and codes

Figure 13-37 Reason codes and HFS reason codes

Reason codes
The reason code is made up of 4 bytes in the following format:

cccc rrrr

cccc cccc is a half word reason code qualifier. Generally this is used to identify the issuing
module and represents a module ID.

rrrr rrrr is the half word reason code described in the appendix cited previously. Only this
part of the reason code is intended as an interface for programmers.

The two high-order bytes of the reason codes returned by z/OS UNIX contain a value that is
used to qualify the contents of the two low-order bytes. If the contents of the two high-order
bytes are within the range of 0000 to X'20FF' or 7100-71FF (but not 7101), the error
represented by the reason code is defined by z/OS UNIX. If the contents of the two high-order
bytes is outside the range, the error represented by the reason code is not a z/OS UNIX
reason code.

HFS reason codes
All HFS reason codes are one word (4 bytes) in length, as follows:

� The first byte is the subcomponent ID. For the HFS, this is X'5B'. For reason codes that do
not contain the HFS Component ID X'5B' in the first byte, but do have one of the following
patterns: 0Exxxxxx, 18xxxxxx, 1Exxxxxx, 22xxxxxx, 25xxxxxx.

� The second byte is the module ID.

Two high-order bytes of the reason codes are
returned by z/OS UNIX - 0000 to X'20FF' or
7100-71FF

Contains a value that is used to qualify the contents of
the two low-order bytes

All HFS reason codes are one word (4 bytes) in
length

The first byte is the subcomponent ID

The second byte is the module ID

The third and fourth bytes are the module-defined
reason code
678 ABCs of z/OS System Programming Volume 9

� The third and fourth bytes are the module-defined reason.

To interpret a reason code that begins with X'5B', look at the reason (third and fourth bytes).
For reason codes in the range of 0100 - 09FF:

1. The second byte of the reason code is the module ID. Use that hex ID to determine the
name of the module in “Module IDs” in the table in the manual cited in the previous topic.
The HFS module IDs are listed in the table in numerical order of module IDs for easy
reference.

2. Next to the module name, you see the topic where the module reason codes are
presented. (Some modules do not issue reason codes.)

3. Go to that topic. Locate the reason (third and fourth bytes) in the list of errors defined for
that module.
Chapter 13. z/OS UNIX operations 679

13.38 CTIBPX00 and CTCBPXxx

Figure 13-38 SYS1.PARMLIB members for tracing z/OS UNIX

z/OS UNIX trace PARMLIB members
Activating a CTIBPXxx PARMLIB member with additional trace options specified should only
be done in situations with problems. Additional trace options will collect more information
about z/OS UNIX and this can slow down the system performance noticeably. When
requesting additional data to be traced, the trace buffer size should be increased. This cannot
be done with TRACE CT commands.

The MVS component trace (CTRACE) provides support for z/OS UNIX. By default, z/OS
UNIX performs a minimal amount of tracing at all times. The default tracing records only
unusual events in z/OS UNIX to provide trace data when a problem occurs without slowing
system performance. An installation can trace additional events by specifying tracing options
in a CTIBPXxx PARMLIB member.

The system collects trace entries in a buffer. To analyze these entries, the buffer must be
dumped to a data set. The installation can also decide to write the trace entries to a data set
by using the component trace external writer.

The trace options are activated when z/OS UNIX is started. Trace options can be changed
while the system is running by using the TRACE CT command. The trace options are
activated by using IPCS to format the data. Trace data can be located in either:

� A buffer in an SVC or standalone dump
� A trace data set

TRACEOPTS
 ON
 BUFSIZE(128K)
/* OPTIONS ('ALL ') */

CTIBPX00

CTIBPXxx

CTIBPX01
 TRACEOPTS
 WTR(CWTR)
 WTRSTART(CTWTR)
 ON
 BUFSIZE(128K)
 OPTIONS('FILE', 'PIPE')
680 ABCs of z/OS System Programming Volume 9

13.39 Tracing z/OS UNIX events

Figure 13-39 Commands to trace z/OS UNIX

Tracing z/OS UNIX events
To provide problem data, events are traced by the z/OS UNIX MVS component trace. When
z/OS UNIX MVS starts, the trace automatically starts. The trace cannot be completely turned
off while z/OS UNIX is running. The sizes of the trace buffers are specified in the PARMLIB
member CTnBPXxx, which is used by z/OS UNIX. The trace buffers require an IPL to be
changed. They can be from 16 KB to 4 MB. The following commands control tracing:

� Operator can stop most tracing with the command:

TRACE CT,OFF,COMP=SYSOMVS

� To change the CTnBPXxx PARMLIB member:

TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx

� To display information about a trace:

DISPLAY TRACE,COMP=SYSOMVS

Use a user ID or address space ID to filter the trace. The IPCS CTRACE subcommand can
be used to analyze trace records in a dump.

The previous figure showed the default CTIBPX00 PARMLIB member that starts minimal
tracing. An installation can define other members with trace options that can be started if a
problem occurs with z/OS UNIX. The trace buffer size cannot be changed while z/OS UNIX is
active. To change buffer size, update a CTnBPXxx member with the new BUFSIZE value,
stop z/OS UNIX, and restart z/OS UNIX using the new CTnBPXxx PARMLIB member.

COMPONENT TRACE FULL FORMAT
COMP(SYSOMVS)
**** 11/13/99
 MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
 -------- -------- --------------- -----------

SIGNAL 0D2300A7 16:21:39.327881 SIGNAL CHECK
 ASID..001E USERID....WELLIE0
 TCB...008F02B0 SYSCALL...0000007B
 +0000 E2C3E4A7 00000000 72400040 000B0005 | SCUX..... |
 +0010 00000004 0309DBB8 00000000 00000000 | |
 +0020 00000000 00000001 | |
SIGNAL 0D2500A6 16:21:39.328296 SIGNAL DELIVERY
 ASID..001E USERID....WELLIE0
 TCB...008F02B0 SYSCALL...00000000
 +0000 C4D3E5A7 88411000 000B0005 C0000040 | DLVXH.......{.. |
 +0010 00000006 7F517F38 0309DBB8 00000000 |"."......... |
 +0020 00000000 00000000 00000000 | |
SIGNAL 0D2500A6 16:21:39.328419 SIGNAL DELIVERY

TRACE CT,ON,COMP=SYSOMVS,PARM=CTCBPX01
TRACE CT,OFF,COMP=SYSOMVS
 R xx,JOBNAME=userid
 or
 R xx,ASID=xx

IPCSIPCS
CTRACECTRACE

CTRACE COMP(SYSOMVS) FULL ASID(X'xx')
 OPTIONS((SYSCALL))
Chapter 13. z/OS UNIX operations 681

13.40 Debugging a z/OS UNIX problem

Figure 13-40 Commands to debug z/OS UNIX and take an abend

Commands to debug a z/OS UNIX problem
Information about the kernel address space and its associated data spaces can be obtained
from the MVS displays, as we have already seen.

When you need a dump to debug a problem, use the DUMP command to tell MVS what to
dump. The dump will go to the SYS1.DUMPnn data set. You need to dump several types of
data in order to diagnose a problem, as follows:

� The OMVS kernel address space
� Any OMVS data spaces that may be associated with the problem
� Any OMVS process address spaces that may be associated with the problem
� Appropriate storage areas containing system control blocks

The sample dump command shows dumping the kernel address space, the appropriate user
address spaces, and the two major kernel data spaces. You will need to allocate a very large
dump data set since you are dumping multiple address spaces and data spaces. The dump
title can be up to 100 characters. If you end each line with CONT, then the program will prompt
you for more input data. When you are finished, code END. You will need to use the OMVS
displays to determine the appropriate data to dump. After the dump completes, you receive
an IEA911E message indicating whether the dump was complete.

In Figure 13-40, ASID=36 is the OMVS kernel. Address spaces 3A and 32 are other address
spaces believed to be part of the problem. Refer to the data spaces by their names with the
kernel address space ID as a preface.

DUMP COMM=dname
R rn,SDATA=(CSA,SQA,RGN,TRT,GRSQ),CONT
R rn,ASID=(36,3A,32),CONT
R rn,DSPNAME=(36.SYSZBPX1,36.SYSZBPX2),END

D A,OMVS
D OMVS,A=ALL
D GRS,C

SYS1.DUMPnn
682 ABCs of z/OS System Programming Volume 9

13.41 IPCS OMVSDATA reports

Figure 13-41 The OMVSDATA keyword in IPCS for analyzing problems

IPCS OMVSDATA reports
The IPCS OMVSDATA keyword provides support for analyzing problems with the z/OS UNIX
component. SVC dumps or standalone dumps can be formatted using OMVSDATA. The
following report types can be created:

� Communications: Provides information about z/OS UNIX pseudoterminal user
connections.

� File: Provides information about each z/OS UNIX file system type and its mounted file
systems.

� Process: Provides information about z/OS UNIX processes.
� Storage: Provides information about z/OS UNIX storage manager cell pools.

The default report type is PROCESS. For each report type, the level of detail can be
determined by specifying: summary, exception, and detail. For each report, one or more of
the filtering keywords can be used to limit the amount of data in the report, as follows:

� ASIDLIST(asidlist): requests that information be included for the ASIDs listed

� USERLIST(userlist): requests that information be included for the user IDs listed.

For an application dump (coredump.pid in the HFS), you will have to copy it out to a
sequential data set. Then use IPCS to analyze it using the STATUS and SUMMARY
FORMAT CURRENT subcommands. The OMVSDATA reports will not work on the
application dump as they format system areas in the kernel.

Asidlist(...)
Userlist(...)

Process

 Summary
Exception
 Detail

 Summary
Exception
 Detail

 Summary
Exception
 Detail

 Summary
Exception
 Detail

Communications File

Storage
Chapter 13. z/OS UNIX operations 683

684 ABCs of z/OS System Programming Volume 9

Chapter 14. z/OS UNIX shell and
programming tools

This chapter introduces you to various programming environments, and highlights some of
the possibilities for programming under z/OS UNIX.

It describes how to:

� Understand the environment needed

� Choose the most appropriate programming language

� Install the environment needed for programming

� Write short programs in different programming languages

14
© Copyright IBM Corp. 2006, 2008. All rights reserved. 685

14.1 Language Environment run-time library

Figure 14-1 The LE run-time library specifications

SCEERUN support
For most z/OS UNIX applications, the Language Environment (LE) run-time library is needed
for execution; it comes from the SCEERUN data set. On average, about 4 MB of the run-time
library are loaded into memory for every address space running Language
Environment-enabled programs, and copied on every fork.

When SCEERUN2 is added, it contains LE load modules that are required to reside in a
PDSE. Add this data set to the linklist. The SCEERUN and SCEERUN2 data sets can be:

� Placed in LPA/LNKLST

If you are using the same compiler for the entire system, then put the compiler data set
name in the linklist. By default, the linklist contains the name of the default compiler.

� Accessed via STEPLIB

If you are using a compiler that is not the system-wide default, then you must specify the
compiler data set name in the STEPLIB environment variable and export it.

Note: If the SCEERUN and SCEERUN2 data sets cannot be placed in LNKLST, you
can STEPLIB the data sets for each application that requires them. One reason why the
Language Environment run-time libraries are not to be placed in LNKLST might be that
the pre-Language Environment run-time libraries (VS COBOL II, OS PL/I) are placed in
LNKLST and your site has not completed the migration to Language Environment.

LPALSTxx

STEPLIB=hlq.SCEERUN
STEPLIB=hlq.SCEERUN2

hlq.SCEERUN

hlq.SCEELPA

1
12

2

3

4
5

67
8

9

10

11

LNKLSTxx
hlq.SCEERUN
hlq.SCEERUN2
686 ABCs of z/OS System Programming Volume 9

Run-time library access
When choosing a method for run-time library access, you should consider the following:

� Can the Language Environment run-time library be placed in LNKLST without adversely
affecting other applications?

� Is the Language Environment run-time library heavily used at your installation?

� Does the RTL require frequent testing or replacement with new versions?

Some installations cannot put the current level of the LE run-time library into the LINKLIST
because older Language Environment levels are needed to run key production applications.
This means that key run-time library routines cannot be put in the LPA for better performance.
In addition, you cannot put the SCEELPA data set as part of the LPALSTxx.

In z/OS V1R6, Language Environment no longer uses the RTLS services provided by the
operating system, which was previously used to assist with run-time migration. This includes
removal of the RTLS initialization paths and all descriptions of RTLS in the Language
Environment publications. The SCEERTLS library will no longer be shipped. The following
run-time options are no longer supported:

� LIBRARY
� RTLS
� VERSION

These run-time options are removed from the options reports generated by RPTOPTS(ON),
CEEDUMP, and the IPCS verb exit. The CEEXOPT macro has been updated to prevent the
use of these run-time options when building new CEEDOPT, CEECOPT, CEEROPT or
CEEUOPT CSECTs. Existing CEECOPT and CEEDOPT members that contain these
run-time options must be modified to remove them. If these run-time options are encountered
in existing CEEROPT or CEEUOPT CSECTs, Language Environment issues CEE3611I
informational messages.

Performance considerations
Because the SCEERUN data set has many modules that are not reentrant, you cannot place
the entire data set in the link pack area using the LPALSTxx member of SYS1.PARMLIB.
However, you can take advantage of a SCEELPA data set that contains a subset of the
SCEERUN modules—those that are reentrant, reside above the line, and are heavily used by
z/OS UNIX.

To improve performance, put the SCEERUN data set in the link list, using the LNKLSTxx
member of SYS1.PARMLIB. Then place the new SCEELPA data set in the LPA list, using the
LNKLSTxx member.

Note: Applications that currently STEPLIB to the SCEERUN data set to gain access to the
run-time library provided by Language Environment, do not need to add the SCEERUN2
data set as part of their STEPLIB concatenation. In fact, since SCEERUN2 contains
module names that do not intersect with any pre-Language Environment run-time library or
any existing library, IBM recommends that SCEERUN2 be added to the LNKLST. This will
not result in any adverse effects.

Tip: You can also add additional modules to the LPA, using the dynamic LPA capability
(SET PROG=). This method is preferable to adding modules to the LPA by using the
Modify Link Pack Area (MLPA=) option at IPL, because it avoids the performance
degradation that occurs with the use of MLPA.
Chapter 14. z/OS UNIX shell and programming tools 687

14.2 Using pre-LE run-time libraries

Figure 14-2 Using STEPLIBs with SCEERUN for pre-LE run-time libraries

STEPLIB and SCEERUN
Be aware that putting the Language Environment run-time library in LNKLIST requires the
least amount of setup. However, if your applications require the pre-Language Environment
run-time library, then make the Language Environment run-time library available through
STEPLIB.

Perform the following steps to make the run-time library available through STEPLIB:

� Add the SCEERUN data set on a STEPLIB DD statement to the OMVS startup procedure
found in PROCLIB. The STEPLIB data set is then propagated to BPXOINIT and the
/usr/sbin/init program, including all programs it invokes using fork or exec.

� Add the SCEERUN data set to the TSO/E logon procedure by concatenating it to the
ISPLLIB DD statement (if it exists) and then concatenating it to the STEPLIB DD
statement (if it exists). Also, the TSOLIB function can be used to add the SCEERUN data
set. After adding the SCEERUN data set, the TSO/E OMVS command can begin to use it.

� Add the following statement to the /etc/rc file:

export STEPLIB=hlq.SCEERUN

Daemons started in /etc/rc will use the SCEERUN data set.

� In /etc/profile, remove:

if [-z "$STEPLIB"] && tty -s;
 then

Add the SCEERUN data set on a STEPLIB DD
statement to OMVS startup procedure found in
PROCLIB

Add the SCEERUN data set to your TSO/E logon
procedure

Add the following statement to the /etc/rc file:

export STEPLIB=hlq.SCEERUN

In /etc/profile, use:

export STEPLIB=hlq.SCEERUN

Add the SCEERUN data set on a STEPLIB DD
statement to any job invoking BPXBATCH

Add the SCEERUN data set to the STEPLIBLIST
statement of the BPXPRMxx PARMLIB member
688 ABCs of z/OS System Programming Volume 9

 export STEPLIB=none
 exec sh -L
 fi

and replace with:

export STEPLIB=hlq.SCEERUN

This is used when issuing commands and utilities in the shell environment. If a small
number of interactive users need a special version of the run-time library, the STEPLIB
environment variable can be set in the $HOME/.profile for each of these users.

� Add the SCEERUN data set on a STEPLIB DD statement to any job invoking BPXBATCH.

� Add the SCEERUN data set to the STEPLIBLIST statement of the BPXPRMxx PARMLIB
member. The SCEERUN data set must be APF-authorized.

When this is done, the Language Environment run-time library is made available through
STEPLIB. For BPXBATCH processing, you still have to specify the SCEERUN data set on a
STEPLIB DD statement even though the RUNOPTS parameter has been set in the
BPXPRMxx member.

Note: Place the SCEERUN2 data set in LNKLST, even though the SCEERUN data set is
accessed through STEPLIB. Because the SCEERUN data set does not contain module
names that conflict with pre-Language Environment run-time libraries, adding it to LNKLST
will not have any adverse effects.
Chapter 14. z/OS UNIX shell and programming tools 689

14.3 Overview of c89/cc/c++

Figure 14-3 Overview of the C/C++ functions with z/OS UNIX

C/C++ functions and assembler calls
z/OS UNIX can be used from C/C++ functions and assembler calls. Applications written in
COBOL or PL/I can use z/OS UNIX indirectly through C/C++ functions or assembler calls. If
you must use a previous level of the compiler, or target the executables produced by c89 to
run on a previous level of the run-time library, then you must customize other environment
variables.

c89, cc, and c++ compile, assemble, and link-edit z/OS C and z/OS C++ programs, as
follows:

� c89 should be used when compiling C programs that are written according to Standard C.

� cc should be used when compiling C programs that are written according to Common
Usage C.

� c++ must be used when compiling C++ programs, which are written according to Draft
Proposal International Standard for Information Systems—Programming Language C++
(X3J16). c++ can compile both C++ and C programs, and can also be invoked by the
name cxx.

The c89 utility is customized by setting environment variables. The ones that most commonly
require setting are specified in the c89 customization section in /etc/profile.

The customization section in /etc/profile assumes that you are using the current level of z/OS
C/C++ compiler and Language Environment run-time library.

c89

c++ cc

Standard C

Common CC++ (X3J16)

/etc/profile
LE Run-Time
Libraries

TSO BPXBATCH

z/OS UNIX Shell
690 ABCs of z/OS System Programming Volume 9

14.4 Customization of /etc/profile for c89/cc/c++

Figure 14-4 Customization of /etc/profile for cc/c++

/etc/profile customization for compilers
If c/c++, LE, or z/OS do not use the installation default for the high-level qualifier, then the
appropriate environment variable must be exported to make c89 aware of this. The
environment variables in Figure 14-4 are set to the default values for the current level of z/OS,
but you will need to set them to your high-level qualifiers.

In order to get the cxx environment up and running, you have to customize the /etc/profile.

The environment variables used by the cc utility have the same names as the ones used by
c89, except that the prefix is _CC instead of _C89. Likewise, for the c++ (cxx) utility, the prefix
is _CXX instead of _C89. Normally, you do not need to explicitly export the environment
variables for all three utilities; the eval commands at the bottom of the c89 customization
section of the sample /etc/profile can be used. These commands set the variables for the
other utilities, based on those set for c89.

Export statements for compiler versions
These are the export statements for each compiler version, assuming that the default
high-level qualifiers are being used. Where the c89 environment variables are shown, the
environment variables for c++ and cc must also be set, as follows:

Customization for /etc/profile: By placing any customization statements for c89 into
/etc/profile and uncommenting those lines, the environment variables will automatically be
exported through the eval command for cc and c++ as well.

Start of c89/cc/c++ customization section
==
High-Level Qualifier "prefixes" for data sets used by c89/cc/c++:
Compiler:
 export _C89_CLIB_PREFIX="CBC"
Prelinker and runtime library:
 export _C89_PLIB_PREFIX="CEE"

z/OS system data sets:
 export _C89_SLIB_PREFIX="SYS1"

Compile and link-edit search paths:
Compiler include file directories:
 export ${_CMP}_INCDIRS="/usr/include /usr/lpp/ioclib/include"
Link-edit archive library directories:
 export ${_CMP}_LIBDIRS="/lib /usr/lib"
Esoteric unit for data sets:
#==
Unit for (unnamed) work data sets:
 export ${_CMP}_WORK_UNIT="SYSALLDA"
Chapter 14. z/OS UNIX shell and programming tools 691

For the current z/OS C/C++ compiler:

� If you are using the z/OS shell, issue the following command:

export STEPLIB="CBC.SCBCCMP"

� If you are using the tcsh shell, issue the following command:

setenv STEPLIB "CBC.SCBCCMP"

Because this compiler only supports the C language, it cannot be used with the c++ utility.

The primary Language Environment level must be the default level for the release, and you
must be using the default compiler. To verify your Language Environment primary level,
check that the library name (for example, CEE.SCEERUN) appears first in the linklist
concatenation in the LNKLSTxx member of SYS1.PARMLIB.

On systems where application development is the primary activity, performance may benefit if
you put CBC.SCBCCMP in the LPALSTxx concatenation. All compiler modules run above the
line, and they consume just over 42 MB in total.
692 ABCs of z/OS System Programming Volume 9

14.5 Compile, link-edit, and run

Figure 14-5 Ways to compile, link-edit, and execute C/C++ programs

Creating and executing programs with z/OS UNIX
The interface to the linkage editor for z/OS UNIX System Services (z/OS UNIX) C
applications is the z/OS UNIX c89 utility or the cc utility, and for C++ applications it is the c++
utility. You can use them to compile and link-edit a z/OS UNIX C/C++ program in one step, or
link-edit application object modules after the compilation. You must, however, invoke one of
the z/OS UNIX shells before you can run the c89 utility.

Program execution
Following are some examples of using the three different methods of compiling, doing a
link-edit, and running the program.

To compile, link-edit, and run under TSO:

� Compile:

CXX 'PETE.TEST.C(CBC3UBRC)' (LSEARCH('PETE.TESTHDR.H') OBJECT(BIO.TEXT)

� Prelink and link:

CXXMOD OBJ(BIO.TEXT(CBC3UBRC)) LOAD(BIO.LOAD(BIORUN))

� Run the program:

CALL BIO.LOAD(BIORUN)

TSO

MVS JCL Job

z/OS UNIX

CXX 'C_library(CBC3UBRC)' (LSEARCH('H_library') OBJECT(BIO.TEXT)

CXXMOD OBJ(BIO.TEXT(CBC3UBRC)) LOAD(BIO.LOAD(BIORUN))

CALL BIO.LOAD(BIORUN)

c++ -o bio cbc3ubrc.C
./bio

tso oput "'cbc.scbcsam(cbc3ubrc)' '$PWD/cbc3ubrc.C'"
tso oput "'cbc.scbcsam(cbc3ubrh)' '$PWD/cbc3ubrh.h'"

//DOCLG EXEC CBCCLG,
// INFILE='PETE.TEST(CBC3UBRC)',
// CPARM='LSEARCH(''''PETE.TESTHDR.H'''')'
/*
Chapter 14. z/OS UNIX shell and programming tools 693

Under z/OS UNIX, put the source into files in the HFS:

� Compile, prelink, and link:

c++ -o bio cbc3ubrc.C

� Run the program:

GGI:/u/ggi:==> ./bio

Under batch, use the cataloged procedure CBCCLG to compile, link, and run:

//DOCLG EXEC CBCCLG,
// INFILE='PETE.TEST(CBC3UBRC)',
// CPARM='LSEARCH(''''PETE.TESTHDR.H'''')'
/*

Including the CXX parameter with user-defined JCL
The CBCC, CBCCL, and CBCCLG procedures, which compile C++ code, include parameter
CXX when the following compilers are used:

� C++ for MVS/ESA V3R2

� OS/390 C/C++

� z/OS C/C++

If you have written your own JCL to compile a C++ program, you must include this parameter;
otherwise, the C compiler is invoked. When you pass options to the compiler, you must
specify parameter CXX. You must use the following format to specify options:

run-time options/CXX compiler options

Note: As of z/OS V1R8 with XL C/C++, when using the IPA compiler option to compile
very large applications, you might need to increase the size of the work file associated with
SYSUT5 DD in the IPA Link step. If you are using JCL procedures to compile the
application, you can save the file space associated with the work files in the IPA Link step
by defining DUMMY files as the work files associated with SYSUT6, SYSUT7, SYSUT8,
and SYSUT14.
694 ABCs of z/OS System Programming Volume 9

14.6 Customization of Java for z/OS

Figure 14-6 Customization of Java for z/OS

Java customization
The Java for z/OS product is IBM's port of Sun™ Microsystems' Java Development Kit
(JDK™) to the S/390 platform. The Java for z/OS product at the JDK 1.4.2 level is certified as
a fully compliant Java product.

Java for z/OS is a full object-oriented language in 64-bit mode. In contrast to C++, you have
to write your programs with object-oriented code. (In C++, you do not have to use
object-oriented code.) The big difference between the C++ code and Java code is that Java
does not use pointer and pointer arithmetic.

Java for z/OS is operational within any version and release of the z/OS operating system. It
provides a Java execution environment equivalent to that available on any other server
platform.

If ordered with ServerPac, the Java code has already been put in the root HFS under the path
of /usr/lpp/java. The FMID for Java is HJVA140.

To find the requested files for Java, you have to add the path /usr/lpp/java/IBM/J1.4/bin to the
/etc/profile or $HOME/.profile.

Java Programming Language: Java Programs: Write once, run everywhere.

J1.4

demo

lib

/usr/lpp/java/IBM/AJVTAR14

JDK 1.4.2
FMID HJVA140

export PATH=/bin:/usr/lpp/java/IBM/J1.4/bin:.
/etc/profile

pax -ppx -rzvfpax -ppx -rzvf

SMP/E
Chapter 14. z/OS UNIX shell and programming tools 695

14.7 Java virtual machine

Figure 14-7 Java virtual machine

Java virtual machine (JVM)
A virtual machine is the processor on which Java's byte-codes run. It is the instruction set
that the interpreter understands.

The compiler, javac, takes the Java source code and produces Java byte-codes. These
byte-codes correspond to the language of the virtual machine. The file organization is such
that byte-codes are per class, that is, one .class file per Java class definition.

These class files may be loaded across the network.

Because of the need for architecture independence, performance tuning must be performed
on the client side. This client-side compilation is known as just-in-time (JIT) compilation.

Since the Java virtual machine (JVM) does not necessarily correspond to any particular
hardware/operating system, the .class files are portable to any implementation of the virtual
machine. This is the essence of Java's portability.

JIT will take Java byte-code and generate native code for the client processor. Many
optimizations are possible that can lead to execution speeds which are competitive with
C/C++ (within a factor of 2 to 5).

The JIT compiler is built specifically for z/OS. It provides execution time improvements over
the interpreter. By default, the JIT compiler is activated but can be deactivated by setting an
environment variable.

Java
Source

Java
byte-code

.java

.class

javac

java

Platform-independent
code

1.

2.

3.

JIT
compiler.class

Machine code

Package
JVM
696 ABCs of z/OS System Programming Volume 9

14.8 Management of software and the make utility

Figure 14-8 Using the make utility to manage software

Make utility
Using the make utility can be a key factor in the successful management of software
development projects, as well as any other type of project where you must keep a collection
of files in synchronization with one another.

For example, suppose a program is built from several separate object files, each of which
depends on its own source file. If you change a source file and then run make, make can
automatically determine which object files are out of date (older than their corresponding
source files).

The information that the make utility uses is in a file called the makefile. To invoke the utility,
simply use make -f makefile, or, if you are in the same directory as the makefile, use only
make.

This section introduces the syntax used in the makefile:

� Program: test1.o test2.o test3.o

This tells the program that progA depends upon the three files with the names test1.o,
test2.o and test3.o. If any or all of the .o files have changed since the last time the
program was made, make attempts to remake the program. It does this using the recipe
on the next line. This recipe consists of a C++ command that links programs from the
three objects.

make [-f makefile]

"Make" determines which object files are out of date

progA: test1.o test2.o test3.o
 c++ -o progA test1.o test2.o test3.o
test1.o: test1.C
 c++ -c test1.C
test2.o: test2.C
 c++ -c test2.C
test3.o: test3.C
 c++ -c test3.C

test1.C

test2.C

test3.C

progA

changedchanged

1.1.99

1.2.99

1.1.99

makefile
Chapter 14. z/OS UNIX shell and programming tools 697

� c++ -o progA test1.o test2.o test3.o

If the make utility determines the changes, it will execute this line and try to link the program
from the three objects.

� test1.o: test1.C

This statement tells the make utility that if the test1.C code has changed, it must recompile
the code to the object test1.o with the following commands.

� c++ -c test1.C

As mentioned previously, the make utility recompiles the test1.C code and creates the
object test1.o.

The next statements are the same as for the test1.C file.

The syntax of the make utility is:

target target ... : prerequisite
 prerequisite ... <tab> recipe

The <tab> syntax is a character with X'05'. This is not displayable from the ISPF Editor.
698 ABCs of z/OS System Programming Volume 9

14.9 The dbx debugger

Figure 14-9 z/OS UNIX dbx debugger

z/OS UNIX dbx debugger
The z/OS UNIX dbx debugger is an interactive tool for debugging C language programs that
use z/OS UNIX. It is based upon the dbx debugger, which is regarded as an industry
standard on UNIX systems.

The dbx debugger provides the options to debug at source level or assembler level.
Source-level debugging allows you to debug C language programs. Assembler-level
debugging allows you to debug executable programs at machine code level.

The dbx debugger is a utility that is invoked from the z/OS UNIX shell. It cannot be invoked
directly from TSO/E. In the shell, dbx is the debugging facility for z/OS C/C++ programs. With
dbx, you can debug multi-threaded applications at the C-source level or at the machine level.
Support for multi-threaded applications gives you the ability to:

� Debug or display information about the following objects related to multithreaded
applications: threads, mutexes, and condition variables.

� Control program execution by holding and releasing individual threads.

When using the interactive dbx debugger you can:

� Run a program one line or one instruction at a time.

� Set breakpoints at selected statements and machine instructions with conditions for
activation.

� Access variables symbolically and display them in the correct format.

z/OS UNIX Shell

$
dbx progabc

dbx
process

 dbx
 Commands
 and
Subcommands

progabc

Data Data

Data

shell
Chapter 14. z/OS UNIX shell and programming tools 699

� Display or modify the contents of registers, variables, and storage.

� Examine the source text using simple search functions.

� Debug processes that contain fork() and exec() functions.

� Interrupt and examine a program that is already in progress.

� Trace processing of a one-task program by line, instruction, routine, or variable.

� Call programs or diagnostic routines directly from the debug program.

� Invoke shell commands from debug session.

� Examine loaded address maps for a process.
700 ABCs of z/OS System Programming Volume 9

14.10 The dbx debugger

Figure 14-10 The dbx debugger

Using the dbx debugger
You need to create a z/OS UNIX C/MVS™ application program that will compile, link-edit,
and run successfully. After your program has been developed, you can take advantage of the
z/OS UNIX debugger (with its dbx utility) to debug the program from within the shell
environment on an MVS system.

Using dbx, you can debug your program at the source level and at the machine level.

To trace the source level, the programs must be compiled with the -g option:

c89 -g -o looper looper.c

The dbx debugger also has some restrictions that must be considered before debugging
programs. Some of them are:

� It can only debug key(8) programs

� It cannot debug programs in supervisor state

� It cannot source-level debug DLLs below OS390 V2R2.

C/C++ source
code

dbx debugger
machine level
source level

z/OS UNIX
Machine level

Set breakpoint
Hold release thread execution
Run a program instruction
Display or modify register
Display or modify memory
Debug processes fork()
Display info about thread

Source level
Access variables symbolically
Interrupt and examine program
Print list of active routines
Modify directory list for search

Examine the source text
Display expressions
Print declaration of variables
Debug applications involving threads

cxx -g -o ...

Enables
source level
debugging
Chapter 14. z/OS UNIX shell and programming tools 701

14.11 Introduction to shells

Figure 14-11 An introduction to the many shells available with z/OS UNIX

Introduction to UNIX shells
What is a shell? A shell's job is to translate the user's command lines into operating system
instructions.

There are many different shells available for UNIX systems, as you can see. This led to the
current situation, where multiplicity of similar software has led to confusion, lack of
compatibility, and—most unfortunate of all—the inability of UNIX to capture as big a share of
the market as other operating platforms.

The differences between the shells are minimal but have a big impact. Under z/OS UNIX, you
can supply an alternate shell. The shells shown in Figure 14-11 are:

IEEE POSIX 1003.2 The standard used by z/OS UNIX

Bourne Shell The first major shell; named after Steven Bourne (sh)

C shell An alternative to the Bourne Shell, which was written at Berkley

Korn Shell Compatible with the Bourne Shell; written by David Korn (ksh)

wksh Windowing Korn Shell, which is the ksh shell with the extension for
GUI

pdksh Public Domain V7-based; written by Eric Gisin

bash The Bourne-Again Shell; written by Brian Fox and Chet Ramey

OS/390
UNIX
Kernel

Korn Shell

Input

Output

Bourne Shell IEEE 1003.2
Shell

wksh

pdksh

bash

SHELL

csh

z/OSz/OS
UNIXUNIX

KernelKernel

User
702 ABCs of z/OS System Programming Volume 9

You can find a short description of how to set up the Korn Shell in z/OS UNIX System
Services Planning, GA22-7800.

The steps are as follows:

1. Download the shell program, for example, Korn Shell from the z/OS UNIX home page.

2. Install to a directory like /ksh.

3. Consider turning on the sticky bit and putting the program in the Link Pack Area.

4. For users that want this shell as the default shell, change the PROGRAM in the OMVS
RACF user profile as follows: /ksh/bin/ksh.

5. Customize /etc/init.options with the following statements:

-sh /ksh/bin/ksh
-e SHELL=/ksh/bin/ksh

6. You can test the environment variables after changing the alternate shell with the
command env:

SHELL=/ksh/bin/ksh
PATH=/ksh/bin:.
Chapter 14. z/OS UNIX shell and programming tools 703

14.12 REXX, CLISTs, and shell scripts

Figure 14-12 Different languages that can be used to create shell scripts

Writing scripts
The shell programming environment with its shell scripts provides function similar to the
TSO/E environment with its command lists (CLISTs) and the REstructured eXtended
eXecutor (REXX) execs. The CLIST language is a high-level interpreter language that lets
you work efficiently with TSO/E. A CLIST is a program, or command procedure, that performs
a given task or group of tasks.

The REXX language is a high-level interpreter language that enables you to write programs in
a clear and structured way. You can use the REXX language to write programs called REXX
programs, or REXX execs, that perform given tasks or groups of tasks. REXX programs can
run in any z/OS address space. You can run REXX programs that call z/OS UNIX services in
TSO/E, in batch, in the shell environment, or from a C program.

In the z/OS shell, command processing is similar to command processing for CLISTs. You
can write executable shell scripts (a sequence of shell commands stored in a text file) to
perform many programming tasks. They can run in any dubbed z/OS address space. They
can be run interactively, using cron, or using BPXBATCH. With its commands and utilities,
the shell provides a rich programming environment.

z/OSz/OS
UNIXUNIX
KernelKernel

SHELL

REXX
Shell scripts

TSO/E

z/OS
TSO/E
batch
C programs
shell

cron
bpxbatch

CLIST

Programming
704 ABCs of z/OS System Programming Volume 9

Performance improvement: To improve performance when running shell scripts, add to
the export statement in /etc/profile or $HOME/.profile:

_BPX_SPAWN_SCRIPT=YES.
_BPX_SHAREAS=YES
Chapter 14. z/OS UNIX shell and programming tools 705

14.13 Shell script syntax

Figure 14-13 Typical shell script code

Shell script example code
The shell script is composed of different types of code. In a script file, you can use z/OS UNIX
shell commands, flow control constructions like if-then-else, variables, environment settings
and so on.

If you are familiar with programming languages, you will not have problems writing your first
shell script.

If you are setting environment variables through a shell script, consider the following
environment settings:

Any variables set in a shell script are set only while the script is running and do not affect
the shell that invoked the shell script (unless the script is sourced by running it with the
.dot command).

To run a shell script in your current environment without creating a new process, use the .dot
command. You could run the compile shell script this way:

. script-file-name

You can improve shell script performance by setting the _BPX_SPAWN_SCRIPT
environment variable to a value of YES.

Composed of shell commands

'while' loops

'for' loops

'do' ... 'done'

'if' ... 'elif' ... 'else' ... 'fi'

'test' for conditions, e.g.:
if
 test -d $1
then
 echo "$1 is a directory"
fi
706 ABCs of z/OS System Programming Volume 9

14.14 BPXBATCH enhancements

Figure 14-14 BPXBATCH enhancements with z/OS V1R8

BPXBATCH limitations
Currently, limitations on the input and output capabilities of BPXBATCH jobs make it difficult
to use and maintain. For example, allowing only 100 characters of input parameter data to be
specified makes it difficult to invoke some z/OS UNIX applications that require long path
names or input data. Dealing with output from the jobs in z/OS UNIX files requires special
processing that is not required for normal batch jobs.

BPXBATCH enhancements in z/OS V1R8
These problems are solved by enhancing BPXBATCH to support greater parameter input
data and to allow output to be directed to traditional MVS data sets.

In z/OS V1R8 you are now able to:

� Pass up to 65,536 characters of parameter data supplied as input to BPXBATCH.

� Allow both STDOUT and STDERR to specify traditional MVS data sets to be the target of
the output of the BPXBATCH jobs.

Note: The enhancements are available for z/OS V1R5, V1R6 and V1R7 with a PTF for
APAR OA11699.

Limitations in BPXBATCH input and output make it
more difficult to create and maintain BPXBATCH
jobs compared to other batch utilities
Enhance BPXBATCH to allow far greater parameter
input and to allow output to be directed to traditional
MVS data sets
In z/OS V1R8 you are now able to:

Pass up to 65,635 characters of parameter data
supplied as input to BPXBATCH - (100 previously)
Allow both STDOUT and STDERR to specify
traditional MVS data sets to be the target of the
output of the BPXBATCH jobs

Available for z/OS V1R5, V1R6 and V1R7 with a
PTF for APAR OA11699
Chapter 14. z/OS UNIX shell and programming tools 707

14.15 BPXBATCH implementation

Figure 14-15 z/OS V1R8 BPXBATCH implementation changes

STDPARM parameter
Parameters to BPXBATCH can also be supplied via the STDPARM DD up to a limit of 65,536
characters. When the STDPARM DD is allocated BPXBATCH will use the data found in the
z/OS UNIX file or MVS data set associated with this DD rather than what is found on the
parameter string or in the STDIN DD. The informational message BPXM079I will be displayed
indicating that this is occurring, as a warning to the user.

The STDPARM DD will allow either a z/OS UNIX file, or an MVS SYSIN, PDS or PDSE
member, or a sequential data set.

The default is to use the parameter string specified on the TSO command line or in the
PARM= parameter of the JCL EXEC statement. If the STDPARM ddname is defined,
BPXBATCH uses the data found in the specified file rather than what is found in the
parameter string or in the STDIN ddname.

Currently, BPXBATCH supports only up to 100 characters of parameter data when invoked
from JCL and 500 characters when invoked from TSO. With z/OS V1R8, BPXBATCH now
supports up to 65,536 characters of parameter data.

This is supported via a new STDPARM DD that points to an MVS data set or UNIX file that
contains the parameter data. The MVS data sets that can be used include SYSIN, sequential,
or PDS/PDSE members. Specification of the STDPARM DD overrides the usage of PARM=
on the EXEC PGM= JCL statement.

A new STDPARM DD

Points to a MVS data set or UNIX file that contains
the parameter data

The MVS data sets that can be used include:

SYSIN

Sequential

PDS/PDSE members

Specification of the STDPARM DD overrides:

Usage of PARM= on the EXEC PGM= JCL
statement

BPXBATCH TSO command enhanced to allow up
to 32,754 length input string
708 ABCs of z/OS System Programming Volume 9

BPXBATCH TSO command
For the BPXBATCH TSO command, up to 32,754 characters are supported in the parameter
string specified on the command invocation.
Chapter 14. z/OS UNIX shell and programming tools 709

14.16 BPXBATCH summary

Figure 14-16 Using TSO and JCL with STDPARM, STDOUT, and STDERR

Ways to use BPXBATCH with STDPARM
You can define the STDPARM parameter file by using one of the following:

� The TSO/E ALLOCATE command

For example: The parameter data to be passed to BPXBATCH resides in the MVS
sequential data set TURBO.ABC.PARMS, as follows:

ALLOCATE DDNAME(STDPARM) DSN('TURBO.ABC.PARMS') SHR

� A JCL DD statement

To identify a z/OS UNIX file, use the PATH operand and specify PATHOPTS=ORDONLY.
For example: The parameter data resides in the z/OS UNIX file /u/turbo/abc.parms.

//STDPARM DD PATH='/u/turbo/abc.parms',PATHOPTS=ORDONLY

For example: The BPXBATCH parameter data resides in member P1 of the MVS PDSE
TURBO.PARM.LIBRARY.

//STDPARM DD DSN=TURBO.PARM.LIBRARY(P1),DISP=SHR

� A JCL in-stream data set

The BPXBATCH parameter data immediately follows the STDPARM DD statement.
Trailing blanks are truncated for in-stream data sets, but not for other data sets.

For example: The following invokes the echo shell command:

 //STDPARM DD * SH echo "Hello, world!"

Allocating
STDOUT/

STDERR in JCL

Allocating
STDPARM in

JCL

JCL

Allocating
STDOUT/

STDERR in TSO

Allocating
STDPARM in

TSO

TSO

STDOUT/
STDERR

STDPARM

//STDPARM DD DSN=TURBO.PARM.LIBRARY(P1),DISP=SHR
//STDPARM DD * SH echo "Hello, world!"
710 ABCs of z/OS System Programming Volume 9

BPXBATCH with STDOUT and STDERR

The TSO/E ALLOCATE command, using the ddnames STDOUT, and STDERR can be used
as follows:

The following command allocates the MVS sequential data set TURBO.MYOUTPUT to
the STDOUT ddname:

ALLOCATE DDNAME(STDOUT) DSNAME('TURBO.MYOUTPUT') VOLUME(volser) DSORG(PS)
SPACE(10) TRACKS RECFM(F,B) LRECL(512) NEW KEEP

A JCL DD statement, using the ddnames STDOUT, and STDERR can be used as follows:

The following JCL allocates member M1 of a new PDSE TURBO.MYOUTPUT.LIBRARY
to the STDOUT ddname and directs STDERR output to SYSOUT:

//STDOUT DD DSNAME=TURBO.MYOUTPUT.LIBRARY(M1),DISP=(NEW,KEEP),
// DSNTYPE=LIBRARY, SPACE=(TRK,(5,1,1)),UNIT=3390,VOL=SER=volser,
// RECFM=FB,LRECL=80

 //STDERR DD SYSOUT=*
Chapter 14. z/OS UNIX shell and programming tools 711

14.17 TSO/E ALLOCATE command for STDPARM

Figure 14-17 Using the TSO/E ALLOCATE command for STDPARM

Using BPXBATCH from TSO/E
Prior to invoking BPXBATCH, you can allocate any of the resources discussed earlier, using
the TSO/E ALLOCATE command with the following ddnames:

STDIN, STDOUT, STDERR, STDENV, and STDPARM

You can invoke BPXBATCH under TSO/E as follows:

BPXBATCH SH|PGM program_name [arg1...argN]

where:

When SH is specified, program_name is the name of a shell command or a file containing a
shell script. SH starts a login shell that processes your .profile before running a shell command
or shell script. SH is the default; therefore, you can allocate a file containing a shell script to
the STDIN ddname, invoke BPXBATCH without any parameters, and the shell script will be
invoked.

When PGM is specified, program_name is the name of an executable file or a REXX exec that
is stored in a z/OS UNIX file. Inadvertent use of a shell script with PGM may result in a process
that will not end as expected, and will require use of the kill -9 pid command to force
termination.

You can invoke BPXBATCH without any parameters on the command line and, instead, place
the parameter data in a file or data set defined by STDPARM.

ALLOCATE DDNAME(STDPARM) DSN(‘RICH.PARMS’) SHR

In this case, STDPARM is allocated to the data set
‘RICH.PARMS’ with DISP set to share

Contents for STDPARM could look something like this:

SH mkdir -m 755 /u/rich/ims

From the TSO command line issue:

BPXBATCH

Directory ims is created

ALLOCATE DDNAME(STDOUT) DSNAME(‘BPX.MYOUTPUT’) VOLUME(volser) DSORG(PS)
SPACE(10) TRACKS RECFM(F,B) LRECL(512) NEW KEEP

ALLOCATE DDNAME(STDERR) DSNAME(‘BPX.MYOUTPUT1’) VOLUME(volser) DSORG(PS)
SPACE(10) TRACKS RECFM(F,B) LRECL(512) NEW KEEP

Command examples
712 ABCs of z/OS System Programming Volume 9

14.18 STDERR and STDOUT as MVS data sets

Figure 14-18 STDOUT and STDERR as MVS data sets

Use as MVS data sets
The STDOUT and STDERR DDs were always used previously as z/OS UNIX files. This
limitation is changed so that these DDs can be represented by MVS data sets. Previously,
STDENV could only be represented by a SYSIN, sequential, or PDS data set. This limitation
is now changed to allow PDSEs.

Implementation rules
If you define an MVS data set for stdout or stderr it must follow the following rules:

� It must be a basic format sequential data set, a partitioned data set (PDS) member, a
partitioned data set extended (PDSE) member, or SYSOUT.

Extended format and large format sequential data sets are not supported.

� The data set must have a non-zero logical record length (LRECL) and a defined record
format (RECFM); otherwise, BPXBATCH fails with the error message BPXM012I
indicating an open failure for the affected ddname.

� If the LRECL of the target STDOUT or STDERR data set is not large enough to hold a line
of output, the data is truncated and message BPXM080I is issued. This can happen for
both fixed and variable blocked data sets. For variable blocked data sets, the first four
bytes of each record, record segment, or block make up a descriptor word containing
control information. You must allow for these additional 4 bytes in the specified LRECL if
you intend to avoid truncation of the output to the STDOUT and STDERR DDs.

STDOUT, STDERR DDs supported as MVS data sets

Allows output to be directed to SYSOUT, sequential or
PDS/PDSE members

Data sets should have an LRECL that allows all lines
of output to fit or truncation will occur

Only basic format sequential data sets are supported

Extended format and large format sequential data sets
are not supported

Previously, STDENV could only be represented by a
SYSIN, sequential or PDS data set

This limitation is now changed to allow PDSEs
Chapter 14. z/OS UNIX shell and programming tools 713

� If you use two members of the same partitioned data set for the STDOUT and STDERR
ddnames, then you must use a PDSE (not a PDS). Using a PDS instead of a PDSE can
result in a 213 ABEND (and, if running in a batch job, an abnormal end for the job step) or
the output does not appear in the members as expected.
714 ABCs of z/OS System Programming Volume 9

14.19 BPXBATCH sample job

Figure 14-19 BPXBATCH sample job using MVS data sets

BPXBATCH job using PDSEs
This job example, shown in Figure 14-19, for STDOUT and STDERR has these data sets
directed to members of an existing PDSE.

The JCL shown in the example is as follows:

� The program name to be run is /u/rogers/programx.

� STDOUT is to be written to the PDSE member ROGERS.STDOUT.LIST.

� STDERR is to be written to the PDSE member ROGERS.STDERR.LIST.

� STDIN defaults to /dev/null.

Note: If you wish to use two members of the same partitioned data set for STDOUT and
STDERR output, then you must use a PDSE (not a PDS).

Note: BPXBATCH consumes more private storage for MVS data sets. Therefore, existing
jobs may need larger region size. In addition, out-of-space conditions for either STDOUT
or STDERR cause an ENOSPC error to the program. The out-of-space condition causes
an EPIPE error to be returned to the program and the generation of a SIGPIPE to the
program.

//LUTZBPX JOB (ITSO,TXX,T870270),LUTZ,MSGCLASS=X,
// MSGLEVEL=(1,1),REGION=8M,
// NOTIFY=&SYSUID,CLASS=D
//*===
//* STDOUT and STDERR pointing to SYSOUT
//*===
//BPXBATCH EXEC PGM=BPXBATCH,PARM='PGM /u/rogers/programx'
//STDOUT DD SYSOUT=D,DCB=(LRECL=133,RECFM=F,DSORG=PS)
//STDERR DD SYSOUT=D,DCB=(LRECL=133,RECFM=F,DSORG=PS)
//*===
//* STDOUT and STDERR pointing to convential MVS data sets
//*===
//BPXBATCH EXEC PGM=BPXBATCH,PARM='SH ls -la /'
//STDOUT DD DISP=SHR,DSN=ROGERS.STDOUT.LIST
//STDERR DD DISP=SHR,DSN=ROGERS.STDERR.LIST
//

REGION keyword
Out of space condition for STDOUT and STDERR
Chapter 14. z/OS UNIX shell and programming tools 715

14.20 Child process created for MVS data sets

Figure 14-20 Flow of creation of MVS data set output

Creating MVS data sets for STDOUT and STDERR
A program creates a pipe with the pipe() function. A pipe typically sends data from one
process to another; the two ends of a pipe can be used in a single program task. A pipe does
not have a name in the file system, and it vanishes when the last process that is using it
closes it.

When a pipe sends data from one process to another or back to itself, it forks processes. A
pipe can be shared by a number of processes—for example, written to by three processes
and read by seven.

When STDOUT or STDERR (either one or both) are specified to an MVS data set,
BPXBATCH must do a spawn.

During the OpenNonHFS function, a pipe is created to connect the child process to the parent
so that the data to be output in STDOUT or STDERR from the child process is sent over to
the parent for processing.

When you specify an MVS data set for either the STDOUT or STDERR DDnames, a child
process is created to run the target z/OS UNIX program. In some cases, the child process
runs in a separate address space from the BPXBATCH job. In such cases, the job log
messages for the child do not appear in the job log of the BPXBATCH job. To capture the job
log messages of the child process, set the _BPXK_JOBLOG=STDERR environment variable.
This will cause the job log messages of the child process to be written to the STDERR data
set specified in the BPXBATCH job.

Parent Child

This pipe sends STDOUT Data from the child to the parent.

STDOUT Pipe

This pipe sends STDERR Data from the child to the parent.

STDERR Pipe

Read end Write End

FDS(FdSTDOUT)

FDS(FdSTDERR)

stdout

stderr

When STDOUT or STDERR (either one or both) are
specified to an MVS data set, BPXBATCH must do a spawn
716 ABCs of z/OS System Programming Volume 9

14.21 BPXBATCH utility

Figure 14-21 JCL used when using the BPXBATCH utility

BPXBATCH utility
You can create a job that uses BPXBATCH to run a shell command, a shell script, or an
executable file, or a program as shown in Figure 14-21. When PGM is specified,
program_name is the name of an executable file or a REXX exec that is stored in an HFS file.

BPXBATCH can also be invoked in JCL as a shell command:

//stepname EXEC PGM=BPXBATCH,PARM='SH!PGM program_name'

When SH is specified, program_name is the name of a shell command or a file containing a
shell script. SH is the default; therefore, you can omit PARM= and supply the name of a shell
script for STDIN, and it will be invoked.

BPXBATCH has logic in it to detect when it is running from a batch job. By default,
BPXBATCH sets up the stdin, stdout, and stderr standard streams (files) and then calls the
exec callable service to run the requested program. The exec service ends the current job
step and creates a new job step to run the target program. Therefore, the target program
does not run in the same job step as the BPXBATCH program; it runs in the new job step
created by the exec service. In order for BPXBATCH to use the exec service to run the target
program, all of the following must be true:

� BPXBATCH is the only program running on the job step task level.

� The _BPX_BATCH_SPAWN=YES environment variable is not specified.

� The STDOUT and STDERR ddnames are not allocated as MVS data sets.

//S1 EXEC PGM=MVSPROG1

//S3 EXEC PGM=MVSPROG2

//S2 EXEC PGM=BPXBATCH,

//OPENBATC JOB

//

// PARM='pgm /cprog a1 a2'

MVS batch program

z/OS UNIX batch program

MVS batch program

End of job

Start of job
Chapter 14. z/OS UNIX shell and programming tools 717

For BPXBATCH, the default for stdin and stdout is /dev/null. The default for stderr is the same
file defined for stdout. For example, if you define stdout to be /tmp/output1 and do not define
stderr, then both printf() and perror() output is directed to /tmp/output1.

Note: BPXBATCH has logic in it to detect when it is run from JCL. If the BPXBATCH
program is running as the only program on the job step task level, it sets up the stdin,
stdout, and stderr and execs the requested program. If BPXBATCH is not running as the
only program at the job step task level, the requested program will run as the second step
of a JES batch address space from JCL in batch. If run from any other environment, the
requested program will run in a WLM initiator (BPXAS) in the OMVS subsys category.
718 ABCs of z/OS System Programming Volume 9

Chapter 15. Performance, debugging,
recovery, and tuning

This chapter describes the tuning necessary in a z/OS UNIX environment, and also shows
the required and possible settings that improve system performance.

It presents the following considerations for performance tuning:

� The necessity of z/OS UNIX tuning

� Settings for z/OS UNIX with Workload Manager running in goal mode

� Additional settings to improve z/OS UNIX performance

� Where to get data to analyze the performance of z/OS UNIX

15
© Copyright IBM Corp. 2006, 2008. All rights reserved. 719

15.1 z/OS UNIX performance overview

Figure 15-1 A z/OS UNIX performance overview

z/OS UNIX performance overview
It is both important and necessary to tune the z/OS UNIX environment to obtain an
acceptable level of performance. Because z/OS UNIX is tightly integrated into the operating
system, there are many z/OS UNIX tuning steps necessary to reach maximum
interoperability between z/OS UNIX and traditional z/OS services.

As you run more UNIX-based products, you need a z/OS UNIX environment that performs
well. Such products are, for instance, the Lotus Domino Server, TCP/IP, SAP R/3® and the
newly announced Novell Network Services based on z/OS UNIX.

Some considerations regarding your z/OS UNIX workload are the following:

� Each z/OS UNIX interactive user will consume up to double the system resource of a
TSO/E user.

� Every time a user tries to invoke the z/OS UNIX shell, RACF will have to deliver the
security information out of the RACF database.

� The average active user will require three or more concurrently running processes that,
without tuning, run in three or more concurrently active address spaces.

These are only a few of the considerations regarding performance impacts and how to
prevent them. In most cases in our lab, tuning improved throughput by 2 to 3 times and the
response time improved by 2 to 5 times. That represents a significant improvement, so let‘s
describe how to accomplish this.

z/OS UNIX Workload

Processor
720 ABCs of z/OS System Programming Volume 9

15.2 WLM in goal mode

Figure 15-2 Using WLM in goal mode

Goal mode definitions for z/OS UNIX processes and daemons
Installations that run in goal mode can take the following steps to customize service policies
in their Workload Manager service definition:

1. Define a workload for z/OS UNIX kernel work.

2. Define service classes for z/OS UNIX kernel work:

a. Define a service class for forked children.
b. Define a service class for startup processes.

3. Define classification rules:

a. By default, put child processes (subsystem type OMVS) into the service class defined
for forked children.

b. Put the kernel (TRXNAME=OMVS) into a high-priority started task (subsystem type
STC) service class.

c. Put the initialization process BPXOINIT (TRXNAME=BPXOINIT) into a high-priority
started task (subsystem type STC) service class.

d. Startup processes that are forked by the initialization process, BPXOINIT, fall under
SUBSYS=OMVS.

e. Other forked child processes (under subsystem type OMVS) can be assigned to
different service classes.

f. Put the DFSMS buffer manager SYSBMAS (TRXNAME=SYSBMAS) into a
high-priority started task (subsystem type STC) service class.

Workload Manager

z/OS
UNIX

processes

Service
Classes

Classification
Rules

GoalGoal
ModeMode

z/OS UNIX (kernel)z/OS UNIX (kernel) BPXASBPXAS
Chapter 15. Performance, debugging, recovery, and tuning 721

15.3 Defining service classes

Figure 15-3 Defining service classes for OMVS address spaces

Defining service classes
Define a service class for forked child address spaces. This service class should normally
have three performance periods, because it must support all types of kernel work, from short
interactive commands to long-running background work. Following is a sample service class
for forked children. Change the values as appropriate for the corresponding installations.

Table 15-1 Service Class OMVS: Base goals

Also define a service class for daemons. This service class should normally have only one
period with a velocity goal higher than the velocity goals of other forked children.

Table 15-2 Service Class OMVSKERN: Base goals

You may want to define other service classes for z/OS UNIX kernel work for special users.

Duration Importance Goal Description

1 2000 2 Response Time 80% 1 second

2 4000 3 Response Time 60% 2 seconds

3 5 Execution Velocity of 10

Duration Importance Goal Description

1 1 Execution Velocity of 40

Our Goals:
Response Time 80% 1 second

Response Time 60% 2 seconds

Service Class OMVS
722 ABCs of z/OS System Programming Volume 9

15.4 Workload Manager service classes

Figure 15-4 Service class definitions for OMVS processes

Service class definitions
When using Workload Manager in goal mode, the z/OS workloads must be defined to
Workload Manager.

Define a service class called OMVS that will include all the forked or spawned child address
spaces. You should define three performance periods for this class because it must support
all types of z/OS work; from short interactive commands to long running background work.

Define a separate service class for the OMVSKERN userid that will include the initialization
process and other daemons started at initialization time by forks from this process. This
service class should have only one period with a velocity goal higher than the goals for the
forked children (OMVS service class).

The service classes you define to Workload Manager are similar to the definitions in the
IEAIPS member. Performance goals for a service class can be defined as either response
time, velocity, or discretionary. You can use either response goals or velocity for z/OS UNIX
work.

An installation may choose to have other service classes defined for special z/OS UNIX users
in addition to the one for OMVSKERN. A good example might be daemons such as INETD or
TELNETD. These daemons run under the OMVSKERN ID by default, but it is possible to
assign different RACF user IDs to the daemons, which can then be separately controlled.

Service Class OMVS -- OMVS Forked Children

Base goal:
 # Duration Imp Goal Description
 1 2000 2 Response Time 80% 1 second
 2 4000 3 Response Time 60% 2 seconds
 3 5 Execution velocity of 10

Base goal:
 # Duration Imp Goal Description
 1 1 Execution velocity of 40

Service Class OMVSKERN -- OMVS Init & Other Daemons
Chapter 15. Performance, debugging, recovery, and tuning 723

15.5 Subsystem type panel

Figure 15-5 Selecting the OMVS subsystem to create classification rules

OMVS subsystem
When you choose the Classification Rules option from the Definition Menu, you go to the
Subsystem Type Selection List for Rules panel. This panel initially contains the reserved
names of the IBM-supplied subsystem types.

Figure 15-5 shows the IBM-supplied subsystem types that workload management supports.
The ISPF application provides these subsystem types as a selection list on the classification
rules panel. You can add any additional subsystem type on the same panel if it supports
workload management.

Classification of work depends on having the rules defined for the correct subsystem type; for
z/OS UNIX the subsystem type is OMVS.

Although you may want to change the description of the subsystem types, you should not
delete any of the entries provided by IBM unless your installation does not plan to ever use
them. If your installation later does need to use them, they can be manually added at that
time.
724 ABCs of z/OS System Programming Volume 9

15.6 WLM work qualifiers

Figure 15-6 The WLM work qualifiers used to classify work

Work qualifiers
A work qualifier is an attribute of incoming work. Figure 15-6 shows a list of the work
qualifiers that can be used in defining classification rules that determine the service class a
unit of work is assigned.

Each subsystem has its own list of work qualifiers that it supports.

Work qualifiers depend on the subsystem that first receives the work request. When you are
defining the rules, start with the service classes you have defined, and look at the type of
work they represent. Determine which subsystem type or types process the work in each
service class. Then understand which work qualifiers your installation could use for setting up
the rules. It may be that your installation follows certain naming conventions for the qualifiers
for accounting purposes. These naming conventions could help you to filter work into service
classes. Also, understand which work qualifiers are available for each subsystem type. You
can then decide which qualifiers you can use for each service class.

AI Accounting Information
CI Correlation Information
CN Collection Name
CT Connection Type
CTG Connection Type Group
LU LU Name
LUG LU Name Group
NET Net ID
NETG Net ID Group
PC Process Name
PF Perform
PFG Perform Group
PK Package Name
PKG Package Name Group
PN Plan Name
PNG Plan Name Group

PR Procedure Name
PRI Priority
PX Sysplex Name
SE Scheduling Environment
SI Subsystem Instance
SIG Subsystem Instance Group
SPM Subsystem Parameter
SSC Subsystem Collection
SY Sysname
SYG Sysname Group
TC Transaction Class
TCG Transaction Class Group
TN Transaction Name
TNG Transaction Name Group
UI Userid
UIG Userid Group
Chapter 15. Performance, debugging, recovery, and tuning 725

15.7 OMVS work qualifiers

Figure 15-7 The work qualifiers usable for OMVS

OMVS work qualifiers
Accounting data is normally inherited from the parent process of a z/OS UNIX System
Services address space. In addition, when a daemon creates a process for another user,
accounting data is taken from the WORKATTR of the RACF user profile. A user can also
assign accounting data by setting the _BPX_ACCT_DATA environment variable or by
passing accounting data on the interface to the _spawn service. For more information about
z/OS UNIX System Services accounting information, see z/OS UNIX System Services
Planning, GA22-7800.

Figure 15-7 shows the work qualifiers that can be used to set up the OMVS classification
rules.
726 ABCs of z/OS System Programming Volume 9

15.8 Defining classification rules

Figure 15-8 Defining classification rules for OMVS

Defining classification rules for OMVS
The workload in a z/OS system must be identified and classified in Workload Manager. The
classification rules should specify a subsystem called OMVS, which will cover all
forked/spawned child processes. Within this subsystem, the userid OMVSKERN should be
defined to use a separate service class than the rest of the work in this subsystem. Other
categories can be defined if you have separated daemons out into other service classes.
Specify the classification rules needed to separate daemons (for example, inetd) from other
forked children. The following is a sample classification for subsystem type OMVS.

� Subsystem Type OMVS
– Classification:

• Default service class is OMVS.
• There is no default report class.

Table 15-3 Classification rules for subsystem type OMVS

If no action was taken, OMVS and BPXOINIT will run under the rules for subsystem type
STC, which is typically defined to have high priority. If needed, it is possible to define an extra
classification rule for subsystem type STC to ensure that the kernel, the initialization process
BPXOINIT, and the DFSMS buffer manager SYSBMAS run as high-priority started tasks.

Qualifier
Type

Qualifier Name Starting
Position

Service Class Report Class

1 UI OMVSKERN OMVSKERN

z/OS UNIX

Forked children

Work Load Manager

Goals:

Subsystem Type OMVS for daemons
Classification:

 Default service class is OMVS
 There is no default report class.

 Qualifier Qualifier Starting Service Report
 # type name position class class

 1 UI OMVSKERN OMVSKERN
Chapter 15. Performance, debugging, recovery, and tuning 727

15.9 Classification rules

Figure 15-9 Panel to define the classification rules

Classification rule panel
When the subsystem receives a work request, the system searches the classification rules for
a matching qualifier and its service class or report class. Because a piece of work can have
more than one work qualifier associated with it, it may match more than one classification
rule. Therefore, the order in which you specify the classification rules determines which
service classes are assigned.

A service class default is the service class that is assigned if no other classification rule
matches for that subsystem type. If you want to assign any work in a subsystem type to a
service class, then you must assign a default service class for that subsystem -- except for
STC. You are not required to assign a default service class for STC, even if you assign
started tasks to different service classes.

Optionally, you can assign a default report class for the subsystem type. If you want to assign
work running in a subsystem to report classes, then you do not have to assign a default
service class for that subsystem.

 Subsystem-Type Xref Notes Options Help
 --
 Modify Rules for the Subsystem Type Row 1 to 4 of 4
 Command ===> __ SCROLL ===> PAGE

 Subsystem Type . : OMVS Fold qualifier names? Y (Y or N)
 Description . . . OMVS Address Spaces

 Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 -------Qualifier------------- -------Class--------
 Action Type Name Start Service Report
 DEFAULTS: OMVS ________
 ____ 1 UI REDADM ___ SAPAS SAPASREP
 ____ 1 TN MIKE* ___ SYSSTC SAMBA
 ____ 1 TN DB2OL* ___ DB2_____ DB2OLAP
 ____ 1 UI__ OMVSKERN ___ OMVSKERN ________
****************************** BOTTOM OF DATA ******************************
728 ABCs of z/OS System Programming Volume 9

15.10 Classification rules for STC

Figure 15-10 Panel for defining the STC service classes for OMVS

Classification rules for OMVS address spaces
Specify a classification rule for subsystem type STC to ensure that the OMVS, BPXOINIT,
and SYSBMAS procedures run as high priority started tasks, as follows:

� Subsystem Type STC
– Classification:

• Default service class is STC2.
• There is no default report class.

Table 15-4 Classification rules for subsystem type OMVS

Qualifier
Type

Qualifier Name Starting
Position

Service Class Report Class

1 UI OMVS STC1

2 UI BPXOINIT STC1

3 UI SYSBMAS STC1

..

STC1 is a high priority started task service class

Subsystem Type STC

 Classification:
 Default service class is STC2
 There is no default report class.
 Qualifier Qualifier Starting Service Report
 # type name position class class
 1 TN OMVS STC1
 1 TN BPXOINIT STC1
 1 TN SYSBMAS STC1
 1 TN ZFS STC1
Chapter 15. Performance, debugging, recovery, and tuning 729

15.11 Virtual lookaside facility (VLF)

Figure 15-11 Using VLF to cache UIDs and GIDs

VLF for performance
To improve the performance of z/OS UNIX RACF support, you should add the Virtual
Lookaside Facility (VLF) classes that control caching of the z/OS UNIX UID and GID
information. The mapping of z/OS UNIX group identifiers (GIDs) to RACF group names and
the mapping of z/OS UNIX user identifiers (UIDs) to RACF user IDs is implemented using
VLF services to gain performance improvements.

To achieve these performance improvements, the two VLF classes IRRGMAP and IRRUMAP
should be added to the COFVLFxx PARMLIB member. A COFVLFxx PARMLIB member
including the z/OS UNIX information should look like this:

CLASS NAME(CSVLLA) /* Class name for LLA */
 EMAJ(LLA) /* Major name for LLA */
CLASS NAME(IRRUMAP) /* z/OS UNIX RACF UMAP Table */
 EMAJ(UMAP) /* Enable Caching of z/OS UNIX UIDs */
CLASS NAME(IRRGMAP) /* z/OS UNIX RACF GMAP Table */
 EMAJ(GMAP) /* Enable Caching of z/OS UNIX GIDs */
CLASS NAME(IRRGTS) /* RACF GTS Table */
 EMAJ(GTS) /* Enable caching of RACF GTS */
CLASS NAME(IRRACEE) /* RACF saved ACEEs */
 EMAJ(ACEE) /* Enable caching of RACF ACEE */
CLASS NAME(IRRSMAP) /* z/OS UNIX Security Package */
 EMAJ(SMAP) /* Major Node SMAP */

z/OS UNIX user X issuing TSO OMVS command

RACF
VLF

Yes, I know
him. His UID
is 11 and his

GID is 8.

Hi VLF! How
are you

doing? By the
way, do you
know user

X???
730 ABCs of z/OS System Programming Volume 9

The VLF member can be activated by starting VLF using the operator command:

START VLF,SUB=MSTR,NN=xx

where xx is the suffix of the corresponding COFVLF member.

If a user requests to invoke z/OS UNIX, the z/OS UNIX kernel asks RACF about the
permission. RACF checks whether VLF is active. If it is active, it asks VLF about the data of
the user that tries to logon. If the user has already been logged to z/OS UNIX since VLF
became active, VLF should know about this user and provides the UID and GID to RACF.
RACF passes the information to z/OS UNIX for processing.

However, if VLF is not active, or if the user tries to invoke z/OS UNIX for the first time since
VLF became active, RACF has to start I/O to the RACF database to get the information.

VLF is able to collect this data in its data spaces if the following two classes were added to
the COFVLFxx member in SYS1.PARMLIB:

� IRRUMAP

� IRRGMAP

� IRRSMAP
Chapter 15. Performance, debugging, recovery, and tuning 731

15.12 VLF for z/OS UNIX

Figure 15-12 The VLF cache of UIDs and GIDs with RACF

VLF caching of UIDs and GIDs
z/OS UNIX uses the UID and the GID to identify users and groups while z/OS uses the userid
and group name. Both identifications are defined in the RACF profiles in the RACF database.
When RACF is called to do security processing for z/OS UNIX, RACF often needs to find
which userid belongs to a UID, or which group belongs to a GID. This could cause excessive
I/O to the RACF database. A solution is to build tables with UID-to-userid mapping and
GID-to-group mapping and keep the tables in VLF data spaces called IRRUMAP and
IRRGMAP.

Also, whenever a file is accessed by a user, RACF must check the permission bits, which are
stored in a File Security Packet (FSP) on the same HFS data set as the file. As a user may
access the same file many times, RACF can save time and I/O by storing File Security
Packets for active files in a VLF dataspace called IRRSMAP. Virtual Lookaside Facility (VLF)
is used to build the tables and keep them in processor storage. For this mechanism to work:

� VLF must be active.

� The IRRUMAP, IRRSMAP, and IRRGMAP classes must be defined by adding these VLF
options to the COFVLFxx member of SYS1.PARMLIB:

CLASS NAME(IRRUMAP)
 EMAJ(UMAP)
CLASS NAME(IRRGMAP)
 EMAJ(GMAP)
CLASS NAME(IRRSMAP)
 EMAJ(SMAP)

GID group

10 PROG1

GIDgroup

PROG1 10

UID userid

15 SMITH

UIDuserid

15SMITH

SYS1.PARMLIBRACF Data Base

IRRGMAPIRRUMAP

IRRSMAP

File Security
Packet

Virtual
Lookaside

Facility
(VLF)

RACF
Profiles

RACF

COFVLFxx
732 ABCs of z/OS System Programming Volume 9

15.13 COFVLFxx updates for z/OS UNIX

Figure 15-13 The definitions required in the COFVLFxx PARMLIB member

COFVLFxx PARMLIB definitions
This example shows the definitions to add to the COFVLFxx member in SYS1.PARMLIB to
support the RACF UMAP, GMAP, and SMAP tables. You are strongly urged to use
IRRUMAP and IRRGMAP for any installation. Samples are also included in the member
RACPARM in SYS1.SAMPLIB which is delivered with RACF.

It is also recommended for extra performance improvements that you cache the z/OS UNIX
security packets by adding the IRRSMAP entries to COFVLFxx.

When working with the z/OS UNIX shell or ISHELL, some of the commands or functions can
display output with either the UID or userid as the file owner. z/OS UNIX only knows about
UIDs and GIDs. Whenever a userid or group name is displayed, it has been looked up in the
RACF data base or the mapping tables to find the corresponding userid for a UID, or group
for a GID. The end user does not have to be aware that such a mapping/conversion is done.

Something which causes a bit of confusion is which userid RACF will show when a
file/directory is owned by a UID=0. In a system, there will be multiple superusers (defined with
UID=0, or to the BPX.SUPERUSER class), and RACF can only pick one of these user IDs
from the mapping table to show as the owner. It seems like without VLF active, RACF will pick
the first superuser user ID, in alphabetical order, that has logged on. With VLF active, RACF
will pick the first superuser userid that has logged on since VLF was started. This is not a
problem; it just causes some confusion for people to see a file owned by one user ID one day,
and another user ID another day. This situation happens only for users that share the same
UID, which should only be the superusers.

COFVLFxxCOFVLFxx

CLASS NAME(CSVLLA /* class name for Library Lookaside */
 EMAJ(LLA) /* Major name for LIbrary Lookasid */
CLASS NAME(IRRUMAP) /* z/OS UNIX RACF UMAP Table */
 EMAJ(UMAP) /* Major name = UMAP */
CLASS NAME(IRRGMAP) /* z/OS UNIX RACF GMAP TABLE */
 EMAJ(GMAP) /* Major name = GMAP */
CLASS NAME(IRRSMAP) /* z/OS UNIX Security Packet */
 EMAJ(SMAP) /* Major name = SMAP */
CLASS NAME(IRRGTS) /* Enable caching of RACF GTS */
 EMAJ(GTS) /* */
CLASS NAME(IRRACEE) /* Enable caching of RACF ACEE */
 EMAJ(ACEE) /* */
Chapter 15. Performance, debugging, recovery, and tuning 733

15.14 AIM Stage 3 and z/OS V1R4

Figure 15-14 Conversion of the RACF database to AIM

AIM for performance
You can convert your RACF database to stage 3 of application identity mapping (AIM) using
the IRRIRA00 conversion utility. In stage 3, RACF locates application identities, such as UIDs
and GIDs, for users and groups by using an alias index that is automatically maintained by
RACF. This allows RACF to more efficiently handle authentication and authorization requests
from applications such as z/OS UNIX than was possible using other methods, such as the
UNIXMAP class and VLF. Once your installation reaches stage 3 of application identity
mapping, you will no longer have UNIXMAP class profiles on your system, and you can
deactivate the UNIXMAP class and remove VLF classes IRRUMAP and IRRGMAP.

You can improve RACF performance when looking up UIDs and GIDs by using virtual
lookaside facility (VLF) and alias index entries. For more information on using them, see z/OS
Security Server RACF Security Administrator's Guide, SA22-7683.

Using alias index entries allows you to use the RACF SEARCH command to determine which
users are assigned a specified UID, and which groups are assigned a specified GID, as
follows:

SEARCH CLASS(USER) UID(0)
SEARCH CLASS(GROUP) GID(100)

APAR OA02721
After migrating to AIM Stage 3, some environments may observe increased times required for
performing UID to username mapping using the Get_UMAP callable (IRRSUM00).

RACF locates application identities - UIDs and GIDs

Using an alias index

Allows better authentication and authorization

From applications such as z/OS UNIX

Eliminates UNIXMAP class and VLF

Deactivate the UNIXMAP class and remove VLF

classes IRRUMAP and IRRGMAP

APAR OA02721 - Performance with AIM
734 ABCs of z/OS System Programming Volume 9

AIM stage 3 only uses ALIAS processing to locate the userid for a particular UID or GID. The
VLF cache is not used. With this APAR, RACF Application Identity Mapping (AIM) stage 3
can cache the UID or GID in VLF with the corresponding userid or group name from ALIAS
processing. Subsequently, the cache can be used rather than the ALIAS processing now
used all the time.

The installation should define the IRRUMAP and IRRGMAP classes to VLF for use by AIM
stage 3 processing. This is recommended, but not required.
Chapter 15. Performance, debugging, recovery, and tuning 735

15.15 Further tuning tips

Figure 15-15 Additional tuning tips

Performance tuning tips
To improve z/OS UNIX shell performance, it is recommended that you do the following:

� There are two environment variables that can be used to improve the performance:

– Set the _BPX_SHAREAS environment variable to YES or REUSE. This saves the
overhead of a fork and exec by not creating its own address space for foreground shell
processes.

– Set the _BPX_SPAWN_SCRIPT environment variable to YES. This avoids having the
shell invoke spawn after receiving ENOEXEC for an input shell script.

� To improve the performance for all shell users, the /etc/profile should contain the following
settings:

export _BPX_SHAREAS=YES (or export _BPX_SHAREAS=REUSE)
export _BPX_SPAWN_SCRIPT=YES

Avoid STEPLIBs
To improve performance for users who log in to the shell with the OMVS command, do not
place any STEPLIB or JOBLIB DD statements in logon procedures. Specify STEPLIB=none
in the /etc/profile to avoid excessive searching of STEPLIB data sets. The section in the
/etc/profile, that contains the STEPLIB statement, should look like the following:

export _BPX_SHAREAS=YES

Avoiding STEPLIBs
736 ABCs of z/OS System Programming Volume 9

Storage consumption
Be aware of storage consumption. If the system is running in an LPAR or as a VM guest, the
storage size should be at least 64 MB; however, having quite a bit more than this will not be
harmful.

� ECSA storage used by z/OS UNIX is based on the following formula:

(n * 150 bytes) + (m * 500 bytes)

where n is the number of tasks using z/OS UNIX and m is the number of processes.

So if your system supports 500 processes and 2000 threads, z/OS UNIX consumes
550 KB of ECSA storage.

� In addition to this:

– WM uses some ECSA for each forked initiator.

– The OMVS address space itself uses 20KB ECSA.

– Spawn usage requires approximately 100 KB of ECSA.

– Each process that has a STEPLIB that is propagated from parent to child or across an
EXEC consumes about 200 bytes of ECSA.

Taking these points into consideration may prevent possible storage shortages.

if -z "$STEPLIB" &&; tty -s; then
 echo "- Improve performance by preventing the propagation of -"
 echo "- TSO/E or ISPF STEPLIBs -"
 export STEPLIB=none
 exec sh -L
fi
Chapter 15. Performance, debugging, recovery, and tuning 737

15.16 zFS fast mount performance improvement

Figure 15-16 zFS fast mount improvement in z/OS V1R7

zFS fast mount with APAR OA12519
APAR OA12519 provides improved mount performance for zFS file systems. This APAR
changes the on-disk format of zFS aggregates. New aggregates will be in the new format and
existing aggregates will be converted the first time they are attached read-write. This has
been incorporated into z/OS V1R7.

Coexistence APAR OA11573
APAR OA11573 is provided in order to allow these aggregates to be processed by prior
releases. In order to improve the performance of zFS mount, a change in the structure of the
zFS aggregate is required. The current structure is referred to as Version 1.3; the new
structure is Version 1.4.

zFS mount problem
With very large file systems mounted and the system where they are mounted fails—goes
into a dead system recovery—the file systems are automoved to another system in the
sysplex. When such a large file system is then mounted on the new system, some mounts
have taken as long as thirty minutes to complete.

Implemented with APAR OA12519

Coexistence APAR OA11573 for prior releases

Apply to Z/OS Versions V1R4, V1R5, V1R6, V1R7

Note: Apply to V1R7 before OA12519

Resolves the following problem:

Dead system recovery caused zFS file systems to
move to another system

zFS file system had tens of millions of files

Mount during move took 30 minutes to complete

System (USS) unavailable during this time
738 ABCs of z/OS System Programming Volume 9

15.17 zFS fast mount performance improvement - continued

Figure 15-17 Fast mount implementation

Mounting file systems with APAR OA12519
Before installing this APAR, all mounted file system have what is called a Version 1.3 in the
aggregates. After the application of this APAR, the first R/W mount of any zFS file system will
automatically convert that aggregate from the current aggregate structure (Version 1.3) to the
new aggregate structure (Version 1.4). This will occur in addition to normal mount processing
so the first mount of an aggregate will still take as long as previously.

After the conversion has been completed, subsequent mounts will occur more quickly.

Additional information is recorded in the new Version 1.4 aggregate that allows zFS mounts
to complete more quickly. Previously, zFS had to scan the aggregate and the file systems in
the aggregate to retrieve required information for a mount.

APAR OA11573
This APAR supplies fast mount toleration code and is required on z/OS V1R4, z/OS V1R5,
and z/OS V1R6 systems before migration to z/OS V1R7. Since z/OS V1R7 with APAR
OA12519 supplies enhanced mount performance, this new code makes prior releases of zFS
incompatible with z/OS V1R7. It is required that this APAR is applied to all prior supported
releases before migrating to z/OS V1R7. If this is not done, mounts of zFS file systems on the
supported systems may fail with an EA680147.

To support this improvement, the first time that a zFS
aggregate is mounted on z/OS V1R7 after APAR
OA12519 is applied

It is converted to a new on-disk format (called Version 1.4)

Additional information for mount processing can be
recorded in the aggregate

All existing aggregates are Version 1.3 aggregates

After conversion, subsequent mount processing will occur
more quickly

APAR OA11573 supplies the code to process the new
format (Version 1.4) for all releases (1.4 to 1.7)

Only works for compatibility mode aggregates
Chapter 15. Performance, debugging, recovery, and tuning 739

15.18 zFS performance tuning

Figure 15-18 zFS performance tuning features

zFS performance
zFS performance is dependent on many factors. zFS provides performance information to
help the administrator determine bottlenecks. The IOEFSPRM file contains many tuning
options that can be adjusted. The output of the operator modify query commands provide
feedback about the operation of zFS.

zFS and its caches
zFS performance can be optimized by tailoring the size of its caches to reduce I/O rates and
pathlength. It is also important to monitor DASD performance to ensure there are no volumes
or channels that are pushed beyond their capacity. The following describes some of the
considerations when tuning zFS performance.

In general you should have hit ratios of at least 80% or more, over 90% usually gives good
performance. However, the desired hit ratio is very much workload-dependent. For
example, a zFS file system exported exclusively to SMB clients by using the SMB server
would likely have a low hit ratio since the SMB client and the SMB server cache data,
making the zFS cache achieve a low hit ratio in this case. That is expected and is not
considered a problem.

zFS performance features

The IOEFSPRM provides tuning options

Output of the operator modify query commands
provides feedback about the operation of zFS

f zfs,query,all ------ zfsadm query

zFS performance optimization with cache sizes

Reduce I/O rates and path length

Hit ratios should be 80% or better

Over 90% gives good performance

Monitor DASD performance
740 ABCs of z/OS System Programming Volume 9

15.19 zFS cache

Figure 15-19 zFS cache

zFS cache specifications
Following are the specified caches used by zFS:

User file cache The user file cache is used to cache all "regular" files. It caches any file
no matter what its size and performs write-behind and asynchronous
read-ahead for files. It performs I/O for all files that are 7K or larger. For
files smaller than 7K, I/O is normally performed through the metadata
cache. The user file cache is allocated in data spaces. Its size by default
is 256 MB and can be tailored to meet your performance needs based on
your overall system memory. The maximum size is 65536 MB (which is
64 GB).

Metadata The metadata cache is used to contain all file system metadata, which
includes all directory contents, file status information (such as atime,
mtime, size, permission bits, and so on), file system structures, and it
also caches data for files smaller than 7K. The metadata cache is stored
in the primary address space and its default size is 32 MB. Since the
metadata cache only contains metadata and small files, it normally does
not need to be nearly as large as the user file cache.

Log file Every zFS aggregate contains a log file used to record transactions
describing changes to the file system structure. This log file is, by default,
1% of the aggregate size but is tailorable by the administrator on the
ioeagfmt command. Usually, 1% is sufficient for most aggregates.
Especially large aggregates might need less than 1%, while very small

With V1R4, the log file cache is in a dataspace
Default - (64 MB)
Frees up space for caches in ZFS address space

Cache Dataspace? How many?
User file Yes 32
Log file Yes 1
Metaback Yes 1
Metadata No
Vnode No
Transaction No
Chapter 15. Performance, debugging, recovery, and tuning 741

aggregates might need more than 1% if a high degree of parallel update
activity occurs for the aggregate. The log file cache is a pool of 8K
buffers used to contain log file updates. Log file buffers are always
written asynchronously to disk and normally only need to be waited upon
when the log is becoming full, or if a file is being fsync'ed. The log file
cache is stored in a data space and its default is 64 MB. The log file
cache is grown dynamically by adding one 8K buffer for each attached
aggregate. This ensures that each aggregate always has one 8K buffer
to use to record its most recent changes to file system metadata.

Transaction Every change to zFS file system metadata is bounded by a transaction
describing its changes by using records written to the log file. The
transaction cache is a cache of data structures representing
transactions. The transaction cache is stored in the zFS primary address
space and its default is 2000. zFS dynamically increases the size of this
cache based on the number of concurrent pending transactions
(transactions that have not been fully committed to disk) in the zFS file
system.

Vnode Every object in the zFS file system is represented by a data structure
called a vnode in memory. zFS keeps a cache of these and recycles
these vnodes in an LRU fashion. The vnode cache is stored in the zFS
primary address space, and the default number of vnodes is 16384.

Metaback Metadata backing cache is an extension to the metadata cache. The size
of this extension is controlled by the metaback_cache_size configuration
option. The backing cache is stored in a dataspace and is used only to
avoid metadata reads from disk. All metadata updates and write I/O are
performed from the primary metadata cache.
742 ABCs of z/OS System Programming Volume 9

15.20 zFS cache locations

Figure 15-20 zFS caches in dataspaces and zFS address space

zFS cache locations
Currently, the ZFS address space is restricted to 2 GB of total storage. Therefore, the total
storage size for all of the caches that reside in the ZFS address space must be less than
2 GB. Since storage is needed in addition to the ZFS address space caches to process file
requests and for products zFS might use, generally you should restrict total ZFS address
space cache storage to approximately 1.5 GB.

The zFS operator F ZFS,QUERY,ALL command shows total zFS storage allocated, which
includes storage allocated for all the caches and everything else zFS might need. zFS
terminates during initialization if it cannot obtain all the storage for the caches as directed by
the IOEFSPRM file. The ZFS address space caches include the metadata cache, the
transaction cache and the vnode cache.

The user data cache, the log file cache, and the metadata backing cache reside in
dataspaces and do not use ZFS address space storage.

Metadata cache
The metadata cache is used to contain all file system metadata, which includes all directory
contents, file status information (such as atime, mtime, size, permission bits, and so on), file
system structures, and it also caches data for files smaller than 7K. Because of the potential
size of the metadata cache for very large file systems, the backing cache is stored in a
dataspace and is used only to avoid metadata reads from disk. All metadata updates and
write I/O are performed from the primary metadata cache.

ZFS address space Dataspaces

User file cache

256MB

Metadata cache

32MB

Default sizes shown

Metadata cache
All directory contents
File status information
File system structures
Also caching of data for
files smaller than 7K

ZFSVL1ZFSVL1

Log file cache

8K64MB

2000
transactions

64K

Transaction cache

Vnode cache

OMVS.CMP01.ZFS

F

/

F
F F

F

Metaback cache

1M-2048M

Directory cache

2M-512M

f zfs,query,all
Chapter 15. Performance, debugging, recovery, and tuning 743

15.21 Metadata backing cache

Figure 15-21 Metadata backing cache used for metadata cache constraints

Metadata backing cache
The metaback_cache_size specifies the size of the backing cache used to contain metadata.
This resides in a dataspace and can optionally be used to extend the size of the metadata
cache. You can also specify a fixed option, which indicates that the pages are permanently
fixed for performance. Note that the fixed option reserves real storage for usage by zFS only.

When specifying the fixed parameter, a number between 1M and 2048M can be used. A 'K' or
'M' can be appended to the value to mean kilobytes or megabytes, respectively. An example
is:

metaback_cache_size=64M,fixed

Use the zfsadm config command to change or set a value since there is no default value set
by zFS.

With V1R4, a new backing cache contains an
extension to the metadata cache and resides in a
dataspace - Specify in IOEFSPRM file

metaback_cache_size=64M,fixed

Values allowed: 1 MB to 2048 MB

Used as a "paging" area for metadata

Allows a larger meta cache for workloads that need
large amounts of metadata

Only needed if meta cache is constrained
744 ABCs of z/OS System Programming Volume 9

15.22 Performance APIs

Figure 15-22 Performance APIs for zFS

Performance APIs for zFS
zFS file systems contain files and directories that can be accessed with z/OS UNIX
application programming interfaces (APIs). These APIs are used to manage zFS aggregates
and file systems and to query and set configuration options.

pfsctl BPX1PCT
The zFS application programming interface (API) is pfsctl (BPX1PCT). This API is used to
send physical file system-specific requests to a physical file system. It is documented in a
general manner in the z/OS UNIX System Services Programming: Assembler Callable
Services Reference, SA22-7803. zFS is a physical file system and supports several
(ZFS-specific) pfsctl functions.

zFS pfsctl APIs do not work across sysplex members until z/OS V1R7. zFS pfsctl APIs can
query and set information on the current system only. Beginning with z/OS V1R6, the zfsadm
command has a new subcommand, query, that allows performance analysis of all caches.

RMF support
Two new Monitor III reports provide overview and performance information about the zFS
activity beginning with z/OS V1R7, as follows:

� The zFS Summary Report helps to control the zFS environment and I/O balancing.

� The zFS Activity Report measures zFS activity on the basis of single file systems, for
example, a file system's performance and DASD utilization.

Previously, certain zFS performance counters could only
be retrieved via an operator console command

Data could not easily be retrieved by an application

Provide an API to obtain statistics on zFS activity

Now, all zFS performance counters can be retrieved by an
application - pfsctl API (BPX1PCT)

Now, the zfsadm command can be used to display/reset
performance counters

zfsadm query -metacache

Administrative application programs can use this function

RMF exploits this function in z/OS V1R7
Chapter 15. Performance, debugging, recovery, and tuning 745

15.23 Performance monitoring APIs

Figure 15-23 Performance monitoring commands with z/OS V1R6

The zfsadm query command
This command, which was added in z/OS V1R6, displays internal zFS statistics (counters and
timers) maintained in the zFS physical file system. The options shown in the figure were
added with z/OS V1R6. This command provides performance counters for individual cache
and storage areas. The zfsadm query command has the following options, which include the
z/OS V1R7 additions.

[-system system name] [-locking] [-reset] [-storage] [-usercache] [-trancache]
[-iocounts] [-iobyaggregate] [-iobydasd] [-knpfs] [-metadata]
[-dircache] [-vnodecache] [-logcache] [-level] [-help]

The f zfs,query,all command was implemented with the very first zFS release and
provides statistics for all the performance counters.

The zfsadm query command in z/OS V1R6
This new command in z/OS V1R6 displays internal zFS statistics (counters and timers)
maintained in the zFS physical file system.

The options are as follows:

-locking Specifies that the locking statistics report should be displayed.

-storage Specifies that the storage report should be displayed.

-usercache Specifies that the user cache report should be displayed.

zFS provides six new pfsctl APIs to retrieve
performance counters

Locks

Storage

User data cache

iocounts

iobyaggr

iobydasd

zFS provides a new zfsadm command (query) to
query/reset the performance counters

zfsadm query [-locking] [-storage] [-usercache] [-iocounts]
[-iobyaggregate] [-iobydasd] [-level] [-help] [-reset]

f zfs,query,all

z/OS V1R6
746 ABCs of z/OS System Programming Volume 9

-iocounts Specifies that the I/O count report should be displayed.

-iobyaggregate Specifies that the I/O count by aggregate report should be displayed.

-iobydasd Specifies that the I/O count by DASD report should be displayed.

-level Prints the level of the zfsadm command. This is useful when you are
diagnosing a problem. All other valid options specified with this option are
ignored.

-help Prints the online help for this command. All other valid options specified
with this option are ignored.

-reset Specifies the report counters should be reset to zero. Should be specified
with a report type.

The f zfs,query,all command
This command, which has always been available with zFS, enables you to query internal zFS
counters and values. They are displayed on the system log. It also allows you to initiate or
gather debugging information. The zFS PFS must be running to use this command.

The options for using this command are as follows:

f zfs,query,{all | settings | storage | threads}
f zfs,reset,{all | storage}
f zfs,trace,{reset | print}
f zfs,abort
f zfs,dump
f zfs,hangbreak
Chapter 15. Performance, debugging, recovery, and tuning 747

15.24 zfsadm command changes

Figure 15-24 zfsadm query command changes with z/OS V1R7

New options on the zfsadm query command
The new options with z/OS V1R7 are as follows:

-system system name Specifies the name of the system the report request will be sent to,
to retrieve the data requested. This is important since you can send
the request to other members of a sysplex.

-trancache Specifies that the transaction cache counters report should be
displayed.

-knpfs Specifies that the kernel counters report should be displayed.

-metacache Specifies that the metadata cache counters report should be
displayed.

-dircache Specifies that the directory cache counters report should be
displayed.

-vnodecache Specifies that the vnode cache counters report should be
displayed.

-logcache Specifies that the log cache counters report should be displayed.

zfsadm query command options with z/OS V1R7
knpfs, -metacache, -dircache, -vnodecache,
-logcache, -trancache -system system name

ROGERS @ SC65:/u/rogers>zfsadm query -dircache
 Directory Backing Caching Statistics

Buffers (K bytes) Requests Hits Ratio Discards
---------- --------- ---------- ---------- ------ ----------
 256 2048 1216679 1216628 99.9% 50

ROGERS @ SC65:/u/rogers>zfsadm query -system sc70 -dircache
 Directory Backing Caching Statistics

Buffers (K bytes) Requests Hits Ratio Discards
---------- --------- ---------- ---------- ------ ----------
 256 2048 0 0 0.0% 0
748 ABCs of z/OS System Programming Volume 9

15.25 The IOEZADM utility from TSO for commands

Figure 15-25 Using the IOEZADM utility from TSO

The IOEZADM utility
Using this utility from TSO, you can enter commands exactly like you do with the zfsadm
command. Therefore, the zfsadm command and the IOEZADM utility program can be used
to manage file systems and aggregates.

Note: Although zfsadm and IOEZADM are physically different modules, they contain
identical code. Whenever you think of zfsadm as a zFS administration command, it also
means both zfsadm and IOEZADM. Therefore, IOEZADM can be used as a TSO/E
command; it performs the same functions as the zfsadm command.

 Menu List Mode Functions Utilities Help

 ISPF Command Shell
 Enter TSO or Workstation commands below:

 ===> ioezadm query -dircache

 Place cursor on choice and press enter to Retrieve command

 => ioezadm query -dircache
 => ioezadm aggrinfo
 => omvs
 => ish
 => ishell
 => bpxwh2z
 =>

 Directory Backing Caching Statistics

 Buffers (K bytes) Requests Hits Ratio Discards
 ---------- --------- ---------- ---------- ------ ----------
 256 2048 1 0 0.0% 0

Chapter 15. Performance, debugging, recovery, and tuning 749

15.26 Directory cache

Figure 15-26 dir_cache specifications for directory cache

Directory cache specifications
New with z/OS V1R7 is a directory cache. The dir_cache_size parameter can be specified in
either the IOEFSPRM member or the IOEPRMxx PARMLIB member, depending on which
option is used. This option is specified as follows:

dir_cache_size - Specifies the size of the directory buffer cache.
Default Value 2M
Expected Value A number between 2M to 512M
Example dir_cache_size=4M

Monitoring dircache
This is a parameter that should be monitored since this cache size should be looked at if it is
expected that many file creates or deletes may occur during system operation. Use the
zfsadm query -dircache command, as shown in Figure 15-24 on page 748.

This important new cache can be implemented on older levels of z/OS back to z/OS V1R4
with the PTFs shown in Figure 15-26.

In z/OS V1R7 a new zFS IOEPRMxx parameter file
statement is available to set the directory cache size

dir_cache_size - Size of the directory buffer cache

Example: dir_cache_size=4M

The minimum and default size is 2M, the maximum
value that can be set is 512M

Changing this cache size may be useful if you expect
situations with many file creates or deletes

This is available via APAR OA10136 and PTFs:

UA16125 for z/OS V1R4

UA16123 for z/OS V1R5

UA16124 for z/OS V1R6
750 ABCs of z/OS System Programming Volume 9

15.27 The zfsadm query -iobyaggr command

Figure 15-27 zfsadm query -iobyaggr command example

The -iobyaggr option
The zfsadm query -iobyaggr command displays information about the number of reads and
writes and the number of bytes transferred for each aggregate. Use this command to
determine the number of I/Os and the amount of data transferred on an aggregate basis. The
example shown in Figure 15-27 shows five aggregates.

zFS I/O driver
The zFS I/O driver is essentially an I/O queue manager (one I/O queue per DASD). It uses
Media Manager to issue I/O to VSAM data sets. It generally sends no more than one I/O per
DASD volume to disk at one time. The exception is parallel access volume (PAV) DASD.
These DASD often have multiple paths and can perform multiple I/O in parallel. In this case
zFS will divide the number of access paths by 2 and round any fraction up. (Example, for a
PAV DASD with 5 paths zFS issues at most 3 I/Os at one time to Media Manager). The
reason zFS limits the I/O is that it uses a dynamic reordering and prioritization scheme to
improve performance by reordering the I/O queue on demand. Thus, high priority I/Os (I/Os
that are currently being waited on, for example) are placed up front, and an I/O can be made
high priority at any time during its life. Thus the "PAV IOs" column shows how many I/Os are
sent in parallel to Media Manager by zFS; non-PAV DASD always shows the value 1. The
DASD volser for the primary extent of each aggregate is shown along with the total number of
I/Os and bytes read/written. Finally, the number of times a thread processing a request must
wait on I/O and the average wait time in milliseconds is shown. By using this information in
conjunction with the KN report, you can break down zFS response time into what percentage
of the response time is for I/O wait.

ROGERS @ SC65:/u/rogers>zfsadm query -iobyaggr
 zFS I/O by Currently Attached Aggregate

DASD PAV
VOLSER IOs Mode Reads K bytes Writes K bytes Dataset Name
------ --- ---- ---------- ---------- ---------- ---------- ------------
SBOX42 1 R/O 10 68 0 0 OMVS.TEST.MULTIFS.ZFS
MHL1A0 3 R/O 93432 373760 0 0 ZFSFR.ZFSA.ZFS
MHL1A1 2 R/O 93440 373824 0 0 ZFSFR.ZFSB.ZFS
SBOX32 1 R/W 22 164 82775 331100 OMVS.HERING.TEST.ZFS
SBOX1A 3 R/W 9 60 82747 330988 OMVS.HERING.TEST.DIRCACHE
------ --- ---- ---------- ---------- ---------- ---------- ------------
 5 186913 747876 165522 662088 *TOTALS*

Total number of waits for I/O: 186910
Average I/O wait time: 0.703 (msecs)
Chapter 15. Performance, debugging, recovery, and tuning 751

15.28 SMF recording

Figure 15-28 SMF recording of z/OS UNIX processing

SMF records for z/OS UNIX
You can use SMF to report on activity from a user application, to report activity on a job and
jobstep basis, and to report the activity of mounted file systems and files.

SMF records are written to store information about the following activities for z/OS UNIX.

SMF record type 30
SMF record type 30 reports activity on a job and jobstep basis. Though file system activity is
included in the EXCP count for the address space, the process section in the record breaks
down the EXCP count into the following categories:

� Directory reads

� Reads and writes to regular files

� Reads and writes to pipes

� Reads and writes to character special files

� Reads and writes to network sockets

SMF record type 34 and 35
When a new address space is created for a fork or spawn, SMF cuts a type 34 record. When
the process ends, SMF cuts a type 35 record. A type 34 record is defined as TSO/E logon
and a type 35 record is defined as TSO/E logoff. If these records are not active in the

OMVS

SMF

SMF Record
Type 30

SMF Record
Type 34

SMF Record
Type 35

SMF Record
Type 74

Record Type 92

 Record Type 80

Record Type 92
752 ABCs of z/OS System Programming Volume 9

environment, no further actions are necessary. If they are active for TSO/E accounting, it is
necessary (recommended) to suppress these records for UNIX processes. To suppress type
34 and type 35 records, add the following to the SMFPRMxx PARMLIB member:

SYS(TYPE(34,35)) SUBSYS(OMVS,NOTYPE(34,35))

SMF record type 74
SMF record type 74, subtype 3, reports kernel activity.

SMF record type 80
SMF record type 80 includes an extended length relocate section.

SMF record type 92
SMF record type 92 reports the activity of mounted file systems and files. I/O activity data
from an entire mounted file system is provided only when the file system is unmounted.
However, these records are useful because they provide information on the total space
available in the file system and the total space currently used. This provides an indication of
when it is time to increase the size of a mountable file system.
Chapter 15. Performance, debugging, recovery, and tuning 753

15.29 RMF reporting

Figure 15-29 RMF reporting of z/OS UNIX processing

RMF reports for z/OS UNIX
The Resource Measurement Facility (RMF) provides z/OS UNIX report information using
existing records as described previously.

RMF invokes the Monitor III procedure RMFGAT to obtain z/OS UNIX data. The RMFGAT
started task must be associated with a user ID that has an OMVS segment. The following
RACF command is usable to give RMFGAT a UID and to designate the root directory as its
home directory:

ADDUSER RMFGAT DFLTGRP(<OMVSGROUP>) OMVS(UID(4711) HOME('/'))

Gathering options for z/OS UNIX are not included in the default PARMLIB member for RMF
Monitor I. z/OS UNIX data is gathered by Monitor III, and not by Monitor I.

The Monitor III data gatherer collects z/OS UNIX data for input to the RMF post processor.
This data can be used to create a z/OS UNIX kernel activity report.

 Record Type 30

Record Type 92
RMF Monitor III

Gatherer

 Record Type 74
z/OS UNIX

Kernel Activity
ReportRMFGAT

Record Type 92
754 ABCs of z/OS System Programming Volume 9

15.30 RMF Monitor III support for zFS

Figure 15-30 RMF Monitor III support with z/OS V1R7

RMF Monitor III support
Two new Monitor III reports provide overview and performance information about the zFS
activity:

� The zFS Summary Report helps to control the zFS environment and the I/O balancing.

� The zFS Activity Report measures zFS activity on the basis of single file systems, for
example, a file system's performance and DASD utilization.

RMF data reporting
To use the zFS UNIX file system to its full capacity, it is necessary to apply appropriate tuning
options. The zFS performance especially depends on a suitable tailoring of its cache sizes to
reduce I/O rates and path lengths. The performance can also be improved by adapting
available disk space.

Therefore, this support provides a summary of zFS activity, response times and DASD
statistics on the current system and thus helps to control and tune the zFS environment. For
example, you can use the HIT% values in the Cache Activity section as indication whether the
current cache sizes are sufficient.

Monitor III zFS reports data in z/OS V1R7 on:

zFS response time/wait times

zFS cache activity

zFS activity/capacity by aggregate

zFS activity/capacity by filesystem

Data helps to control the zFS environment for:

Cache sizes

I/O balancing

Capacity control for zFS aggregates
Chapter 15. Performance, debugging, recovery, and tuning 755

15.31 zFS access to file systems

Figure 15-31 zFS cache and access to file data in the aggregates

zFS and access to cached data
zFS achieves its performance by caching file data and thus avoiding access to the file data by
accessing the DASD volumes. The metadata cache is used to contain all file system
metadata, which includes all directory contents, file status information (such as atime, mtime,
size, permission bits, and so on), file system structures, and it also caches data for files
smaller than 7K. Essentially, zFS stores a file by using one of the following three methods:

Inline If the file is smaller than 52 bytes, its data is stored in the structure that
contains the status information for the file.

Fragmented If the file is less than 7K, it is stored in blocks on disk that could be shared
with other files, hence multiple files are stored in the same physical disk
block. Physical disk blocks are always 8K in size.

Blocked Files larger than 7K are stored in multiple blocks, blocked files are only stored
in the user file cache, and all I/O is performed directly to or from user file
cache buffers.

Since inline files are stored in the status block, files that are stored on disk by using the inline
method are stored in the metadata and hence are cached in the metadata cache (and also in
the user file cache). Since the metadata cache is the only component that knows about
multiple files sharing the same disk blocks, small fragmented files are stored in the metadata
cache (and also in the user file cache) and I/O is performed directly to or from the metadata
cache for these small user files.

Continuous
Async I/O

Application

Synchronous
Application I/O

zFS Address space
and Dataspaces

Metadata
cache

Vnode
cache

Transaction
Cache

Log file
cache

User cache

F

/

F
F F

F

zFS VSAM data set
 (Aggregate)

zFS filesystem

f zfs,query,all
756 ABCs of z/OS System Programming Volume 9

Metadata cache
The metadata cache is stored in the primary address space and its default size is 32M. Since
the metadata cache only contains metadata and small files, it normally does not need to be
nearly as large as the user file cache. The operator F ZFS,QUERY,ALL command output
shows statistics for the metadata cache including the cache hit ratio and I/O rates from the
metadata cache.

An optional metadata backing cache can be specified that extends the size of the metadata
cache. It resides in a data space and increases the amount of metadata that can be kept in
memory. It may improve the performance of workloads that require large amounts of
metadata.
Chapter 15. Performance, debugging, recovery, and tuning 757

15.32 RMF Overview Report Selection Menu

Figure 15-32 RMF selection menu for zFS reports

RMF reports for zFS
The zFS Activity Report measures zFS activity on the basis of single file systems. With this
information, you can monitor DASD performance to ensure that there are no volumes or
channels working near the limit of their capacity (space and workload).

zFS Activity Report
To request the zFS Activity Report, select 1 from the Primary Menu, then 9 from the Overview
Report Selection Menu (shown in Figure 15-32), or enter one of the following commands:

� ZFSACT
� ZFSA

In addition, you can navigate to this report through cursor-sensitive control from the ZFSSUM
report to display zFS activity for a specific aggregate.

zFS Summary Report
To request the zFS Summary Report, select 1 from the Primary Menu, then 8 from the
Overview Report Selection Menu (shown in Figure 7 in topic 2.5) or enter one of the following
commands:

� ZFSSUM
� ZFSS

 RMF Overview Report Selection Menu
 Selection ===>

 Enter selection number or command for desired report.

 Basic Reports
 1 WFEX Workflow/Exceptions (WE)
 2 SYSINFO System information (SI)
 3 CPC CPC capacity

 Detail Reports
 4 DELAY Delays (DLY)
 5 GROUP Group response time breakdown (RT)
 6 ENCLAVE Enclave resource consumption and delays (ENCL)
 7 OPD OMVS process data
 8 ZFSSUM zFS Summary (ZFSS)
 9 ZFSACT zFS File system activity (ZFSA)

RMF Overview Report Selection Menu
(Detail reports)

Command interface
ZFSSUM or ZFSS:

zFS summary report
ZFSACT or ZFSA:

zFS activity report
Gatherer options:

Option NOZFS | ZFS
758 ABCs of z/OS System Programming Volume 9

15.33 zFS Summary Report

Figure 15-33 zFS Summary Report

zFS Summary Report
To use the zFS UNIX file system to its full capacity, it is necessary to apply appropriate tuning
options. The zFS performance especially depends on a suitable tailoring of its cache sizes to
reduce I/O rates and path lengths. The performance can also be improved by adapting
available disk space. Therefore, this report provides a summary of zFS activity, response
times, and DASD statistics on the current system and thus helps to control and tune the zFS
environment. For example, you can use the HIT% values in the Cache Activity section as
indication whether the current cache sizes are sufficient.

Response Time section
The Response Time section provides summary data for the overall response time for zFS
requests and breaks down the response time into percentages for various delay reasons.
This information can help to discover bottlenecks, for example with I/O operations.

Cache Activity section
The Cache Activity section provides an overview of zFS cache activity of the four main cache
types (user file, vnode, metadata, and transaction caches).

Aggregate Name section
The Aggregate Name section provides measurements about zFS activity related to single
zFS aggregates. With this information you can check whether the disk space allocations for
the aggregates are appropriate.

Response time section:
Average response time for
zFS request

Wait percentages

Cache activity:
Request rates
Hit ratios
% read requests
% requests delayed

Aggregate section:
Capacity data
Mount mode
filesystems in the aggregate
Read / Write rates (Bytes per
second)

 RMF V1R7 zFS Summary Report Line 1 of 3
 Command ===> Scroll ===> CSR

 Samples: 120 System: TRX2 Date: 09/07/04 Time: 16.30.00 Range: 120 Sec

 ---- Response Time ---- ---------------- Cache Activity ----------------------
 ----- Wait% ----- --------- User ------ -- Vnode -- - Metadata - -Trx -
 Avg I/O Lock Sleep Rate Hit% Read% Dly% Rate Hit% Rate Hit% Rate
 0.27 0.4 80.7 0.0 405.5 100 0.0 0.0 0.0 0.0 10.9 99.9 0.2

 ------------Aggregate Name------------------ Size Use% --Mode- FS Read Write
 (B/Sec)

 OMVS.TRX2.LOCAL.COMPAT.A.ZFS 528K 29.2 R/W CP 1 0 137
 OMVS.TRX2.LOCAL.MULTI.A.ZFS 2160K 8.0 R/W MS 3 0 137
 RMF.TEST.ZFS.HFSMF1 7200K 16.1 R/W MS 3 137 1058

zFS Actvity report for
Aggregate name
Chapter 15. Performance, debugging, recovery, and tuning 759

15.34 zFS Summary I/O details by type

Figure 15-34 Summary Report details by type

Response Time
Avg Average time in milliseconds required for the completion of the zFS requests during

the reporting interval.

The following Wait percentages are reported:

I/O Percentage of time that zFS requests had to wait for I/O completion.

Lock Percentage of time that zFS requests had to wait for locks.

Sleep Percentage of time that zFS requests had to wait for events.

Cache Activity
The user file cache is for caching regular user files that are larger than 7K. The measured
statistics have the following meanings:

Rate Total number of read and write requests per second made to the user file cache.

Hit% Percentage of read and write requests to the user file cache that completed without
accessing the DASDs.

Read% Percentage of read requests, based on the sum of read and write requests.

Dly% Percentage of delayed requests, with the following events counted as delays:

Read wait: A read request must wait for a pending I/O operation.

Write wait: A write request must wait because of a pending I/O operation.

 RMF V1R7 zFS Summary Report Line 1 of 3
 Command ===> Scroll ===> CSR

 Samples: 120 System: TRX2 Date: 09/07/04 Time: 16.30.00 Range: 120 Sec

 ---- Response Time ---- ---------------- Cache Activity ----------------------
 ----- Wait% ----- --------- User ------ -- Vnode -- - Metadata - -Trx -
 Avg I/O Lock Sleep Rate Hit% Read% Dly% Rate Hit% Rate Hit% Rate
 0.27 0.4 80.7 0.0 405.5 100 0.0 0.0 0.0 0.0 10.9 99.9 0.2

 ------------Aggregate Name------------------ Size Use% --Mode- FS Read Write
 (B/Sec)

 OMVS.TRX2.LOCAL.COMPAT.A.ZFS 528K 29.2 R/W CP 1 0 137
 OMVS.TRX2.LOCAL.MULTI.A.ZFS 2160K 8.0 R/W MS 3 0 137
 RMF.TEST.ZFS.HFSMF1 7200K 16.1 R/W MS 3 137 1058

 zFS Summary - I/O Details by Type

Count Waits Cancl Merge Type
 815 326 0 0 FILE SYSTEM METADATA
 346 23 0 29 LOG FILE
 1447 175 0 2 USER FILE DATA

 Press Enter to return to the Report panel.
760 ABCs of z/OS System Programming Volume 9

Write faulted: A write request to a file in the user file cache needs to perform a
read operation from DASD before writing, because the required
page of that file is currently not in the cache.

Vnode
The vnode cache is used to hold virtual inodes. An inode is a data structure related to a file in
the file system, holding information about the file's user and group ownership, access mode
and type. The measured statistics have the following meanings:

Rate Number of read and write requests per second made to the vnode cache.

Hit% Percentage of read and write requests to the vnode cache that completed without
accessing the DASDs.

Metadata
The metadata cache is used for file system metadata and for files smaller than 7K. It resides
in the primary z/FS address space. An optional metadata backing cache, which resides in a
data space, can be used as an extension to the metadata cache. The measured statistics
have the following meanings:

Rate Number of read and write requests per second made to the metadata cache

Hit% Percentage of read and write requests to the metadata cache that completed
without accessing the DASDs

Trx
The transaction cache is used for caching data structures that change metadata. There is one
measured statistics:

Rate Number of transactions per second that started in the transaction cache

Aggregate Activity section
This section contains the following:

� Name of the zFS aggregate, that is, the name of the VSAM Linear Data Set (VSAM LDS)

� Size of the aggregate

� Percentage of used space in the aggregate

� Read data transfer rate in bytes/second for the aggregate

� Write data transfer rate in bytes/second for the aggregate

I/O Details by Type report
The zFS Summary - I/O Details by Type report displays a breakdown of I/O requests into the
following types: I/O for file system metadata, I/O for log data, and I/O for user file data.

Count Total number of I/O requests of the indicated type

Waits Number of zFS requests waiting for an I/O completion of the indicated I/O type

Cancl Number of cancelled zFS requests during an I/O request of the indicated type, for
example, a user tried to delete a file during a pending I/O to this file's metadata

Merge Number of merges of two I/O requests into a single request because of better
performance

Type Type of the I/O request (I/O for metadata, log data or user file data)

Note: From any value in the Wait% -I/O field, you can reach the I/O Details by Type panel.
Chapter 15. Performance, debugging, recovery, and tuning 761

15.35 User and vnode cache detail

Figure 15-35 User cache and vnode cache details

User and vnode cache detail
The user file cache is for caching regular user files that are larger than 7K. The zFS Summary
- User Cache Details report displays the following details of the user file cache activity.

User file cache
Read Rate Number of read requests per second made to the user file cache

Write Rate Number of write requests per second made to the user file cache

Read Hit (%) Percentage of read requests to the user file cache that completed without
accessing the DASD

Write Hit (%) Percentage of write requests to the user file cache that completed without
accessing the DASD

Read Delay (%) Percentage of delayed read requests to the user file cache. A read request
is delayed if it must wait for pending I/O, for example, because the file is in
a pending read state due to asynchronous read ahead from DASD to the
user file cache.

Write Delay (%) Percentage of delayed write requests to the user file cache

The following reasons are counted as write request delays:

Write wait Write must wait for pending I/O.

 Vnode cache details:
 Request rate, hit ratio
 Vnode statistics

 RMF V1R7 zFS Summary Report Line 1 of 3
 Command ===> Scroll ===> CSR

 Samples: 120 System: TRX2 Date: 09/07/04 Time: 16.30.00 Range: 120 Sec

 ---- Response Time ---- ---------------- Cache Activity ----------------------
 ----- Wait% ----- --------- User ------ -- Vnode -- - Metadata - -Trx -
 Avg I/O Lock Sleep Rate Hit% Read% Dly% Rate Hit% Rate Hit% Rate
 0.27 0.4 80.7 0.0 405.5 100 0.0 0.0 0.0 0.0 10.9 99.9 0.2

 ------------Aggregate Name------------------ Size Use% --Mode- FS Read Write
 (B/Sec)

 OMVS.TRX2.LOCAL.COMPAT.A.ZFS 528K 29.2 R/W CP 1 0 137
 OMVS.TRX2.LOCAL.MULTI.A.ZFS 2160K 8.0 R/W MS 3 0 137
 RMF.TEST.ZFS.HFSMF1 7200K 16.1 R/W MS 3 137 1058

zFS Summary - User Cache Details

 Read Rate : 27.4 Size : 256M
 Write Rate : 16.9 Total Pages : 65536
 Read Hit (%) : 59.4 Free Pages : 12703
 Write Hit (%) : 100.0 Segments : 8192
 Read Delay (%) : 1.3
 Write Delay (%) : 0.0 User Cache readahead: ON
 Async Read Rate : 10.1 Storage fixed : NO
 Scheduled Write Rate : 83.8
 Page Reclaim Writes : 0
 Fsyncs : 0

Press Enter to return to the Report panel.

zFS Summary - Vnode Cache Details

 Request Rate : 14.2 vnodes : 65536
 Hit% : 99.9 vnode size : 168
 ext. vnodes : 65536
 ext. vnode size : 668
 open vnodes : 12
 held vnodes : 44

Press Enter to return to the Report panel.

 User cache details:
 Request rates, hit ratios, delays
 Storage statistics
762 ABCs of z/OS System Programming Volume 9

Write faulted Write to a file needs to perform a read from DASD. If a
write-only updates a part of a file's page, and this page is not
in the user file cache, then the page must be read from
DASD before the new data is written to the cache.

Async Read Rate Number of read-aheads per second.

Scheduled Write Rate Number of scheduled writes per second.

Page Reclaim Writes Total number of page reclaim writes. A page reclaim write action
writes one segment of a file from the user file cache to DASD.
Page reclaim writes are performed to reclaim space in the user
file cache. If page reclaim writes occur too often in relation to the
write rate, then the user file cache may be too small.

Fsyncs Total number of requests for file synchronization (fsync) between
user file cache and DASD.

Size Total size of the user file cache.

Total Pages Total number of pages in the user file cache.

Free Pages Total number of free pages in the user file cache.

Segments Total number of allocated segments in the user file cache.

User Cache readahead Shows if the zFS parameter user_cache_read is on or off. This
parameter specifies whether zFS performs read-ahead for
sequential access.

Storage fixed Shows whether the size of the user file cache storage is fixed. If
the zFS parameter user_cache_size is set to “fixed”, then zFS
reserves real storage for use by zFS only. The fixed option helps
to improve performance during data access and can be applied if
you have enough real memory available.

Vnode cache detail
The vnode cache is used to hold virtual inodes. An inode is a data structure related to a file in
the file system, holding information about the file's user and group ownership, access mode
and type. The zFS Summary- Vnode Cache Details report displays the following details of the
vnode cache activity.

Request Rate Number of requests per second made to the vnode cache.

Hit (%) Percentage of requests to the vnode data that found the target vnode
data structures in the vnode cache. High hit rates indicate a favorable
zFS environment, because each miss involves initialization of vnode data
structures in the vnode cache.

Vnodes Number of currently allocated vnodes in the vnode cache. If more vnodes
are requested than are currently available, then zFS dynamically
allocates more vnodes.

Vnode Size Size of a vnode data structure in bytes.

Ext. Vnodes Number of extended vnodes.

Ext. Vnode Size Size of an extended vnode data structure in bytes.

Open Vnodes Number of currently open vnodes.

Held Vnodes Number of vnodes currently held in zFS by USS.
Chapter 15. Performance, debugging, recovery, and tuning 763

15.36 DFSMSdss dump and restore for zFS file systems

Figure 15-36 APARs to automatically quiesce and copy aggregates

Dump and restore aggregates
With z/OS V1R4, support is added with a series of APARs to quiesce zFS data sets during
logical dump and logical copy operations. This allows the user to perform logical dump and
logical copy of mounted zFS data sets, without having to first quiesce or unmount the zFS.

The quiesce ability allows you to dump a zFS data set while it is in use, as long as you run the
dump job on the same system that the zFS data set is currently mounted on.

After installing these APARs, any existing zFS data sets must be unmounted or detached and
remounted or reattached in order to activate the DFSMSdss support for those zFS data sets.

Note: When this became available, the dump or copy operation had to be executed on the
same system to which the zFS is mounted. This restriction is removed in z/OS V1R7.

DFSMS new function APARs for z/OS V1R4

OW57046 - Catalog flag for zFS aggregate

OW57015 - DFSMS catalog support

OW57141 - DSS support

OW57017 - Listcat support

OA02713 - HSM support

Current method for backup - restore

1. Quiesce the aggregate (this drains any activity and
suspends any new requests)

2. Backup the aggregate (and all the file systems)

3. Unquiesce the aggregate (allow zFS activity to continue)

- APARS allow DFSMS
to automatically quiesce
the aggregate
- Concurrent Copy can
be used
764 ABCs of z/OS System Programming Volume 9

15.37 UNQUIESCE command

Figure 15-37 UNQUIESCE command with z/OS V1R7

UNQUIESCE operator command
With z/OS V1R7, this new operator command enables you to query internal ZFS counters
and values. They are displayed on the system log. It also allows you to initiate or gather
debugging information. The ZFS PFS must be running to use this command.

The command syntax must be issued from the owning system and is as follows for aggregate
ROGERS.HARRY.ZFS:

F ZFS,UNQUIESCE,ROGERS.HARRY.ZFS

The UNQUIESCE option causes a quiesced aggregate to become unquiesced. Only locally
attached aggregates can be unquiesced using the F UNQUIESCE command. You must issue
this command on the system that owns the aggregate.

List the system that owns the aggregate
Use the z/OS UNIX zfsadm lsaggr command to determine which system owns the
aggregate.

PAUL @ SC65:/>zfsadm lsaggr
IOEZ00106I A total of 4 aggregates are attached
TRAUNER.ROLAND.ZFS SC63 R/W
ZFSFR.ZFSG.ZFS SC65 R/W
OMVS.D8F2O2S.HFS SC64 R/W
ROGERS.HARRY.ZFS SC70 R/W QUIESCE

Previously, if a zFS aggregate was quiesced and the
job failed to unquiesce it, you would need to use
OMVS - zfsadm unquiesce command

Not possible to unquiesce from operator console

z/OS V1R7 new command to issue unquiesce

F ZFS,UNQUIESCE,OMVS.HERING.@TEST.ZFS

Must be issued from the owning system

This command only works on z/OS V1R7

Must be issued from the owning system

Does not forward requests to other members of the
sysplex
Chapter 15. Performance, debugging, recovery, and tuning 765

15.38 zFS recovery support

Figure 15-38 zFS recovery utilities

zFS Salvager utility
Every zFS aggregate contains a log file used to record transactions describing changes to the
file system structure. This log file is, by default, 1% of the aggregate size but is tailorable by
the administrator on the ioeagfmt command. Usually, 1% is sufficient for most aggregates.
Especially large aggregates might need less than 1% while very small aggregates might need
more than 1% if a high degree of parallel update activity occurs for the aggregate.

The zFS utility scans an aggregate and reports inconsistencies. Aggregates can be verified,
recovered (that is, the log is replayed), or salvaged (that is, the aggregate is repaired). This
utility is known as the Salvager.

This utility is not normally needed. If a system failure occurs, the aggregate log is replayed
automatically the next time the aggregate is attached (or for compatibility mode aggregates,
the next time the file system is mounted). This normally brings the aggregate (and all the file
systems) back to a consistent state.

Salvager utility options
The ioeagslv utility invokes the Salvager on the zFS aggregate specified with the -aggregate
option. Following a system restart, the Salvager employs the zFS file system log mechanism
to return consistency to a file system by running recovery on the aggregate on which the file
system resides. Recovery means replaying of the log on the aggregate; the log records all
changes made to metadata as a result of operations such as file creation and deletion. If
problems are detected in the basic structure of the aggregate, if the log mechanism is

zFS is a logging file system
It logs metadata updates
On a system crash, the log is replayed to bring the file
system to a consistent state

I/O requests are started immediately (asynchronously)
so on a system crash, most data is already on disk
Salvager utility - provides aggregate recovery

-recoveronly - Recover the specified aggregate by
replay of log of metadata changes

-verifyonly - Verify the aggregate structure to
determine if it contains any inconsistencies and report

-salvageonly - Salvage the aggregate and attempt to
repair any inconsistencies it finds
766 ABCs of z/OS System Programming Volume 9

damaged, or if the storage medium of the aggregate is suspect, the ioeagslv utility must be
used to verify or repair the structure of the aggregate.

The primary options you specify when using the utility are:

ioeagslv -aggregate name [-recoveronly] [-verifyonly | -salvageonly]

-recoveronly Directs the Salvager to recover the specified aggregate. The Salvager
replays the log of metadata changes that resides on the aggregate.

-verifyonly Directs the Salvager to verify the specified aggregate. The Salvager
examines the structure of the aggregate to determine if it contains any
inconsistencies, reporting any that it finds.

-salvageonly Directs the Salvager to salvage the specified aggregate. The Salvager
attempts to repair any inconsistencies it finds on the aggregate.
Chapter 15. Performance, debugging, recovery, and tuning 767

15.39 zFS aggregate corruption

Figure 15-39 Using the ioeagslv program

Recovering from aggregate corruption
Use the utility's -recoveronly, -verifyonly, and -salvageonly options to indicate the
operations the Salvager is to perform on the specified aggregate.

The following rule summarizes the interaction of these options: The salvage command runs
recovery on an aggregate and attempts to repair it unless one of the three salvage options is
specified; if one of these options is specified, you must explicitly request any operation you
want the Salvager to perform on the aggregate.

Specify the -recoveronly option
Use this option to run recovery on the aggregate without attempting to find or repair any
inconsistencies found on it. Recovery is the replaying of the log on the aggregate. Use this
option to quickly return consistency to an aggregate that does not need to be salvaged; this
represents the normal production use of the Salvager. Unless the contents of the log or the
physical structure of the aggregate are damaged, replaying the log is an effective guarantee
of a file system's integrity.

Specify the -verifyonly option
Use this option to determine whether the structure of the aggregate contains any
inconsistencies without running recovery or attempting to repair any inconsistencies found on
the aggregate. Use this option to assess the extent of the damage to an aggregate. The
Salvager makes no modifications to an aggregate during verification. Note that it is normal for
the Salvager to find errors when it verifies an aggregate that has not been recovered; the

If zFS determines a disk is corrupt it issues an abend
 A PMR should be reported

If a disk corruption occurs: Run the ioeagslv program
 On all affected file systems
 IOEAGSLV VERIFYONLY - Checks a file system to:

Make sure it is intact
Issue messages if the file system is not intact

If not intact you can run: IOEAGSLV SALVAGEONLY
This puts the file system in an inactive state

Since there was disk corruption files may be missing
IOEAGSLV can fix the metadata for corrupted files
Possible for missing files depending on the corruption
of the lost data
768 ABCs of z/OS System Programming Volume 9

presence of an unrecovered log on an aggregate makes the findings of the Salvager, positive
or negative, of dubious worth.

Specify the -recoveronly and -verifyonly options
Use these options to run recovery on the aggregate and then analyze its structure without
attempting to repair any inconsistencies found on it. Use these options if you believe
replaying the log can return consistency to the aggregate, but you want to verify the
consistency of the aggregate after recovery is run. Recovering an aggregate and then
verifying its structure represents a cautious application of the Salvager.

Specify the -salvageonly option
Use this option to attempt to repair any inconsistencies found in the structure of the aggregate
without first running recovery on it. Use this option if you believe the log is damaged or
replaying the log does not return consistency to the aggregate and may in fact further
damage it. In most cases, you do not salvage an aggregate without first recovering it.

Omit the -recoveronly, -verifyonly, and -salvageonly options
Do this to run recovery on the aggregate and then attempt to repair any inconsistencies found
in the structure of the aggregate. Because recovery eliminates inconsistencies in an
undamaged file system, an aggregate is typically recovered before it is salvaged. In general,
it is good first to recover and then to salvage an aggregate if a system goes down or
experiences a hardware failure.

Authorization required
If only the -verifyonly option is included, the issuer needs only READ authority for the
specified VSAM LDS (aggregate).

If the -recoveronly or -salvageonly option is included, or if all three of these options are
omitted, the issuer must have ALTER authority for the specified VSAM LDS.

In addition, the user must be uid 0 or have READ authority to the
SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Note: Omit these three options if you believe the log should be replayed before attempts
are made to repair any inconsistencies found on the aggregate. Omitting the three options
is equivalent to specifying the -recoveronly and -salvageonly options.
Chapter 15. Performance, debugging, recovery, and tuning 769

15.40 Debugging data sets

Figure 15-40 Debugging data sets

Debugging data sets
Depending on whether the IOEFSPRM file is used or the IOEPRMxx PARMLIB member for
the zFS parameters, you can define debugging data sets.

msg_output_dsn option
This data set, if specified, contains any output messages that come from the ZFS PFS. This
message output data set is only used for zFS initialization messages. This may be helpful for
debugging since this data set can be sent to IBM service if needed. The msg_output_dsn is
optional. If it is not specified, ZFS PFS messages go only to the system log.

The data set should be preallocated as a sequential data set with a RECFM=VB and
LRECL=248 and should be large enough to contain all ZFS PFS initialization messages
between restarts. The space used depends on how many zFS initialization messages are
issued. A suggested primary allocation is 2 cylinders with a secondary allocation of 2
cylinders. The F ZFS,QUERY command output is written to the system log only.

trace_dsn
This data set contains the output of any operator F ZFS,TRACE,PRINT commands or the
trace output if the ZFS PFS abends. Each trace output creates a member in the PDSE.
Traces that come from the ZFS PFS kernel have member names of ZFSKNTnn. nn starts
with 01 and increments for each trace output. nn is reset to 01 when ZFS is started (or
restarted).

IOEFSPRM file - or - IOEPRMxx PARMLIB data sets

msg_output_dsn

Output messages that come from the ZFS PFS

trace_dsn

Contains the output of an operator F ZFS,TRACE,PRINT
command or the trace output if the ZFS PFS abends

With sysplex sharing - can use &SYSNAME for different
data sets on each member

Specifying IOEPRMxx and IOEFSPRM in a sysplex

msg_output_dsn=HLQ.&SYSNAME..ZFS.MSGOUT
trace_dsn=HLQ.&SYSNAME..ZFS.TRACEOUT
770 ABCs of z/OS System Programming Volume 9

Sysplex sharing mode
The msg_output_dsn specification or the trace_dsn specification can be shared across
systems in a sysplex if you use system symbols to differentiate the data set names you are
using in the IOEFSPRM file or the IOEPRMxx PARMLIB member. For example:

msg_output_dsn=HLQ.&SYSNAME..ZFS.MSGOUT
trace_dsn=HLQ.&SYSNAME..ZFS.TRACEOUT

IOEFSPRM and IOEPRMxx in a sysplex
It is possible to have multiple IOEPRMxx members and it is also possible to have IOEPRMxx
members that are shared among all members of the sysplex, and another IOEPRMxx
member that contains options that are specific to a particular sysplex member.

When the IOEFSPRM is specified in the IOEZPRM DD statement of the ZFS PROC, there
can only be one IOEFSPRM file for each member of a sysplex.
Chapter 15. Performance, debugging, recovery, and tuning 771

15.41 zFS hang detection

Figure 15-41 zFS hang detection processing

zFS hang detection
The zFS hang detector, intended for use by IBM Service, monitors the current location of the
various tasks processing in zFS. At a set interval, the hang detector thread wakes up and
scans the current user requests that have been called into zFS. The hang detector processes
this list of tasks and notes various pieces of information that allow it to determine the location
of the task. When the hang detector determines that a task has remained in the same location
for a predefined period of time, it flags the task as a potential hang and generates message
IOEZ00524I or IOEZ00547I to the console. If on a subsequent iteration the hang detector
recognizes that this task has finally progressed, it will DOM the message (remove it from the
console). If the message is removed by zFS, it means that there was no hang.

Messages IOEZ00524I or IOEZ00547I only indicate a potential hang. Further review of the
situation is necessary to determine if a hang condition really exists.

Hang detection monitoring
Perform the following steps when a hang condition occurs:

1. Continually monitor for the following messages:

IOEZ00524I zFS has a potentially hanging thread.
IOEZ00547I zFS has a potentially hanging XCF request.

Messages IOEZ00524I and IOEZ00547I are also issued and cleared when slowdown
occurs—this is not an indication of a hang, but that things are progressing slowly due to
stressful workload or some other issue. Message IOEZ00547I (hanging XCF request) can

If a zFS hang occurs, it usually takes awhile before
it is detected

The longer it takes before the hang is detected
The longer some applications are hanging
The less likely the information needed to diagnose
the problem is still available

z/OS V1R8 enhancement
Issue a message when hangs are detected

IOEZ00524I zFS has a potentially hanging thread
New command to find hanging threads

F ZFS,QUERY,THREADS

Use F ZFS,HANGBREAK
Attempts to break the hang condition
772 ABCs of z/OS System Programming Volume 9

indicate an XCF issue. To start investigating, issue D OMVS,W to check the state of
sysplex messages/waiters.

2. Issue the F ZFS,QUERY,THREADS command to determine whether any zFS threads are
hanging and why.

3. Enter the D A,ZFS command to determine the zFS ASID.

4. Enter F ZFS,QUERY,THREADS at one to two minute intervals for six minutes.

5. Interrogate the output for any user tasks (tasks that do not show the zFS ASID) that are
repeatedly in the same state during the time you issued F ZFS,QUERY,THREADS. If
there is a hang, this user task will persist unchanged over the course of this time span. If
the information is different each time, there is no hang.

6. Verify that no zFS aggregates are in the QUIESCED state by checking their status using
the zfsadm lsfs or zfsadm aggrinfo command. For example, quiesced aggregates
display as follows:

DCESVPI:/home/susvpi/> zfsadm lsaggr
IOEZ00106I A total of 1 aggregates are attached
SUSVPI.HIGHRISK.TEST DCESVPI R/W QUIESCE
DCESVPI:/home/susvpi/> zfsadm aggrinfo
IOEZ00370I A total of 1 aggregates are attached.
SUSVPI.HIGHRISK.TEST (R/W COMP QUIESCED): 35582 K free out of total 36000
DCESVPI:/home/susvpi/>

Resolve the QUIESCED state, continuing to determine if there is a real hang condition.
The hang condition message can remain on the console for up to a minute after the
aggregate is unquiesced.

7. Check if any user tasks are hung. User tasks will not have the same address space
identifier (ASID) as the zFS address space. One or more threads consistently at the same
location might indicate a hang (for example, Recov, TCB, ASID Stack, Routine, and
State). The threads in the zFS address space with the zFS ASID (for example, xcf_server)
are usually waiting for work. It is normal for the routine these threads are waiting in to have
the same name as the entry routine.

8. If you are sure there is a valid hang condition and not a slowdown, IBM Support will need
dumps of zFS, OMVS and the OMVS data spaces for problem resolution. Obtain and save
SYSLOG and dumps of zFS, OMVS and the OMVS data spaces using
JOBNAME=(OMVS,ZFS),DSPNAME=('OMVS'.*) in your reply to the DUMP command. If
you are running in a sysplex and zFS is running on other systems in the sysplex, dump all
the systems in the sysplex where zFS is running, dumping zFS, OMVS and OMVS data
spaces. The following is an example of the DUMP command:

DUMP COMM=(zfs hang)
R x,JOBNAME=(OMVS,ZFS),SDATA=(RGN,LPA,SQA,LSQA,PSA,CSA,GRSQ,TRT,SUM),
DSPNAME=('OMVS'.*),END

9. If you know which task is hung, issue the CANCEL command to clear the job.

10.As a last resort to recover from what seems to be a hang, issue the F ZFS,HANGBREAK
command to break the hang condition. F ZFS,HANGBREAK posts any threads that zFS
suspects to be in a hang with an error and can cause abends and dumps to occur, which
you can ignore. When you issue F ZFS,HANGBREAK, the hang message can remain on
the console for up to one minute. If you question the hang condition or if F
ZFS,HANGBREAK does not seem to have resolved the situation, contact IBM Support
and provide the dump and SYSLOG information.
Chapter 15. Performance, debugging, recovery, and tuning 773

15.42 z/OS UNIX Internet information

Figure 15-42 Where to find information about z/OS UNIX on the Internet

z/OS UNIX Internet information
Figure 15-42 shows the Web address for information about performance considerations in
various areas of z/OS UNIX.

Performance tips

General performance tuning guidelines

Use of virtual storage in the HFS

Tuning ported UNIX applications

Other resources

Java performance considerations

XML Toolkit performance considerations

WebSphere Troubleshooter - see the hints and tips

Web server tuning: hints and tips

z/OS UNIX performance tools

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1tun.html
774 ABCs of z/OS System Programming Volume 9

Chapter 16. Printing services for z/OS UNIX

This chapter discusses how printing requirements are changing, explains why print
consolidation with z/OS is the best way to handle printing, and describes how the Infoprint
Server supports printing in the z/OS environment for z/OS UNIX users from the shell.

In today's networked environments, printers are often attached to a single workstation or are
only available to users of a LAN. Infoprint Server lets you define all of your printers in a
centralized repository. Any user in the network can send print jobs from z/OS and LAN clients
to any printer that is defined to Infoprint Server.

Users and application programs in a z/OS network, including LAN and z/OS UNIX System
Services environments, can take full advantage of Infoprint Server's many benefits, which
give users the ability to:

� Access all defined printers

� Handle print jobs effectively

� Detect and transform data streams

� Support common printer languages

� Monitor printer status

� Query job status

� Create AFP output from Windows® applications

� Browse AFP documents on the Web

� Send print output to e-mail addresses

� Work with print jobs and printers

16
© Copyright IBM Corp. 2006, 2008. All rights reserved. 775

16.1 How do I print and where

Figure 16-1 Where and how a z/OS UNIX user prints

Printing from z/OS UNIX
In a modern environment the possibilities for printing are endless. The question is not only to
find the right path to the printer, but also how fast the printer is, the transmission to the printer,
and which printer can be used. Normally the user who wants to print a document is not
concerned about how his print job reaches the printer.

Infoprint Server is the framework for a total print serving solution for the z/OS system
environment. It lets you use the right printer for specific print jobs, balance print workload
across all available printers, and more easily manage the inventory of printers.

?

776 ABCs of z/OS System Programming Volume 9

16.2 z/OS Infoprint Server

Figure 16-2 Overview of the Infoprint Server

Overview of Infoprint Server
Infoprint Server is an optional feature of OS/390 Version 2 Release 8 and higher, and z/OS
Version 1 Release 1 and higher. Infoprint Server is a UNIX application that uses OS/390
UNIX System Services in OS/390 systems and z/OS UNIX System Services in z/OS systems.
This feature is the basis for a total print serving solution for the OS/390 or z/OS environment
in a TCP/IP network.

Infoprint Server lets users submit print requests from remote workstations in a TCP/IP
network, from UNIX System Services applications, from batch applications, and from VTAM
applications, such as CICS or IMS applications. It allows you to consolidate your print
workload from the servers onto a central z/OS print server as shown in Figure 16-2.

To give the end user more comfort and more options for printing, the z/OS Infoprint Server
was introduced with OS/390 V2 R8. This new optional feature gives users the opportunity to
consolidate print workloads on z/OS. It allows access to fast and reliable AFP printers, JES
printers, or TCP/IP connected printers from z/OS, including UNIX services and LAN clients.

Users can define their printers in a central repository allowing clients in the network to use
any printer in the enterprise that is registered to the z/OS Infoprint Server.

The z/OS Infoprint Server also provides support for Windows 95 and Windows NT® operating
systems and for z/OS UNIX.

TCP/IPTCP/IP
NetworkNetwork

Bank statements

z/OS UNIX System
Services Applications

Invoices E-mail Sales reports

Manuals Web documents Bill of materials
Payroll Inventory control Memos

Host
Running

LPD

Local Printers LPD Printers

Direct Socket
Printing

IP PrintWay

TSO or Batch
Applications

LAN Applications
(Windows, OS2, UNIX)

VTAM Applications
(CICS, IMS)

JES Spoolz/OS
Infoprint
Server

Print Interface
NetSpool

Infoprint Central
Chapter 16. Printing services for z/OS UNIX 777

16.3 Infoprint Server components

Figure 16-3 Infoprint Server components

Infoprint Server components
Figure 16-3 shows the components of Infoprint Server and how they fit into your operating
system. The key components for z/OS UNIX users are:

Print Interface Print Interface is the component of the Infoprint Server that accepts input
from remote workstations that have TCP/IP access, and from z/OS UNIX
System Services printing commands, and creates output data sets on the
JES spool.

Printer Inventory The Printer Inventory contains information about both local and remote
printers and is maintained by the system administrator using an ISPF
application. When a user sends data to be printed, the printer definition in
the Printer Inventory is used to determine where to print the data.

Print commands A z/OS UNIX Services user can print files using the Print Interface
Services. Print Interface provides enhanced versions of the z/OS UNIX
System Services shell printing commands. These commands have more
functions than the standard UNIX shell printing commands.

Transforms An administrator can set up the transforms to automatically convert data
when printing. A user can also transform documents to and from the AFP
data format from the z/OS UNIX command line. Documents transformed
from the command line can be saved in the converted format and printed
later or sent to other users.

IP
PrintWay

IP
PrintWay

TCP/IP
LAN

Windows Clients Workstations

TSO
Applications

VTAM
Applications

Batch
Output

z/OS UNIX
 System Services

Print InterfaceNetSpool

Printing
Commands

z/OS UNIX Shell
Transform Commands

SNMP Subagent

IPP Server

Transform Manager

Transforms

Printer Inventory Manager

IP PrintWay PSF for z/OSIPP Client

z/OS

JES2 or
JES3 Spool

Printer
Inventory

DFS/SMB Server

Infoprint Port Monitor
UNIX, AIX, HPUX, OS/400
OS/2, Windows (IPP,SMB)

IBM Network Station

HFS

Infoprint Central
778 ABCs of z/OS System Programming Volume 9

16.4 Installation of Infoprint Server

Figure 16-4 Customizing the Infoprint Server

Customization files for Infoprint Server
The Infoprint Server configuration file, aopd.conf, lets you customize the Printer Inventory
Manager and other components of Infoprint Server. This file is optional. If the configuration
file does not exist or if an attribute in the configuration file is omitted, default values are used.

Infoprint Server environment variables can be set in these two locations:

� In the aopstart EXEC: The Printer Inventory Manager, and other Infoprint Server
daemons, use environment variables specified in this file.

� In the /etc/profile file: The z/OS UNIX printing commands and other commands, such as
lp, pidu, and ps2afp, use environment variables specified in this file.

To edit the /etc/profile file, you can use the TSO/E OEDIT command or the z/OS UNIX oedit
command. To set and export an environment variable, use the z/OS UNIX export command.
For example, if you installed Infoprint Server libraries in the default locations, add these
commands to the /etc/profile file.

As shown in Figure 16-5 on page 781, the following customization steps should be done to
configure the HFS and the configuration files you require for your installation:

1. Create the /etc/Printsrv directory. You can use the UNIX mkdir command under the /etc
directory or the ISHELL to create the /etc/Printsrv directory. This directory is the default
location for the Infoprint Server configuration files, aopd.conf, aopxfd.conf, and
aopsapd.conf.

/etc/aopd.conf
lpd-port-number = 515
ipp-port-number = 631
base-directory = /var/Printsrv
ascii-codepage = ISO8859-1
ebcdic-codepage = IBM-1047
job-prefix = PS
inventory = AOP1
start-daemons = { lpd }
snmp-community = public

/usr/lpp/Printsrv
Configuration file
Printer definitions
Executables - samples -
messages - Windows client

/etc/profile
export AOPCONF=/etc/Printsrv/aopd.conf
export LIBPATH=/usr/lpp/Printsrv/lib:$LIBPATH
export MANPATH=/usr/lpp/Printsrv/man/%L:$MANPATH
export NLSPATH=/usr/lpp/Printsrv/%L/%N:$NLSPATH
export PATH=/usr/lpp/Printsrv/bin:$PATH
Chapter 16. Printing services for z/OS UNIX 779

2. Create the /var/Printsrv directory. Issue the UNIX mkdir command or use the ISHELL to
create the directory. If you do not create this directory, the aopsetup shell script will create
it.

3. Set up the Infoprint Server configuration files for use. Copy the sample configuration files
from /usr/lpp/Printsrv/samples to the default location /etc/Printsrv/ with the z/OS UNIX cp
command or use the ISPF ISHELL. You can choose to copy the configuration file into
another location; however, if you do, specify the full path name of the configuration file in
the AOPCONF environment variable in the /etc/profile file.
780 ABCs of z/OS System Programming Volume 9

16.5 Infoprint Server HFS directories/files

Figure 16-5 HFS directory for Infoprint Server directories and files

Infoprint Server directory structure
The Printer Inventory Manager uses these hierarchical file system (HFS) directories:

� The /etc/Printsrv directory is the default location for Infoprint Server configuration files.

� The /var/Printsrv directory is the default location for the Printer Inventory files.

The aopsetup shell script defines permissions for the /var/Printsrv directory.

All Infoprint Server operator commands to be issued from the OMVS shell are accessed
through /usr/lpp/Printsrv/bin. Use environment variables to give z/OS UNIX users and
Infoprint Server administrators and operators access to the commands.

Note: The configuration files must be copied from /usr/lpp/Printsrv/samples to
/etc/Printsrv.

Note: You access the aopsetup command through /usr/lpp/Printsrv/bin directory.

Root /

usr etcvar

lpp

Printsrv

Printsrv Printsrv

samples bin

files files

files files
aopd.conf
aopsapd.conf
aopxfd.conf

aopsetup

(1)(2)

(3)
Chapter 16. Printing services for z/OS UNIX 781

16.6 Printer Inventory directories and files

Figure 16-6 Files created in the Printer Inventory

Printer Inventory directories
The Printer Inventory Manager uses two hierarchical file system (HFS) directories:

� The /etc/Printsrv directory, which is the default location for Infoprint Server configuration
files.

The /etc/Printsrv directory contains all Infoprint Server configuration files. This directory is
created automatically with the appropriate permissions when you install Infoprint Server.

� The /var/Printsrv directory, which is the default location for other Infoprint Server files,
including the Printer Inventory files.

Recommendation: Do not change the owner or permissions of the /etc/Printsrv
directory. For a secure environment, this directory should be:

– Owned by UID of 0.

– Writable only by users with an effective UID of 0.

Note: You can create Infoprint Server configuration files in a directory other than the
/etc/Printsrv directory. If you do so, specify the location of the configuration files in
Infoprint Server environment variables.

Printer Inventory files created:

First time administrator uses ISPF panels or pidu program

To protect access to the Printer Inventory

Administrator(s) should have effective UID=0

 Infoprint Server HFS directories
 /etc/Printsrv - Infoprint Server configuration files
 /var/Printsrv - Infoprint Server files, including the Printer Inventory
 Both created automatically when you install Infoprint Server

HFSHFS
/var/Printsrv

Printer Inventory

master.db
jestoken.db
pwjestoken.db
782 ABCs of z/OS System Programming Volume 9

The /var/Printsrv directory contains the Printer Inventory and other Infoprint Server files.
The /var/Printsrv directory is created automatically when you install Infoprint Server. The
aopsetup shell script defines the appropriate permissions for the /var/Printsrv directory.

Sysplex users: If your system is part of a sysplex, the /var file system must be
system-specific and designated NOAUTOMOVE in the BPXPRMxx PARMLIB member. If
you specify a different base directory in the base directory attribute in the Infoprint Server
configuration file, the file system that contains this directory must be system-specific and
designated NOAUTOMOVE.

Do not change the owner or permissions of the /var/Printsrv directory after it is created.
For a secure environment, this directory should be:

– Owned by UID of 0.

– Readable and writable only by users with an effective UID of 0 or members of the
AOPADMIN group or any other group. (AOPADMIN name is used through the Infoprint
publications for the administrator group.)

– Executable by everyone.

Printer Inventory files
Infoprint Server creates the Printer Inventory files automatically the first time the administrator
uses the Infoprint Server ISPF panels or the Printer Inventory Definition Utility (PIDU) to
create objects in the Printer Inventory, such as printer definitions. The Printer Inventory files
also contain objects that the administrator does not create. For example, Print Interface
creates objects for each job processed. These job objects are deleted when the data sets to
which they correspond are deleted from the JES spool.

The Printer Inventory is comprised of these files:

� master.db
� jestoken.db
� pwjestoken.db

The master.db, jestoken.db, and pwjestoken.db files are database files optimized for rapid
direct access to objects. As you add objects to the Printer Inventory, these files increase in
size. When you remove objects, the files do not decrease in size because the Printer
Inventory Manager simply designates as available the space within the file that had been
occupied by the removed objects. When you add objects in the future, the Printer Inventory
Manager uses available space within the files. The files increase in size only when they do
not contain sufficient available storage. So, the size of each file can be characterized as a
high-water mark.

The /var/Printsrv directory also contains temporary files that the Print Interface LPD creates
as it receives data from clients that send the control file after sending data files. By default,
most clients send the control file after sending data files. The Infoprint Port Monitor always
sends the control file first. Commands such as ls do not display these files because the LPD
unlinks them after it opens them. When the LPD closes the files, they are deleted.

Recommendation: Mount a separate file system at the /var mount point and create the
/var/Printsrv directory in that file system.
Chapter 16. Printing services for z/OS UNIX 783

16.7 Starting Print Interface

Figure 16-7 Starting the Infoprint Server (Print Interface)

Starting Infoprint Server
We recommend that you start the Print Interface by using a started task or by using the
BPXBATCH utility. There are three ways to start the Print Interface:

� From OMVS, issue the aopstart command
� Operator issues a start task command
� Operator issues a started job command

The aopstart command starts the Printer Inventory Manager daemon, aopd. It also starts any
other Infoprint Server daemons specified in the start-daemons attribute in the aopd.conf
configuration file.

The aopstop command stops either the Printer Inventory daemon and any other active
Infoprint Server daemons, or it stops only selected Infoprint Server daemons, depending on
the command options.

If you have set up all the Printer Inventory daemon and Infoprint Server daemon environment
variables in /etc/profile, the aopstart and aopstop commands can be entered as follows:

� From the z/OS UNIX shell, where you can enter aopstart and aopstop.
� As a recommended alternative, beginning with OS/390 Release 8, you can use JCL

procedures to invoke the aopstart and aopstop commands. The JCL procedures in
SYS1.IBM.PROCLIB that Infoprint Server ships are named AOPSTART and AOPSTOP.

� Add the aopstart command to the /etc/rc shell script to start the Printer Inventory
Manager (and other daemons) automatically during the IPL.

From an OMVS session

===> aopstart

===> _BPX_JOBNAME=PRINTS aopstart &

Operator console - started job

S PRINTINT,JOBNAME=PRINTS

Operator console

S PRINTS
784 ABCs of z/OS System Programming Volume 9

16.8 Operator console started job

Figure 16-8 Using a batch job to start the Infoprint Server

Start Infoprint Server using BPXBATCH
You can start the Print Interface using a JCL started job with BPXBATCH.

IBM recommends that you use AOPBATCH instead of BPXBATCH to run programs provided
by Infoprint Server because AOPBATCH sets default values for the PATH, LIBPATH, and
NLSPATH environment variables that are suitable for installations that installed Infoprint
Server files in default locations. Also, AOPBATCH lets STDIN be read from a DD statement
and lets STDOUT and STDERR be written to a DD statement.

AOPBATCH lets you use MVS job control language (JCL) to run a program that resides in a
hierarchical file system (HFS).

//PRINTINT JOB ' ','ROGERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
// REGION=4M,TIME=1440,NOTIFY=&SYSUID
//**
//* RUN THE z/OS Print Interface FROM BATCH as a STARTED JOB
//* S PRINTINT,JOBNAME=PRINTS
//**
//STEP1 EXEC PGM=BPXBATCH,
// PARM='PGM /usr/lpp/Printsrv/bin/aopstart'
//STDOUT DD PATH='/tmp/Printsrv-stdout',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDERR DD PATH='/tmp/Printsrv-stderr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDENV DD *
AOPCONF=/etc/Printsrv/aopd.conf
PATH=/usr/lpp/Printsrv/bin
LIBPATH=/usr/lpp/Printsrv/lib
MANPATH=/usr/lpp/Printsrv/man/C
NLSPATH=/usr/lpp/Printsrv/en_US/%N
TZ=EST5EDT
/*
Chapter 16. Printing services for z/OS UNIX 785

16.9 Operator console started task

Figure 16-9 Starting Infoprint Server from SYS1.PROCLIB

Starting Infoprint Server from SYS1.PROCLIB
You may want to execute your Print Interface application using JCL in SYS1.PROCLIB that
executes the BPXBATCH utility. BPXBATCH is an MVS utility that you can use to run shell
commands or shell scripts and to run executable files through the MVS batch environment.

With BPXBATCH, you can allocate the MVS standard files stdin, stdout, and stderr as HFS
files. If you do allocate these files, they must be HFS files. You can also allocate MVS data
sets or HFS text files containing environment variables (stdenv). If you do not allocate them,
stdin, stdout, stderr, and stdenv default to /dev/null. Allocate the standard files using the data
definition PATH keyword options, or standard data definition options for MVS data sets, for
stdenv.

The environment variables that are needed to run the Print Interface using BPXBATCH were
defined in a file in the HFS. To start the Print Interface from an operator command, you can
create a procedure in your PROC library. You place the procedure, shown in Figure 16-9, in
member PRINTS in the SYS1.PROCLIB data set.

As you see in the STDENV DD statement and in the visual, we placed the environment
variables in file /etc/Printsrv.envvars. To start the Print Interface, issue the following operator
command:

S PRINTS

When the task executes, it creates a forked address space.

//PRINTS PROC
//PRINTS EXEC PGM=BPXBATCH,
// PARM='PGM /usr/lpp/Printsrv/bin/aopstart'
//STDOUT DD PATH='/tmp/Printsrv-stdout',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDERR DD PATH='/tmp/Printsrv-stderr',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDENV DD PATH='/etc/Printsrv.envvars',
// PATHOPTS=ORDONLY

AOPCONF=/etc/Printsrv/aopd.conf
PATH=/usr/lpp/Printsrv/bin
LIBPATH=/usr/lpp/Printsrv/lib
MANPATH=/usr/lpp/Printsrv/man/C
NLSPATH=/usr/lpp/Printsrv/en_US/%N
TZ=EST5EDT
_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE

/etc/Printsrv.envvars
786 ABCs of z/OS System Programming Volume 9

16.10 Printing from UNIX System Services

Figure 16-10 Printing from the z/OS UNIX shell

Printing from z/OS UNIX shell
From the z/OS UNIX shell you can print to any printer defined in the Printer Inventory of the
z/OS Infoprint Server. You can print on local printers attached directly to z/OS, or on remote
printers in a TCP/IP LAN network.

Your system administrator assigns a name to each printer defined in the Printer Inventory. To
print, you need to know this name. A printer in the Printer Inventory can be a physical printer
or a pool of physical printers that can print the same types of files. Or your administrator can
define more than one printer name for the same physical printer, so that you can use a
different printer name for printing files with different characteristics.

The z/OS Infoprint Server attempts to validate that your file can print on the selected printer
before accepting your print request. For example, if the printer you select cannot print the
type of data (PostScript®, PCL, and so on) in your file, the z/OS Infoprint Server does not
accept your request and sends you a message.

The z/OS UNIX printing commands provided by Infoprint Server, in /usr/lpp/Printsrv/bin, have
enhanced function over the commands of the same name described in the z/OS UNIX
System Services Command Reference, SA22-7802. For example, when printing on AFP
printers, you can specify options such as duplexing or a special overlay. You can also query
the status of your print request, and you can cancel a print request. These printing commands
adhere to the UNIX standards in XPG4.2, so that you do not need to change your UNIX
applications when you port them to z/OS.

Enhanced printing commands

lp - lpstat - cancel

Notification of job completion

Attributes files

Online help

JES
Spool

PSF for z/OS

UNIX

z/OS
UNIX

System Services

z/OS
Print

Interface

IP
PrintWay

TCP/IP
LAN

UNIX
Chapter 16. Printing services for z/OS UNIX 787

Printing commands
The following printing commands let you print, query, and cancel the printing of files, and let
you send files to an e-mail destination instead of to a printer:

� lp - Print a file

� cancel - Cancel a print job

� lpstat - Show printer names and locations and status of print jobs

Online help for Infoprint Server commands
To get online help about Infoprint Server commands, use the man command. You can view
man pages only in English. If the correct man pages are not displayed, specify this path on
the -M option of the man command, or add it to your MANPATH environment variable ahead of
other values:

/usr/lpp/Printsrv/man/En_US
788 ABCs of z/OS System Programming Volume 9

16.11 UNIX commands with Infoprint Server

Figure 16-11 z/OS UNIX commands modified with Infoprint Server

Establish a path to modified commands
To display the value of an environment variable, use the z/OS UNIX echo command:

echo $PATH

Define in /etc/profile
If you installed Infoprint Server libraries in the default locations, add these z/OS UNIX export
commands to the /etc/profile file:

export LIBPATH=/usr/lpp/Printsrv/lib:$LIBPATH
export NLSPATH=/usr/lpp/Printsrv/%L/%N:/usr/lpp/Printsrv/En_US/%N:$NLS
export PATH=/usr/lpp/Printsrv/bin:$PATH

The path must be defined to enable users to locate the command executables. This $PATH
environment variable is required. If you installed Infoprint Server executables in the default
directory, add /usr/lpp/Printsrv/bin to the existing values. Be sure to add the directory before
/bin in the PATH environment variable to make sure that the Infoprint Server versions of the
lp, lpstat, and cancel commands are invoked.

ROGERS @ SC67:/>echo $PATH
/usr/lpp/Printsrv/bin:/bin:.
ROGERS @ SC67:/>

This sets a default command path, including your current working
directory (CWD).
PATH=/usr/lpp/Printsrv/bin:/bin:.

/etc/profile

lp - Send a job to a printer
lpstat - Query printers , locations, and status of jobs
cancel - Cancel a print job

Modified UNIX commands
Chapter 16. Printing services for z/OS UNIX 789

16.12 z/OS UNIX user prints a data set

Figure 16-12 z/OS UNIX user prints a data set

z/OS UNIX shell commands for printing
The lp, lpstat, and cancel commands, shown in Figure 16-12, use TCP/IP protocol to send
print requests to the Print Interface. They send commands to the port number specified in the
Print Interface configuration file. These commands are modified to be used with the Print
Interface and are placed in the HFS as follows:

/usr/lpp/Printsrv/bin

lp - Print a file
lp [-cmsw] [-d destination] [-n copies] [-o option] ... [-t title] [filename ...]

The lp command prints one or more files, or sends the files to an e-mail destination. The
address of the printer is specified in the printer definition in the Infoprint Server Printer
Inventory, which your administrator manages. The e-mail addresses are specified in the
printer definition or in job attributes.

The files can be:

� MVS data sets, such as partitioned data sets or sequential data sets

� UNIX files, such as files in an HFS, zFS, NFS, or a temporary file system (TFS)

� Lists of printable files

If you do not specify any files on the command line, or if you specify a dash (-) for the file
name, lp prints from standard input.

ROGERS @ SC67:/> lp -d poke //test.jcl
AOP007I Job 284 successfully spooled to poke.

User issues lpstat to obtain status

User wants to cancel job

ROGERS @ SC67:/> lpstat -u ROGERS
Printer: poke
 Job Owner Status Format Size File
----- -------- --------- ------ -------- -------------------
 284 ROGERS pending text 2960 //test.jcl
ROGERS @ SC67:/>

ROGERS @ SC67:/> cancel 284

User prints an MVS data set

User issues lpstat -a to find a printer

ROGERS @ SC67:/> lpstat -a
 Printer Jobs Location Description
----------------- ----- ---------------- ------------------------
poke 0 2c-16 3130
pokew 0 2c-16 3130 Landscape/Rotated Text
790 ABCs of z/OS System Programming Volume 9

If Infoprint Server Transforms or another optional transform product is installed, Infoprint
Server can automatically transform a file from one data format to another. To transform a file,
the administrator must request the transform in the printer definition.

The lp command returns an Infoprint Server job ID, which you can use to query or cancel the
job.

The Infoprint Server job ID is not the same as the z/OS job ID, which the z/OS system
assigns to each job on the JES spool. When you submit a job using the Print Interface
subsystem, the z/OS job ID is returned to you.

In a sysplex the z/OS UNIX printing commands are available only on systems where the
Infoprint Server is active.

lpstat - Show printer names and locations and status of print jobs
lpstat [-dt] [-a [printername ...]] ... [-o [printername ...]] ... [-p
[printername ...]] ... [-u [userid ...]] ... [jobid ...]

lpstat writes printer definition names, location information specified in the printer definitions,
and the status of jobs to standard output.

For printer definitions in the Infoprint Server Printer Inventory, the lpstat command returns
this information:

� The name of the printer definition
� The number of jobs submitted to the printer definition
� The location information in the printer definition
� The description information in the printer definition

Command options
Following are the command options:

This information applies to jobs that Infoprint Server has processed, including jobs submitted
in any of these ways:

� From a VTAM application through NetSpool™
� From a remote system or with the lp command through Print Interface
� From batch JCL printed by IP PrintWay™ extended mode
� Using the Print Interface subsystem

The lpstat command returns the following information:

� The Infoprint Server job ID. The Infoprint Server job ID is a unique job ID assigned to each
print job. You can use it to cancel the job with the cancel command.

The Infoprint Server job ID can help the system operator find your job on the JES spool. In
most cases, the job ID field of data sets that Infoprint Server allocates on the JES spool
contains the Infoprint Server job ID.

The Infoprint Server job ID is different, however, from the z/OS job ID, which is a unique
job ID that z/OS assigns to the data set. JES operator commands return the z/OS job ID.

-d Query default printer lpstat -d
-o Query specified printer and jobs lpstat -o poke
-p Query specified printer lpstat -p poke
-t Query all printers and jobs lpstat -t
-u Query all printers and jobs by user ID lpstat -u ROGERS
-a Query names and locations of all printers
Chapter 16. Printing services for z/OS UNIX 791

� The user ID of the person who submitted the job.

� The state of each file in the job.

cancel - Cancel a print job
cancel jobid ...

The jobid is the Infoprint Server job ID of the print job you want to cancel. If you do not know
the Infoprint Server job ID, you can determine it by using the lpstat command to query all the
jobs you submitted.

The cancel command cancels one or more print jobs that you submitted, with these
restrictions:

� You can only cancel your own jobs.

� You cannot cancel a job after it has started processing.

� In a JES3 environment, you might not be able to cancel a job that is held on the Job Entry
Subsystem (JES) spool.
792 ABCs of z/OS System Programming Volume 9

16.13 Transform commands

Figure 16-13 Transform commands

Infoprint Server transform commands
While Infoprint Server lets you submit data in many different formats, Advanced Function
Presentation (AFP) printers print the AFP data stream. You can submit non-AFP data
streams to AFP printers using these optional products, which convert jobs to AFP format:

� Infoprint Server Transforms (5697-F51) transforms data streams such as PCL, PDF,
PostScript, and SAP to AFP format.

� IBM Infoprint XML Extender for z/OS (5655-J66) transforms Extensible Markup Language
(XML) files to AFP and PDF format.

� IBM Infoprint XT Extender for z/OS (5655-J65) transforms Xerox files to AFP format. The
Xerox files can be line-conditioned data streams (LCDS) or metacode data streams.

Documents in AFP format are also called Mixed Object Document Content Architecture
Presentation (MO:DCA-P) documents.

Usually, you do not have to worry about transforming your data to another format. If Infoprint
Server Transforms is installed, Infoprint Server automatically calls the appropriate transform
when you submit a print request to a printer definition (for a printer or for an e-mail
destination) that your administrator has configured for transformation. You might, however,
want to transform a file without printing it in these situations:

� You want to verify that the job can be transformed without errors.

The transform commands transform data from one data format to
another without printing it

afp2pcl--Transform AFP or line data to PCL data

afp2pdf--Transform AFP or line data to PDF data

afp2ps--Transform AFP or line data to PostScript data

pcl2afp--Transform PCL data to AFP data

pdf2afp and ps2afp--Transform PDF or PostScript data to AFP data

sap2afp--Transform SAP OTF or ABAP data to AFP data

xml2afp--Transform XML to AFP data

xml2pdf--Transform XML to PDF data

x2afp--Transform Xerox files to AFP data

Infoprint Server transforms and prints output data sets
Print Interface subsystem transforms data before writing it to JES spool

IP PrintWay extended mode transforms data before printing the data

IP PrintWay basic mode sends data to Print Interface which transforms the
data and writes the transformed data to back to JES spool
Chapter 16. Printing services for z/OS UNIX 793

� You intend to print a file many times. In this case, it is more efficient to transform the file
once and print the output than to transform the file every time you print it.

� You want to present your document on the Web.

Infoprint Server automatically transforms files in other formats to the Advanced Function
Presentation (AFP) data stream when you submit them to a printer definition that the print
administrator has configured to do so.

You can also use the pcl2afp, pdf2afp, ps2afp, and sap2afp commands to transform files in
these formats without printing them:

� Printer Control Language (PCL)

� Portable Document Format (PDF)

� PostScript

� SAP Advanced Business Application Programming (ABAP™)

� SAP Output Text Format (OTF)

For example, to transform the PostScript file myfile.ps to an AFP file called myfile.afp, with
each page 5.5 inches long and 4 inches wide, enter:

ps2afp -o myfile.afp -l 5.5i -w 4i myfile.ps

To submit the PCL file sample.pcl to the printer named IAZFSS and transform it
automatically, enter:

lp -d IAZFSS sample.pcl

The IAZFSS printer definition is as follows:

IAZFSS printer definition Processing section includes:
AOPIPDRR Processing
Command ==>
Printer definition name . IAZFSS
Document code page . .
Printer code page. . . IBM-1047
Supported Data Formats and Associated Filters:
Data format: Filter:
/ Line data
(extend)
:::::::::::::::::::::::::::::::::
/ PCL pcl2afp.dll %filter-options
(extend)
794 ABCs of z/OS System Programming Volume 9

Important: Infoprint Server provides these methods that you can use to transform and
print output data sets:

� Print Interface subsystem: Can transform data before writing it to an output data set on
the JES spool. IP PrintWay or PSF can then print the data, or IP PrintWay can send it to
an e-mail destination. To use the Print Interface subsystem, you specify the SUBSYS
parameter on the DD JCL statement for the output data set.

� IP PrintWay extended mode: Can transform data in an output data set before it prints
the data or sends it to an e-mail destination.

� IP PrintWay basic mode: Can send data in an output data set to Print Interface. Print
Interface can transform the data and write the transformed data to a new output data
set on the JES spool. IP PrintWay then can print the data or send it to an e-mail
destination. Your administrator must select the resubmit for filtering function in the
printer definition.
Chapter 16. Printing services for z/OS UNIX 795

16.14 Infoprint Server job attributes

Figure 16-14 Infoprint Server job attributes

Job attributes when using the z/OS UNIX lp command
You can list any job attribute in an attributes file for the lp command. You can also list the
attribute attributes. Thus, an attributes file can call other attributes files. If an attributes file
calls itself, the command sends an error message. Attributes files must not contain any
attributes without values.

When creating an attributes file, consider spelling out the complete attribute names and
attribute values rather than using abbreviations.

You can use spaces between the attribute name and the equals sign to align the equals sign
and values. This makes your files easier to read and maintain.

You can use comment lines in attributes files. The comment starts with a number sign, #, and
ends at the end of line.

Example: You could create an attributes file called myatts to request 5 copies of a job, simple
duplex printing, and a specific output bin.

 # These are my job attributes
 copies = 5
 duplex = yes
 output-bin = collator # Collate the job

You can include a number sign, #, as part of an attribute value if you precede it immediately
with a backslash, \# .

lp -d poke -o "input-tray=top duplex=yes
 overlay-front=O1ODD overlay-back=O1EVEN
 resource-library=MYOVR.LIBRARY" special.job

Attributes can be stored in an attributes file

lp -d IAZFSS -o attributes=myatts special.job

Infoprint Server job attributes describe special requirements.

Attributes specify things like these:

Whether to print on one or both sides of the paper

Resources: fonts, page definitions, form definitions, overlays

Text to print on the separator sheet or the subject of the e-mail

Use the -o option of the lp command to specify attribute
796 ABCs of z/OS System Programming Volume 9

16.15 UNIX user issues the lpstat command

Figure 16-15 A user issues a command to display submitted output data sets

Query output from the shell
When a UNIX user needs to know which printers are defined for use, the lpstat command
can be used as shown in Figure 16-15.

The user can inquire using specific printers, the default printer, or all printers, and request
whether or not the jobs waiting for the printers are to be displayed.

ROGERS @ SC67:/> lpstat -a
 Printer Jobs Location Description
----------------- ----- ---------------- ------------------------------
lpt2 0 2C-16 4029 in 2C-16
poke 0 2c16 3130 in 2c16
pokeps 0 2c16 3130 in 2c16
prt5 0 2c16 AFP Printer 5 located in 2C16
FIIRPS 0 IBM 3F1, Helsink IP PrintWay
FIJVBIN 0 VAINI IBM 3F1, H IP PrintWay
FIJVLP 0 VAINI IBM 3F1, H IP PrintWay
FISLPS 0 IBM 3F1, Helsink IP PrintWay
I3130P2 0 Syslab Syslab 3130

-d Query default printer lpstat -d
-o Query specified printer and jobs lpstat -o poke
-p Query specified printer lpstat -p poke
-t Query all printers and jobs lpstat -t
-u Query all printers and jobs by user ID lpstat -u ROGERS
-a Query names and locations of all printers
Chapter 16. Printing services for z/OS UNIX 797

16.16 lpstat -t command

Figure 16-16 Command to display all printers and submitted jobs

Using the lpstat command to view submitted output
To determine which jobs have been submitted to each printer, specify:

lpstat -t

This command shows all the printers defined to the Print Interface and all the jobs queued to
the Print Interface printers. Figure 16-16 only shows two of the printers defined in the
Inventory because the amount of information for all printers and jobs was very large.

Printer: poke
 Job Owner Status Format Size File
----- -------- --------- ------ -------- ------------------------------
 285 ROGERS pending text 3149 ROGERS.TEST.JCL
 286 ROGERS pending text 3109 ROGERS.TEST.JCL
 287 TCPIPOE pending text 2960 //test.jcl
 288 pc-user pending text 2997 test.jcl
 289 ROGERS pending text 3108 TEST.JCL
 290 ROGERS2 pending pcl 20902 ... About the IBM AFP Printer"
 291 ROGERS2 pending pcl 19019 Printing "Options Dialog"
 296 ROGERS pending text 3109 ROGERS.TEST.JCL
 297 ROGERS2 pending pcl 41436 readme95 - Notepad
 298 ROGERS2 pending pcl 41436 readme95 - Notepad
 311 ALCIDES pending text 2960 //test.jcl

Printer: pokeps
 Job Owner Status Format Size File
----- -------- --------- ------ -------- ------------------------------
 292 ROGERS2 pending modca 19422 scop.AOI
 293 ROGERS2 pending pcl 41436 readme95 - Notepad
 294 ROGERS2 pending pcl 41436 readme95 - Notepad
 295 ROGERS2 pending pcl 41436 readme95 - Notepad
 299 ROGERS2 pending modca 3650 word.AOI
 301 ROGERS2 pending modca 19506 word.AOI
 302 ROGERS2 pending modca 19506 word.AOI
 304 ROGERS2 pending modca 19422 word.AOI
798 ABCs of z/OS System Programming Volume 9

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 800.
Note that some of the documents referenced here may be available in softcopy only.

� z/OS Version 1 Release 2 Implementation, SG24-6235

� z/OS Version 1 Release 3 and 4 Implementation, SG24-6581

� z/OS Version 1 Release 5 Implementation, SG24-6326

� z/OS Version 1 Release 6 Implementation, SG24-6377

� z/OS Version 1 Release 7 Implementation, SG24-6755

� z/OS Version 1 Release 8 Implementation, SG24-7265

� UNIX System Services z/OS Version 1 Release 7 Implementation, SG24-7035

� z/OS Distributed File Service zSeries File System z/OS V1R7 Implementation,
SG24-6580-02

Other publications
These publications are also relevant as further information sources:

� z/OS UNIX System Services Planning, GA22-7800

� z/OZ UNIX System Services User's Guide, SA22-7801

� z/OS UNIX System Services Command Reference, SA22-7802

� z/OS UNIX System Services Programming: Assembler Callable Services Reference,
SA22-7803

� z/OS Using REXX and z/OS UNIX System Services, SA22-7806

� z/OS UNIX System Services Messages and Codes, SA22-7807

� z/OS UNIX System Services File System Interface Reference, SA22-7808

� z/OS MVS System Codes, SA22-7626

� z/OS Security Server RACF System Programmer's Guide, SA22-7681

� z/OS Security Server RACF Security Administrator's Guide, SA22-7683-11

� TSM Using the Backup-Archive Clients, SH26-4105

� TSM Installing the Clients, SH26-4102

� z/OS Distributed File Service zSeries File System Administration, SC24-5989

� z/OS Communications Server: IP Configuration Reference, SC31-8776
© Copyright IBM Corp. 2006, 2008. All rights reserved. 799

Online resources
These Web sites and URLs are also relevant as further information sources:

� z/OS UNIX Tools and Toys

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1tun.html

� The ShopzSeries Web address is:

http://www.ibm.com/software/shopzseries

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
800 ABCs of z/OS System Programming Volume 9

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1tun.html
http://www.ibm.com/software/shopzseries

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

ABCs of z/OS System
 Program

m
ing Volum

e 9

ABCs of z/OS System
 Program

m
ing

Volum
e 9

ABCs of z/OS System
 Program

m
ing

Volum
e 9

ABCs of z/OS System
 Program

m
ing Volum

e 9

ABCs of z/OS System
 Program

m
ing

Volum
e 9

ABCs of z/OS System
 Program

m
ing

Volum
e 9

®

SG24-6989-03 ISBN 0738485845

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

ABCs of z/OS System
Programming
Volume 9

z/OS UNIX, TCP/IP
installation

zSeries File System,
z/OS UNIX security

Shell and
programming tools

The ABCs of z/OS System Programming is an 11-volume collection that
provides an introduction to the z/OS operating system and the hardware
architecture. Whether you are a beginner or an experienced system
programmer, the ABCs collection provides the information that you need to
start your research into z/OS and related subjects. If you would like to become
more familiar with z/OS in your current environment, or if you are evaluating
platforms to consolidate your e-business applications, the ABCs collection will
serve as a powerful technical tool.
The contents of the volumes are as follows:
Volume 1: Introduction to z/OS and storage concepts, TSO/E, ISPF, JCL, SDSF,
and z/OS delivery and installation
Volume 2: z/OS implementation and daily maintenance, defining subsystems,
JES2 and JES3, LPA, LNKLST, authorized libraries, SMP/E, Language
Environment
Volume 3: Introduction to DFSMS, data set basics storage management
hardware and software, catalogs, and DFSMStvs
Volume 4: Communication Server, TCP/IP, and VTAM
Volume 5: Base and Parallel Sysplex, System Logger, Resource Recovery
Services (RRS), global resource serialization (GRS), z/OS system operations,
automatic restart management (ARM), Geographically Dispersed Parallel
Sysplex (GDPS)
Volume 6: Introduction to security, RACF, Digital certificates and PKI, Kerberos,
cryptography and z990 integrated cryptography, zSeries firewall technologies,
LDAP, and Enterprise identity mapping (EIM)
Volume 7: Printing in a z/OS environment, Infoprint Server and Infoprint Central
Volume 8: An introduction to z/OS problem diagnosis
Volume 9: z/OS UNIX System Services
Volume 10: Introduction to z/Architecture, zSeries processor design, zSeries
connectivity, LPAR concepts, HCD, and HMC
Volume 11: Capacity planning, performance management, WLM, RMF, and
SMF

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. Products and components
	1.1 UNIX System Services
	1.2 z/OS and z/OS UNIX
	1.3 Product and component support for z/OS UNIX
	1.4 Security Server RACF
	1.5 Data Facility System-Managed Storage (DFSMS)
	1.6 Transmission Control Protocol/Internet Protocol (TCP/IP)
	1.7 System Modification Program Extended (SMP/E)
	1.8 System Management Facility (SMF)
	1.9 Resource Measurement Facility (RMF)
	1.10 Virtual Lookaside Facility (VLF)
	1.11 Time Sharing Option/Extended (TSO/E)
	1.12 Workload Manager (WLM)
	1.13 Tivoli Storage Manager (TSM)

	Chapter 2. UNIX System Services overview
	2.1 z/OS UNIX and UNIX applications
	2.2 Terminology overview
	2.3 HFS and zFS file system PFSes
	2.4 Using z/OS UNIX
	2.5 UNIX System Services
	2.6 Physical file systems
	2.7 z/OS UNIX file systems
	2.8 File system data sets
	2.9 File and directory permission bits
	2.10 MVS data sets versus file system files
	2.11 zFS or HFS data sets
	2.12 z/OS UNIX components
	2.13 z/OS UNIX programs (processes)
	2.14 Create a process
	2.15 z/OS UNIX processes
	2.16 z/OS UNIX interactive interfaces
	2.17 ISPF Option 6
	2.18 ISHELL command (ish)
	2.19 User’s files and directories
	2.20 OMVS command shell session
	2.21 ls -al command - list files in the root
	2.22 Direct login to shell
	2.23 Telnet access to z/OS UNIX

	Chapter 3. UNIX System Services pre-installation requirements
	3.1 Customization of the root
	3.2 Installing z/OS using ServerPac
	3.3 Installing z/OS using CBPDO
	3.4 ServerPac and CBPDO
	3.5 UNIX System Services installation
	3.6 z/OS UNIX security
	3.7 RACF definitions
	3.8 RACF OMVS segments
	3.9 OMVS segment fields
	3.10 UNIX security
	3.11 z/OS UNIX superuser
	3.12 RACF commands and user IDs
	3.13 RACF commands to define groups
	3.14 RACF commands to define users
	3.15 LU and LG command examples
	3.16 Define a terminal group name
	3.17 TSO/E support
	3.18 User access to TSO/E commands

	Chapter 4. UNIX System Services installation
	4.1 z/OS UNIX PARMLIB - PROCLIB members
	4.2 IEASYSxx PARMLIB member
	4.3 z/OS UNIX minimum mode
	4.4 Minimum mode: TFS
	4.5 z/OS UNIX full-function mode
	4.6 z/OS HFS root
	4.7 zFS with z/OS V1R7
	4.8 HFS or zFS data sets
	4.9 Set data set type
	4.10 Choosing zFS
	4.11 ServerPac changes if using zFS
	4.12 UNIX utilities: TSO/E commands
	4.13 UNIX commands to move and copy data
	4.14 The pax and tar utilities
	4.15 New pax functions in z/OS V1R7
	4.16 pax migration support and function
	4.17 ServerPac z/OS UNIX installation
	4.18 Non-volatile root file system
	4.19 Installation of other products
	4.20 UNIX System Services installation

	Chapter 5. z/OS UNIX shell and utilities
	5.1 The z/OS UNIX shell
	5.2 Input, output, errors with UNIX shell
	5.3 Accessing the z/OS UNIX shell
	5.4 Controlling session resources
	5.5 Dynamic /dev
	5.6 Invoking the shell via TSO/E
	5.7 Invoking the shell via rlogin or telnet
	5.8 rlogin and telnet access
	5.9 Customizing z/OS UNIX initialization
	5.10 Initializing z/OS UNIX
	5.11 Environment variables
	5.12 Environment variables
	5.13 The /etc/init.options file
	5.14 The etc/rc file
	5.15 The /etc/inittab file with z/OS V1R8
	5.16 The _BPXK_INITTAB_RESPAWN variable
	5.17 Rules for coding /etc/inittab
	5.18 Customizing the OMVS command
	5.19 Shell environment variables
	5.20 Customizing your shell environment
	5.21 Global variables in /etc/profile
	5.22 User-defined settings
	5.23 Setting the time zone
	5.24 Customizing the C89/CC compilers
	5.25 Code page tables
	5.26 Specifying a code page
	5.27 Internationalization variables (locales)
	5.28 Setting the region size
	5.29 Setting up printers for shell users
	5.30 Installing books for OHELP
	5.31 Using the man command
	5.32 Enabling various tools
	5.33 SVP for z/OS UNIX and tools
	5.34 Setup Verification Program (SVP)

	Chapter 6. Security customization
	6.1 RACF OMVS segments
	6.2 z/OS UNIX UIDs and GIDs
	6.3 z/OS UNIX users and groups
	6.4 BPXROOT user ID
	6.5 Superuser with appropriate authority
	6.6 Commands for superusers
	6.7 z/OS UNIX security and RACF profiles
	6.8 z/OS UNIX security: BPX.SUPERUSER
	6.9 z/OS UNIX superuser granularity
	6.10 Resource names: UNIXPRIV
	6.11 z/OS UNIX UNIXPRIV class profiles
	6.12 Assigning UIDs
	6.13 Shared UID prevention
	6.14 Automatic UID and GID assignment
	6.15 Automatic assignment requirements
	6.16 Automatic assignment examples
	6.17 Automatic assignment with RRSF
	6.18 z/OS UNIX security: File security packet
	6.19 Octal values for permission bits
	6.20 Data set security versus file security
	6.21 z/OS UNIX user’s security environment
	6.22 Access checking flows
	6.23 File authorization checking flow
	6.24 POSIX standard and UNIX ACLs
	6.25 Limitations of current permission bits
	6.26 FSPs and ACLs
	6.27 Access control list table
	6.28 File authorization check summary
	6.29 Profiles in UNIXPRIV class
	6.30 Profiles in UNIXPRIV class (2)
	6.31 RACF RESTRICTED attribute
	6.32 z/OS UNIX file access checking
	6.33 RESTRICTED user profile
	6.34 Restricted user access checking
	6.35 Access checking with ACLs (1)
	6.36 Access checking with ACLs (2)
	6.37 Create ACLs
	6.38 ACL types
	6.39 OMVS shell commands for ACLs
	6.40 Create ACLs for a specific directory
	6.41 Create an access ACL
	6.42 Display the access ACL
	6.43 Create a directory default ACL
	6.44 Create a file default ACL
	6.45 Creating all ACL types
	6.46 Using the ISHELL panel
	6.47 Create an access ACL using ISHELL
	6.48 File attributes panel for /u/harry
	6.49 File attributes panel showing ACLs
	6.50 Select option to create an access ACL
	6.51 Create an access ACL
	6.52 Add an access ACL
	6.53 Access ACL after creation
	6.54 ACL inheritance: New directory/new file
	6.55 Multilevel security with z/OS V1R5
	6.56 Multilevel security (MLS)
	6.57 MLS support for z/OS UNIX
	6.58 Mandatory access control (MAC)
	6.59 Discretionary access control (DAC)
	6.60 SECLABELs and MAC
	6.61 Special SECLABELs and definitions
	6.62 SYSMULTI SECLABEL
	6.63 z/OS UNIX and SECLABELs
	6.64 Understanding UMASK
	6.65 Displaying the UMASK
	6.66 Default permissions and UMASK
	6.67 Example of creating a new file
	6.68 Can user JOE access the file
	6.69 Can user ANN copy the file
	6.70 Setting file permissions
	6.71 Setting file permissions
	6.72 List file and directory information
	6.73 Introducing daemons
	6.74 z/OS UNIX daemons
	6.75 UNIX-level security for daemons
	6.76 z/OS UNIX security: BPX.DAEMON
	6.77 RACF program control
	6.78 z/OS UNIX-level security for daemons
	6.79 Start options for daemons
	6.80 Define daemon security
	6.81 Auditing options for z/OS UNIX
	6.82 File-based auditing
	6.83 Audit z/OS UNIX events
	6.84 Chaudit command
	6.85 List audit information for files
	6.86 Auditing reports
	6.87 Maintain z/OS UNIX-level security
	6.88 Setting up z/OS UNIX (1)
	6.89 Setting up z/OS UNIX (2)
	6.90 Setting up z/OS UNIX (3)
	6.91 Setting up z/OS UNIX (4)
	6.92 Setting up z/OS UNIX (5)
	6.93 RACF definitions for zFS
	6.94 UNIXPRIV class with z/OS V1R3 and zFS
	6.95 List current user IDs with the ISHELL
	6.96 The BPXBATCH utility
	6.97 The BPXBATCH job
	6.98 BPXBATCH and shell commands

	Chapter 7. zFS file systems
	7.1 zSeries File System (zFS)
	7.2 zFS aggregates
	7.3 zFS compatibility mode aggregate
	7.4 Multi-file system aggregate
	7.5 BPXPRMxx definitions for zFS
	7.6 zFS colony address space
	7.7 HFS data sets and zFS data sets
	7.8 zFS utilities and commands
	7.9 zfsadm command
	7.10 Allocate Linear VSAM data set
	7.11 Create the aggregate from ISHELL
	7.12 Format VSAM space - create aggregate
	7.13 Format the aggregate
	7.14 Ioeagfmt messages
	7.15 Mounting the file system
	7.16 ISHELL support for zFS (z/OS V1R5)
	7.17 Panel of attached zFS aggregates
	7.18 Display aggregate attributes
	7.19 Display attached aggregates
	7.20 List file systems
	7.21 Defining IOEFSPRM options
	7.22 Logical PARMLIB support - z/OS V1R6
	7.23 Specifying PARMLIB members
	7.24 Searching for IOEZPRM
	7.25 Dynamic configuration: z/OS V1R4
	7.26 zfsadm config command options
	7.27 zfsadm configquery command options
	7.28 zfsadm aggregate space commands
	7.29 Grow an aggregate
	7.30 The -grow option - z/OS V1R4
	7.31 The -grow option - z/OS V1R4 (2)
	7.32 New -grow option - z/OS V1R4
	7.33 Dynamic aggregate extension
	7.34 Dynamic aggregate extension aggrgrow
	7.35 Dynamic aggregate extension processing
	7.36 zFS aggregates on disk
	7.37 zFS aggregate space commands
	7.38 Command for aggregate display
	7.39 zFS threshold monitoring space usage
	7.40 Add a volume to a zFS aggregate
	7.41 zFS migration considerations
	7.42 HFS/zFS as generic file system type
	7.43 Migration considerations
	7.44 Migration tool
	7.45 Migration checks file system type
	7.46 REXX exec - BPXWH2Z
	7.47 BPXWH2Z panels
	7.48 Space allocations - HFS versus zFS
	7.49 BPXWH2Z panels
	7.50 Migration steps
	7.51 Migration steps
	7.52 Migration steps continued
	7.53 Using the migration tool
	7.54 Using SMS if required
	7.55 Migrate in the foreground
	7.56 Alter allocation parameters
	7.57 Migrating a list of data sets
	7.58 Data set list displayed
	7.59 Migration tool enhancements with APAR OA18196
	7.60 New pax functions in z/OS V1R7
	7.61 pax enhancements
	7.62 Special characters in zFS aggregates
	7.63 BPXMTEXT shell command

	Chapter 8. Managing file systems
	8.1 Hierarchical file system (HFS)
	8.2 File linking
	8.3 Hard links
	8.4 Symbolic links
	8.5 External links
	8.6 File system structure
	8.7 Temporary directory space
	8.8 Temporary file system (TFS)
	8.9 Colony address space
	8.10 Mounting file systems
	8.11 Mount and unmount
	8.12 Managing user file systems
	8.13 User file systems: Direct mount
	8.14 Mounting file systems
	8.15 Option 3: Mount
	8.16 Automount facility
	8.17 Automount facility overview
	8.18 Automount setup
	8.19 Generic match on lower case names
	8.20 Activating automount
	8.21 SETOMVS RESET=xx implementation
	8.22 Issue the SETOMVS command
	8.23 Updating an existing automount policy
	8.24 Example of new options
	8.25 One auto.master for a sysplex
	8.26 HFS to zFS automount
	8.27 HFS to zFS automount
	8.28 Automount migration considerations
	8.29 How to mount zFS file systems
	8.30 Using direct mount commands
	8.31 Direct mount
	8.32 Mounting zFS file systems
	8.33 MOUNT command from TSO/E
	8.34 Automount policy using /z
	8.35 Automount policy for zFS
	8.36 Automount of a zFS file system
	8.37 zFS file systems mounted (automount)
	8.38 zFS file system clone
	8.39 Backup file system - zFS clone
	8.40 zFS clone mounted
	8.41 Using the clone
	8.42 File sharing in a sysplex and mounts
	8.43 MOUNT command options
	8.44 Shared file systems in a sysplex
	8.45 Sysplex environment setup
	8.46 File systems in a shared sysplex
	8.47 Multiple systems: Different versions
	8.48 Update BPXPRMxx for sysplex
	8.49 OMVS couple data set
	8.50 File sharing in a sysplex
	8.51 UNMOUNT option
	8.52 UNMOUNT option support
	8.53 UNMOUNT option support
	8.54 Mount file system panel
	8.55 Set AUTOMOVE options
	8.56 AUTOMOVE system list (syslist)
	8.57 AUTOMOVE parameters for mounts
	8.58 AUTOMOVE wildcard support
	8.59 AUTOMOVE wildcard examples
	8.60 Defining process limits
	8.61 Mount limiting corrective action
	8.62 Mounting shared sysplex file systems
	8.63 Accessing shared sysplex file systems
	8.64 Shared file system AUTOMOVE takeover
	8.65 Moving file systems in a sysplex
	8.66 Logical file system (LFS)
	8.67 Systems accessing file systems
	8.68 zFS PFS termination on SY1
	8.69 LFS sysplex support
	8.70 z/OS V1R6 LFS design
	8.71 Stopping zFS
	8.72 Restarting the PFS
	8.73 Mounting file systems with SET OMVS
	8.74 Messages from shutdown of a ZFS single system
	8.75 Messages for the restart of ZFS
	8.76 Stopping ZFS with z/OS V1R8
	8.77 Command (f omvs,stoppfs=zfs)
	8.78 Stopping the ZFS address space
	8.79 PFS termination and LFS support for z/OS V1R6
	8.80 Systems accessing file systems
	8.81 Accessing file systems when zFS terminates
	8.82 AUTOMOVE behavior with z/OS V1R6
	8.83 z/OS V1R6 AUTOMOVE handling change
	8.84 zFS command changes for sysplex
	8.85 zfsadm command changes for sysplex
	8.86 z/OS V1R7 zfsadm command changes
	8.87 Configuration options - z/OS V1R7
	8.88 zFS command forwarding support
	8.89 Command forwarding support
	8.90 Centralized BRLM support
	8.91 Distributed BRLM
	8.92 Define BRLM option in CDS
	8.93 BRLM problems in a sysplex
	8.94 z/OS V1R8 BRLM recovery of locks
	8.95 File system access
	8.96 File access
	8.97 List file and directory information
	8.98 File security packet - extattr bits
	8.99 Extended attributes
	8.100 APF-authorized attribute
	8.101 Activate program control
	8.102 Shared address space attribute
	8.103 Shared library attribute
	8.104 File format attribute
	8.105 Extended attribute command example
	8.106 Sticky bit
	8.107 Set the UID/GID bit

	Chapter 9. Overview of TCP/IP
	9.1 Introduction to TCP/IP
	9.2 TCP/IP terminology
	9.3 IP addressing
	9.4 User login to the z/OS UNIX shell
	9.5 Configuration files used by TCP/IP
	9.6 Resolver address space
	9.7 TCPDATA search order
	9.8 Resolver definitions
	9.9 Customize the TCP/IP profile data set
	9.10 Customize TCPDATA
	9.11 z/OS IP search order
	9.12 z/OS IP search order (2)
	9.13 Customize the TCP/IP procedure
	9.14 Customizing PARMLIB members for TCP/IP
	9.15 PARMLIB members to customize for TCP/IP
	9.16 RACF customization for TCP/IP
	9.17 Customizing TCP/IP
	9.18 TCP/IP shell commands

	Chapter 10. TCP/IP applications
	10.1 Overview of z/OS UNIX data access
	10.2 Sockets
	10.3 z/OS Communications Server
	10.4 z/OS UNIX sockets support
	10.5 Customizing sockets
	10.6 Logging in to the z/OS UNIX shell
	10.7 Using inetd - master of daemons
	10.8 Customize inetd
	10.9 Customize inetd (2)
	10.10 Login to a Unix system
	10.11 rlogin to z/OS UNIX services
	10.12 Activating z/OS UNIX rlogin daemon
	10.13 Comparing shell login methods
	10.14 Define TCP/IP daemons
	10.15 The syslogd daemon
	10.16 The FTPD daemon
	10.17 z/OS IP search order for FTP
	10.18 z/OS IP search order for /etc/services
	10.19 Start the TCP/IP daemons
	10.20 Message integration support
	10.21 Message routing to z/OS
	10.22 syslogd command options
	10.23 syslogd defined instances
	10.24 syslogd configuration file
	10.25 Start procedure for syslogd
	10.26 syslogd availability considerations

	Chapter 11. z/OS UNIX PARMLIB members
	11.1 BPXPRMxx PARMLIB member
	11.2 BPXPRMFS PARMLIB member
	11.3 BPXPRMxx control keywords
	11.4 BPXPRMxx PARMLIB member
	11.5 Controlling the number of processes
	11.6 Resource limits for processes
	11.7 MAXFILEPROC statement
	11.8 Setting file descriptors
	11.9 Setting file descriptor for a single user
	11.10 Memory mapped files
	11.11 Controlling thread resources
	11.12 Creating a process using fork()
	11.13 Values for forked child process
	11.14 Starting a program with exec()
	11.15 Values passed for exec() program
	11.16 z/OS UNIX processes get STEPLIBs
	11.17 Locating programs for z/OS UNIX processes
	11.18 Shared pages for the fork() function
	11.19 Spawn function
	11.20 Interprocess communication functions
	11.21 Address Space Memory Map z/OS V1R5
	11.22 Control IPC resources
	11.23 Kernel support for IBM 5.0 JVM
	11.24 Interprocess communication signals
	11.25 Pipes
	11.26 Other BPXPRMxx keywords
	11.27 More BPXPRMxx parameters
	11.28 FILESYSTYPE statement
	11.29 FILESYSTYPE and NETWORK
	11.30 ROOT and MOUNT statements
	11.31 Examples of MKDIR in BPXPRMxx
	11.32 Allocating SWA above the line
	11.33 z/OS UNIX Web site

	Chapter 12. Maintenance
	12.1 Example of SMP/E SMPMCS
	12.2 Active root file system
	12.3 Inactive root file system (clone)
	12.4 /SERVICE directory
	12.5 Sample SMP/E DDDEFs
	12.6 Prepare for SMP/E
	12.7 SMP/E APPLY process
	12.8 Supporting multiple service levels
	12.9 Supporting multiple service levels (2)
	12.10 ISHELL display of root
	12.11 The chroot command
	12.12 Testing a root file system
	12.13 Testing the updated root
	12.14 Dynamic service activation
	12.15 Dynamic service activation commands
	12.16 Using the new service
	12.17 Deactivate service
	12.18 Display service

	Chapter 13. z/OS UNIX operations
	13.1 Commands to monitor z/OS UNIX
	13.2 Display summary of z/OS UNIX
	13.3 Display z/OS UNIX options
	13.4 Display BPXPRMxx limits
	13.5 Display address space information
	13.6 Display process information
	13.7 Display the kernel address space
	13.8 z/OS V1R7 command options
	13.9 Mount error messages displayed
	13.10 Mount failure messages
	13.11 Stopping BPXAS address spaces
	13.12 LFS soft shutdown
	13.13 z/OS V1R8 file system shutdown
	13.14 Options with the D OMVS,F command
	13.15 Options with the D OMVS,F command
	13.16 New command examples
	13.17 New command examples
	13.18 New command examples
	13.19 z/OS UNIX shutdown
	13.20 Recommended shutdown procedures
	13.21 Application registration
	13.22 Display application registration
	13.23 F OMVS,SHUTDOWN
	13.24 Blocking processes completion
	13.25 Shutdown processing completion
	13.26 Shutdown for permanent processes
	13.27 Shutdown processing final cleanup
	13.28 F OMVS,RESTART
	13.29 Display information about processes
	13.30 Stop a process
	13.31 Superkill function
	13.32 Superkill example
	13.33 Changing OMVS parameter values
	13.34 Manage interprocess communication
	13.35 System problems
	13.36 z/OS UNIX abends and messages
	13.37 USS errors and codes
	13.38 CTIBPX00 and CTCBPXxx
	13.39 Tracing z/OS UNIX events
	13.40 Debugging a z/OS UNIX problem
	13.41 IPCS OMVSDATA reports

	Chapter 14. z/OS UNIX shell and programming tools
	14.1 Language Environment run-time library
	14.2 Using pre-LE run-time libraries
	14.3 Overview of c89/cc/c++
	14.4 Customization of /etc/profile for c89/cc/c++
	14.5 Compile, link-edit, and run
	14.6 Customization of Java for z/OS
	14.7 Java virtual machine
	14.8 Management of software and the make utility
	14.9 The dbx debugger
	14.10 The dbx debugger
	14.11 Introduction to shells
	14.12 REXX, CLISTs, and shell scripts
	14.13 Shell script syntax
	14.14 BPXBATCH enhancements
	14.15 BPXBATCH implementation
	14.16 BPXBATCH summary
	14.17 TSO/E ALLOCATE command for STDPARM
	14.18 STDERR and STDOUT as MVS data sets
	14.19 BPXBATCH sample job
	14.20 Child process created for MVS data sets
	14.21 BPXBATCH utility

	Chapter 15. Performance, debugging, recovery, and tuning
	15.1 z/OS UNIX performance overview
	15.2 WLM in goal mode
	15.3 Defining service classes
	15.4 Workload Manager service classes
	15.5 Subsystem type panel
	15.6 WLM work qualifiers
	15.7 OMVS work qualifiers
	15.8 Defining classification rules
	15.9 Classification rules
	15.10 Classification rules for STC
	15.11 Virtual lookaside facility (VLF)
	15.12 VLF for z/OS UNIX
	15.13 COFVLFxx updates for z/OS UNIX
	15.14 AIM Stage 3 and z/OS V1R4
	15.15 Further tuning tips
	15.16 zFS fast mount performance improvement
	15.17 zFS fast mount performance improvement - continued
	15.18 zFS performance tuning
	15.19 zFS cache
	15.20 zFS cache locations
	15.21 Metadata backing cache
	15.22 Performance APIs
	15.23 Performance monitoring APIs
	15.24 zfsadm command changes
	15.25 The IOEZADM utility from TSO for commands
	15.26 Directory cache
	15.27 The zfsadm query -iobyaggr command
	15.28 SMF recording
	15.29 RMF reporting
	15.30 RMF Monitor III support for zFS
	15.31 zFS access to file systems
	15.32 RMF Overview Report Selection Menu
	15.33 zFS Summary Report
	15.34 zFS Summary I/O details by type
	15.35 User and vnode cache detail
	15.36 DFSMSdss dump and restore for zFS file systems
	15.37 UNQUIESCE command
	15.38 zFS recovery support
	15.39 zFS aggregate corruption
	15.40 Debugging data sets
	15.41 zFS hang detection
	15.42 z/OS UNIX Internet information

	Chapter 16. Printing services for z/OS UNIX
	16.1 How do I print and where
	16.2 z/OS Infoprint Server
	16.3 Infoprint Server components
	16.4 Installation of Infoprint Server
	16.5 Infoprint Server HFS directories/files
	16.6 Printer Inventory directories and files
	16.7 Starting Print Interface
	16.8 Operator console started job
	16.9 Operator console started task
	16.10 Printing from UNIX System Services
	16.11 UNIX commands with Infoprint Server
	16.12 z/OS UNIX user prints a data set
	16.13 Transform commands
	16.14 Infoprint Server job attributes
	16.15 UNIX user issues the lpstat command
	16.16 lpstat -t command

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

